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\S 1. Introduction. Let $R$ be a universally continuous semi-ordered
linear space (i.e. a conditionally complete vector lattice in Birkhoff’s sense
[1]) and $\rho$ be a functional which satisfies the following four conditions:
$(\rho.1)$ $ 0\leqq\rho(x)=\rho(-x)\leqq+\infty$ for all $x\in R$ ;
$(\rho.2)$ $\rho(x+y)=\rho(x)+\rho(y)$ for any $x,$ $y\in R$ with $x\perp y^{1)}$ ;
$(\rho.3)$ If $\sum_{\lambda\in\Lambda}\rho(x_{\lambda})<+\infty$ for a mutually orthogonal system $\{x_{\lambda}\}_{\lambda\in\Lambda}^{2)}$ ,

there exists $x_{0}\in R$ such that $x_{0}=\sum_{\lambda\in\Lambda}x$ and $\rho(x_{0})=\sum_{\lambda\in A}\rho(x_{\lambda})$ ;
$(\rho.4)$ $\varlimsup_{\xi\rightarrow 0}\rho(\xi x)<+\infty$ for all $x\in R$ .
Then, $\rho$ is called a quasi-modular and $R$ is called a quqsi-modular space.

In the previous paper [2], we have defined a quasi-modular space and
proved that if $R$ is a non-atomic quasi-modular space which is semi-
regular, then we can define a $modular^{s)}m$ on $R$ for which every univer-
sally continuous linear functional4) is continuous with respect to the norm
defined by the modular5) $m$ [ $2$ ; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular $\rho$ on
a linear space $L$ which satisfies the following conditions:
(A.1) $\rho(x)\geqq 0$ and $\rho(x)=0$ if and only if $x=0$ ;
(A.2) $\rho(-x)=\rho(x)$ ;
(A.3) $\rho(\alpha x+\beta y)\leqq\rho(x)+\rho(y)$ for every $\alpha,$

$\beta\geqq 0$ with $\alpha+\beta=1$ ;
(A.4) $\alpha_{n}\rightarrow 0$ implies $\rho(\alpha_{n}x)\rightarrow 0$ for every $x\in R$ ;
(A.5) for any $x\in L$ there exists $\alpha>0$ such that $\rho(\alpha x)<+\infty$ .

They showed that $L$ is a quasi-normed space with a quasi-norm $||\cdot\{|_{0}$

defined by the formula;

1) $x\perp y$ means $|x|\cap|y|=0$ .
2) A system of elements $\{x_{\lambda}\}\lambda\in\Lambda$ is called mutually orthogonal, if $x_{\lambda}\perp x_{\gamma}$ for $\lambda\neq\gamma$ .
3) For the definition of a modular, see [3].
4) A linear functional $f$ is called universally continuous, if $\inf_{\lambda\in A}f(a_{\lambda})=0$ for any $a\lambda\downarrow\lambda\in\Lambda 0$ .

$R$ is called semi-regular, if for any $x\neq 0,$ $x\in R$ , there exists a upiversally continuous linear
functional $f$ such that $f(x)\neq 0$ .

5) This modular $\rho$ is a generalization of a modular $m$ in the sense of Nakano [3 and 4].

In the latter, there is assumed that $m(\xi x)$ is a convex function of $\xi\geqq 0$ for each $x\in R$ .
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(1.1) $||x||_{0}=\inf\{\xi;\rho(\frac{1}{\xi}x)\leqq\xi\}^{6)}$

and 1 $x_{n}||_{0}\rightarrow 0$ is equivalent to $\rho(\alpha x_{n})\rightarrow 0$ for all $\alpha\geqq 0$ .
In the present paper, we shall deal with a general quasi-modular space

$R$ ( $i$ . $e$ . without the assumption that $R$ is non-atomic or semi-regular).

The aim of this paper is to construct a quasi-norm on $R$ and to investi-
gate the condition under which $R$ is an F-space with this quasi-norm by
making use of the above formula (1.1). Since a quasi-modular $\rho$ on $R$

does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as
is seen by comparing the conditions: $(\rho.1)\sim(\rho.4)$ with those of $\rho[6]$ , we
can not apply the formula (1.1) directly to $\rho$ to obtain a quasi-norm. We
shall show, however, that we can construct always a quasi-modular $\rho^{*}$

which satisfies $(A.2)\sim(A.5)$ on an arbitrary quasi-modular space $R$ in g2
(Theorems 2.1 and 2.2). Since $R$ may include a normal manifold $R_{0}=\{x$ :
$x\in R,$ $\rho^{*}(\xi x)=0$ for all $\xi\geqq 0$} and we can not define a quasi-norm on $R_{0}$ in
general, we have to exclude $R_{0}$ in order to proceed with the argument
further. We shall prove in \S 3 that a quasi-norm $||\cdot||_{0}$ on $R_{0}^{\perp}$ defined by $\rho^{*}$

according to the formula (1.1) is semi-continuous, and in order that $R_{0}^{\perp}$

is an F-space with $||\cdot||_{0}$ (I. $e$ . $||\cdot||_{0}$ is complete), it is necessary and suffi-
cient that $\rho$ satisfies
$(\rho.4^{f})$ $\sup_{x\in}\{\varlimsup_{\alpha-,0}\rho(\alpha x)\}<+\infty$

(Theorem 3.2).
In 84, we shall show that we can define another quasi-norm $||\cdot||_{1}$ on

$R_{0}^{\perp}$ which is equivalent to $||\cdot||_{0}$ such that 1 $x||_{0}\leqq||x||_{1}\leq 2||x||_{0}$ holds for
every $x\in R_{0}^{\perp}$ (Formulas (4.1) and (4.3)). $||\cdot||_{1}$ has a form similar to
that of the first norm (due to I. Amemiya) of (convex) modular in the
sense of Nakano [4; \S 83]. At last in \S 5 we shall add shortly the supple-
mentary results concerning the relations between $||\cdot||_{0}$-convergence and
order-convergence. The matter does not essentially differ from the case
of the (convex) modular on semi-ordered linear spaces and the results
stated in \S 5 are already known in those cases [3].

Throughout this paper $R$ denotes a universially continuous semi-
ordered linear space and $\rho$ a quasi-modular defined on $R$ . For any $p\in R$,

$[p]$ is a projector: $[p]x=\bigcup_{n=1}^{\infty}(n|p|\cap x)$ for all $x\geqq 0$ and $1-[p]$ is a pro-

jection operator onto the normal manifold $N=\{p\}^{\perp}$ , that is, $x=[p]x+(1$

$-[p])x$ .
6) This quasi-norm was first considered by S. Mazur and W. Orlicz [5] and discussed

by several authors [6 or 7].
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\S 2. The conversion of a quasi,modular. From the definition of a
quasi-modular in \S 1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular $\rho$ , we have
(2.1) $\rho(0)=0$ ;
(2.2) $\rho([p]x)\leqq\rho(x)$ for all $p,$ $x\in R$ ;
(2.3) $\rho([p]x)=\sup_{\lambda\in\Lambda}\rho([p_{\lambda}]x)$ for any $[p_{\lambda}]\uparrow_{\lambda\in A}[p]$ .

In the argument below, we have to use the additional property of $\rho$ :
$(\rho.5)$ $\rho(x)\leqq\rho(y)$ if $|x|\leqq|y|,$ $x,$ $y\in R$,

which is not valid for an abitrary $\rho$ in general.
The next theorem, however, shows that we may suppose without loss

of generality that a quasi-modular $\rho$ satisfies $(\rho.5)$ .
Tneorem 2.1. Let $R$ be a quasi-modular space with quasi-modular

$\rho$ . Then there exists a quasi-modular $\rho^{\prime}$ for which $(\rho.5)$ is valid.
Proof. We put for every $x\in R$,

(2.4) $\rho^{\prime}(x)=\sup_{0\leqq|y|\leqq(x|}\rho(y)$ .
It is clear that $\rho^{\prime}$ satisfies the conditions $(\rho.1),$ $(\rho.2)$ and $(\rho.5)$ .

Let $\{x_{\lambda}\}_{\lambda\in A}$ be an orthogonal system such that $\sum_{\lambda\in A}\rho^{\prime}(x_{\lambda})<+\infty$ , then
$\sum_{\lambda\in A}\rho(x_{i})<+\infty$ ,

because
$\rho(x)\leqq\rho^{\prime}(x)$ for all $x\in R$.

We have
$x_{0}=\sum_{\lambda\in\Lambda}x_{\lambda}\in R$

and
$\rho(x_{0})=\sum_{\lambda\in A}\rho(x_{\lambda})$ in virtue of $(\rho.3)$ .

For such $x_{0}$ ,
$\rho^{\prime}(x_{0})=\sup_{0\leqq|y|\leqq x_{0}|}\rho(y)=\sup_{0\leqq|y|\leqq|x_{0}|}\sum_{\lambda\in\Lambda}\rho([x_{\lambda}]y)$

$=\sum_{l\in A}\sup_{0\leqq|y|\leqq|x_{0/}}\rho([x_{\lambda}]y)=\sum_{i\in A}\rho^{\prime}(x_{\lambda})$

holds, $i$ . $e$ . $\rho^{\prime}$ fulfils $(\rho.3)$ .
If $\rho^{\prime}$ does not fulfil $(\rho.4)$ , we have for some $x_{0}\in R$ ,

$\rho^{\prime}(\frac{1}{n}x_{0})=+\infty$ for all $n\geqq 1$ .

By $(\rho.2)$ and $(\rho.4),$ $x_{0}$ can not be written as $x_{0}=\sum_{\nu=1}^{\kappa}\xi_{\nu}e_{\nu}$ , where $e_{\nu}$ is an
atomic element for each $\nu$ with $ 1\leqq\nu\leqq\kappa$ , namely, we can decompose $x_{0}$ into
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an infinite number of orthogonal elements. First we decompose into
$x_{0}=x_{1}+x_{1}^{\prime}$ , $x_{1}\perp x_{1}^{\prime}$ ,

where $\rho^{\prime}(\frac{1}{\nu}x_{1})=+\infty(\nu=1,2, \cdots)$ and $\rho^{\prime}(x_{1}^{\prime})>1$ . For the definition of $\rho^{\prime}$ ,

there exists $0\leqq y_{1}\leqq|x_{1}^{\prime}$ I such that $\rho(y_{1})\geqq 1$ . Next we can also decompose
$x_{1}$ into

$x_{1}=x_{2}+x_{2}^{\prime}$ , $x_{2}\perp x_{2}^{\prime}$ ,
where

$\rho^{\prime}(\frac{1}{\nu}x_{2})=+\infty(\nu=1,2, \cdots)$

and

$\rho^{\prime}(\frac{1}{2}x_{2}^{\prime})>2$ .

There exists also $0\leqq y_{2}\leqq|x_{2}^{\prime}|$ such that $\rho(\frac{1}{2}y_{2})\geqq 2$ . In the same way,

we can find by induction an orthogonal sequence $\{y_{\nu}\}_{\nu=1,2},$
$\ldots$ such that

$\rho(\frac{1}{\nu}y_{\nu})\geqq\nu$

and
$0\leqq|y_{\nu}|\leqq|x|$

for all $\nu\geqq 1$ .
Since $\{y_{\nu}\}_{\nu=1,2}\ldots$ . is order-bounded, we have in virtue of (2.3)

$y_{0}=\sum_{\nu=1}^{\infty}y_{\nu}\in R$

and

$\rho(\frac{1}{\nu}y_{0})\geqq\rho(\frac{1}{\nu}y_{\nu})\geqq v$ ,

which contradicts $(\rho.4)$ . Therefore $\rho^{\prime}$ has to satisfy $(\rho.4)$ . Q.E.D.
Hence, in the sequel, we denote by $\rho^{\prime}$ a quasi-modular defined by the

formula (2.4).
If $p$ satisfies $(\rho.5),$ $\rho$ does also (A.3) in gl :

$\rho(\alpha x+\beta y)\leqq\rho(x)+\rho(y)$

for $\alpha,$
$\beta\geqq 0$ with $\alpha+\beta=1$ .

Because, putting $[p]=[(|x|-|y|)^{+}1$ , we obtain



206 S. Koshi and T. Shimogaki

$\rho(\alpha x+\beta y)\leqq\rho(\alpha|x|+\beta|y|)$

$\leqq\rho(\alpha[p]|x|+\alpha(1-[p])|y|+\beta[p]|x|+(1-[p])\beta|y|)$

$=\rho([p]|x|+(1-[p])|y|)$

$=\rho([p]x)+\rho((1-[p])y)$

$\leqq\rho(x)+\rho(y)$ .
Remark 1. As is shown above, the existence of $\rho^{\prime}$ as a quasi-modular

depends essentially on the condition $(\rho.4)$ . Thus, in the above theorems,
we cannot replace $(\rho.4)$ by the weaker condition:
$(\rho.4^{\prime\prime})$ for any $x\in R$ , there exists $\alpha\geqq 0$ such that $\rho(\alpha x)<+\infty$ .

In fact, the next example shows that there exists a functional $\rho_{0}$ on
a universally continuous semi-ordered linear space satisfying $(\rho.1),$ $(\rho.2)$ ,
$(\rho.3)$ and $(\rho.4^{\prime\prime})$ , but does not $(\rho.4)$ . For this $\rho_{0}$ , we obtain

$\rho_{0}^{\prime}(x)=\sup_{|y|\leqq|x|}\rho_{0}(y)=+\infty$

for all $x\neq 0$ .
Example. $L_{1}[0,1]$ is the set of measurable functions $x(t)$ which

are defined in $[0,1]$ with

$\int^{1}|x(t)|dt<+\infty$ .
Putting

$\rho_{0}(x)=\rho_{0}(x(t))=\int^{1}|x(t)|dt+\sum_{l=1}^{\infty}i$ mes $\{t:x(t)=\frac{1}{i}\}$ ,

we have an example satisfying the above conditions.
In order to define the quasi-norm, we need one more additional condi-

tion: (A.4), namely,
$(\rho.6)$

$\lim_{\xi\rightarrow 0}\rho(\xi x)=0$ for all $x\in R$ .
A quasi-modular space becomes, as is shown below, always a quasi-

normed space excluding the trivial part, but not an F-space in general.
This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let $\rho$ be a quasi-modular on R. We can find afunc-
tional $\rho^{*}$ which satisfies $(\rho.1)\sim(\rho.6)$ except $(\rho.8)$ .

Proof. In virtue of Theorem 2.1, there exists a quasi-modular $\rho^{\prime}$

which satisfies $(\rho.5)$ . Now we put
(2.5) $d(x)=\lim_{\epsilon+0}\rho^{\prime}(\xi x)$ .
It is clear that $ 0\leqq d(x)=d(|x|)<+\infty$ for all $x\in R$ and
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$d(x+y)=d(x)+d(y)$ if $x\perp y$ .
Hence, putting
(2.6) $\rho^{*}(x)=\rho^{\prime}(x)-d(x)$ $(x\in R)$ .
we can see easily that $(\rho.1),$ $(\rho.2),$ $(\rho.4)$ and $(\rho.6)$ hold true for $\rho^{*}$ , since

$d(x)\leqq\rho^{\prime}(x)$

and
$d(\alpha x)=d(x)$

for all $x\in R$ and $\alpha>0$ .
We need to prove that $(\rho.5)$ is true for $\rho^{*}$ . First we have to note

(2.7) $\inf_{\lambda\in\Lambda}d([p_{\lambda}]x)=0$

for any $[p_{\lambda}]\downarrow_{\lambda\in\Lambda}0$ . In fact, if we suppose the contrary, we have

$\inf_{\lambda\in A}d([p_{\lambda}]x_{0})\geqq\alpha>0$

for some $[p_{\lambda}]\downarrow_{\lambda\in\Lambda}0$ and $x_{0}\in R$ .
Hence,

$\rho^{\prime}(\frac{1}{\nu}[p_{\lambda}]_{X_{0}})\geqq d([p_{\lambda}]x_{0})\geqq\alpha$

for all $\nu\geqq 1$ and $\lambda\in\Lambda$ . Thus we can find a subsequence $\{\lambda_{n}\}_{n\geqq 1}$ of $\{\lambda\}_{2\in A}$

such $that\backslash $

$[p_{r_{n}}]\geqq[p_{\lambda_{n+1}}]$

and

$\rho^{\prime}(\frac{1}{n}([p_{\lambda_{n}}]-[p_{i_{n+1}}])x_{0})\geqq\frac{\alpha}{2}$

for all $n\geqq 1$ in virtue of $(\rho.2)$ and (2.3). This implies

$\rho^{\prime}(\frac{1}{n}x_{0})\geqq\sum_{m\geqq n}\rho^{\prime}(\frac{1}{m}([p_{\lambda_{m}}]-[p_{\lambda_{m+1}}])x_{0})=+\infty$ ,

which is inconsistent with $(\rho.4)$ . Secondly we shall prove

(2.8) $d(x)=d(y)$ , if $[x]=[y]$ .
We put $[p_{n}]=[(|x|-n|y|)^{+}]$ for $x,$ $y\in R$ with $[x]=[y]$ and $n\geqq 1$ . Then,
$[p_{n}]\downarrow_{n=1}^{\infty}0and\inf_{n=1,2}\ldots d([p_{n}]x)=0$ by (2.7). Since $(1-[p_{n}])n|y|\geqq(1-[p_{n}])|x|$

and
$d(\alpha x)=d(x)$

for $\alpha>0$ and $x\in R$ , we obtain
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$d(x)=d([p_{n}]x)+d((1-[p_{n}])x)$

$\leqq d([p_{n}]x)+d(n(1-[p_{n}])y)$

$\leqq d([p_{n}]x)+d(y)$ .
As $n$ is arbitrary, this implies

$d(x)\leqq\inf_{n=1,2}\ldots d([p_{n}]x)+d(y)$ ,

and also $d(x)\leqq d(y)$ . Therefore we conclude that (2.8) holds.
If $|x|\geqq|y|$ , then

$\rho^{*}(x)=\rho^{*}([y]x)+\rho^{*}(([x]-[y])x)$

$=\rho^{\prime}([y]x)-d([y]x)+\rho^{*}(([x]-[y])x)$

$\geqq\rho^{\prime}(y)-d(y)+\rho^{*}(([x]-[y])x)$

$\geqq\rho^{*}(y)$ .
Thus $\rho^{*}$ satisfies $(\rho.5)$ . Q.E.D.

Theorem 2.3. $\rho^{*}$ (which is constructed from $\rho$ according to the
formulas (2.4), (2.5) and (2.6)) satisfies $(\rho.3)$ (that is, $\rho^{*}$ is a quasi-
modular), if and only if $\rho$ satisfies
$(\rho.4^{\prime})$

$\sup_{x\in}\overline{\{\lim_{\epsilon+0}}\rho(\xi x)$ } $=K<+\infty$ .
Proof. Let $\rho$ satisfy $(\rho.4)$ . We need to prove

(2.9) $\sup_{\in}d(x)=\sup_{\in}\{\lim_{\xi\Rightarrow 0}\rho^{\prime}(\xi x)\}=K^{\prime}<+\infty$ ,

where
$\rho^{\prime}(x)=\sup_{0\leqq|y|\leqq|x|}\rho(y)$ .

Since $\rho^{\prime}$ is also a quasi-modular, Lemma 2 in [2] or [8] can be appli-

cable, if we put $n_{0}(x)=\rho(x)$ and $n_{\nu}(x)=\rho^{\prime}(\frac{1}{\nu}x)$ for $\nu\geqq 1$ and $x\in R$ . Hence

we can find positive numbers $\epsilon,$ $\gamma$ , a natural number $\nu_{0}$ and a finite dimen-
sional normal manifold $N_{0}$ such that $x\in N_{0}^{\perp}$ with

$\rho(x)\leqq\epsilon$ implies $\rho^{\prime}(\frac{1}{\nu_{0}}x)\leqq\gamma$ .
In $N_{0}$ , we have obviously

$\sup_{x\in N_{0}}\{\lim\rho^{\prime}(\xi x)\}=\gamma_{0}<+\infty$ .
If $\epsilon\leqq 2K$, for any $x_{0}\in N_{0}^{\perp}$ , we can find $\alpha_{0}>0$ such that $\rho(\alpha x_{0})\leqq 2K$ for

all $0\leqq\alpha\leqq\alpha_{0}$ by $(\rho.4^{\prime})$ , and hence there exists always an orthogonal de-
composition such that
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$\alpha_{0}x_{0}=x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{m}+z$

where $\frac{\epsilon}{2}<\rho(x_{i})\leqq\epsilon(i=1,2, \cdots, n),$ $y_{j}$ is an atomic element with $\rho(y_{j})>\epsilon$

for every $j=1,2,\cdots,$ $m$ and $\rho(z)\leqq\frac{\epsilon}{2}$ . From above, we get $n\leqq\frac{4K}{\epsilon}$ and

$m\leqq\frac{2K}{\epsilon}$ . This yields

$\rho^{\prime}(\frac{1}{\nu_{0}}\alpha_{0}X_{0})\leqq\sum_{i=1}^{n}\rho^{\prime}(\frac{1}{\nu_{0}}x_{i})+\sum_{j=1}^{m}\rho^{\prime}(y_{j})+\rho^{\prime}\frac{z}{\nu_{0}}$

$\leqq n\gamma+\sum_{j--1}^{m}\rho^{\prime}(y_{j})+\rho^{\prime}\frac{z}{\nu_{0}}$

$\leqq\frac{4K}{\epsilon}\gamma+\frac{2K}{\epsilon}\{\sup_{0\leqq a\leqq a_{0}}\rho(\alpha x)\}+\gamma$ .

Hence, we obtain
$\lim_{\xi\rightarrow 0}\rho^{\prime}(\xi x_{0})\leqq\rho^{\prime}(\frac{\alpha_{0}}{\nu_{0}}x_{0})\leqq(\frac{4K+\epsilon}{\epsilon})\gamma+(\frac{4K^{2}}{\epsilon})$

in case of $\epsilon\leqq 2K$. If $ 2K\leqq\epsilon$ , we have immediately for $x\in N_{0}^{\perp}$

$\lim_{\epsilon+0}\rho^{\prime}(\xi x)\leqq\gamma$ .
Therefore, we obtain

$\sup_{x\in R}\{\lim_{\xi\rightarrow 0}p^{\prime}(\xi x)\}\leqq\gamma^{\prime}$

where
$\gamma^{\prime}=\frac{4K+\epsilon}{\epsilon}+\frac{4K^{2}}{\epsilon}\cdot+\gamma_{0}$ .

Let $\{x_{\lambda}\}_{\lambda\in A}$ be an orthogonal system with $\sum_{\lambda\in\Lambda}\rho^{*}(x_{\lambda})<+\infty$ . Then for

arbitrary $\lambda_{1},$

$\cdots,$
$\lambda_{k}\in\Lambda$ , we have

$\sum_{\nu=1}^{k}d(x_{\lambda_{\nu}})=d(\sum_{\nu=1}^{k}x_{\lambda_{\nu}})=\lim_{\xi\rightarrow 0}\rho^{\prime}(\xi\sum_{\nu=1}^{k}x_{\lambda_{\nu}})\leqq\gamma^{\prime}$ ,

which implies $\sum_{\lambda\in\Lambda}d(x_{\lambda})\leqq\gamma^{\prime}$ . It follows that

$\sum_{\lambda\in\Lambda}\rho^{f}(x_{\lambda})=\sum_{\lambda\in\Lambda}\rho^{*}(x_{\lambda})+\sum_{\lambda\in\Lambda}d(x_{\lambda})<+\infty$
,

which implies $x_{0}=\sum_{\lambda\in A}x_{\lambda}\in R$ and $\sum_{\lambda\in\Lambda}\rho^{*}(x_{\lambda})=\rho^{*}(x_{0})$
by $(\rho.4)$ and (2.7). There-

fore $\rho^{*}$ satisfies $(\rho.3)$ .
On the other hand,. suppose $th\overline{a}t\rho^{*}$ satisfies $(\rho.3)$ and $\sup_{x\in R}d(x)=+\infty$ .

Then we can find an orthogonal sequence $\{x_{\nu}\}_{\nu\geqq 1}$ such that

$\sum_{\nu=1}^{\mu}d(x_{v})=d(\sum_{\nu\Rightarrow 1}^{\mu}x_{v})\geqq\mu$
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for all $\mu\geqq 1$ in virtue of (2.8) and the orthogonal additivity of $d$ . Since
$\lim_{\epsilon+0}\rho^{*}(\xi x)=0$ , there exists $\{\alpha_{\nu}\}_{\nu\geqq 1}$ with $0<\alpha_{\nu}(\nu\geqq 1)$ and $\sum_{\nu=1}^{\infty}\rho^{*}(\alpha_{\nu}x_{\nu})<+\infty$ .
It follows that $x_{0}=\sum_{\nu=1}^{\infty}\alpha_{\nu}x_{\nu}\in R$ and $d(x_{0})=\sum_{\nu=1}^{\infty}d(\alpha_{v}x_{\nu})$ from $(\rho.3)$ . For such
$x_{0_{\iota}}$, we have for every $\xi\geqq 0$ ,

$\rho^{\prime}(\xi x_{0})=\sum_{\nu=1}^{\infty}\rho^{\prime}(\xi\alpha_{\nu}x_{\nu})\geqq\sum_{\nu=1}^{\infty}d(x_{\nu})=+\infty$ ,

which is inconsistent with $(\rho.4)$ . Therefore we have
$\sup_{\in}(\lim_{\text{\’{e}}\rightarrow 0}\rho(\xi x))\leqq\sup_{x\in R}d(x)<+\infty$ . Q.E.D.

\S 3. Quasi-norms. We denote by $R_{0}$ the set:
$R_{0}=$ {$x:x\in R,$ $\rho^{*}(nx)=0$ for all $n\geqq 1$ } ,

where $\rho^{*}$ is defined by the formula (2.6). Evidently $R_{0}$ is a semi-normal
manifold7) of $R$ . We shall prove that $R_{0}$ is a normal manifold of $R$. In
fact, let $x=\bigcup_{\lambda\in\Lambda}x_{\lambda}$ with $R_{0}\ni x_{\lambda}\geqq 0$ for all $\lambda\in\Lambda$ . Putting

$[p_{n,\lambda}]=[(2nx_{\lambda}-nx)^{+}]$ ,
we have

$[p_{n,\lambda}]\uparrow_{\lambda\in\Lambda}[x]$ and $2n[p_{n,\lambda}]x_{\lambda}\geqq[p_{n,\lambda}]nx_{1}$

which implies $\rho^{*}(n[p_{n,\lambda}]x)=0$ and $\sup_{\lambda\in}\rho^{*}(n[p_{n,\lambda}]x)=\rho^{*}(nx)=0$ . Hence, we
obtain $x\in R_{0}$ , that is, $R_{0}$ is a normal manifold of $R$ .

Therefore, $R$ is orthogonally decomposed into
$R=R_{0}\oplus R_{0}^{\perp 8)}$

In virtue of the definition of $\rho^{*}$ , we infer that for any $p\in R_{0},$ $[p]R_{0}$

is universally complete, i.e. for any orthogonal system $\{x_{\lambda}\}_{\lambda\in A}(x_{\lambda}\in[p]R_{0})$ ,
there exists $x_{0}=\sum_{\lambda\in\Lambda}x_{\lambda}\in[p]R$. Hence we can also verify without difficulty

that $R_{0}$ has no universally continuous linear functional except $0$ , if $R_{0}$

is non-atomic. When $R_{0}$ is discrete, it is isomorphic to $S(\Lambda)^{9)}$-space.
With respect to such a universally complete space $R_{0}$ , we can not always
construct a linear metric topology on $R_{0}$ , even if $R_{0}$ is discrete.

In the following, therefore, we must exclude $R_{0}$ from our considera-
tion. Now we can state the theorems which we aim at.

7) A linear manifold $S$ is said to be semi-normal, if $a\in S,$ $|b|\leqq|a|,$ $b\in R$ implies $b\in S$.
Since $R$ is univerfally continuous, a semi-normal manifold $S$ is normal if and only

$if\bigcup_{\lambda\in\Lambda}x_{\lambda}\in R$ ,
$0\leqq x_{\lambda}\in S(\lambda\in\Lambda)$ implies $\cup x_{\lambda}\in S$.

$\lambda\in\Lambda$

8) This means that $x\in R$ is written by $x=y+z,$ $y\in R_{0}$ and $z\in R_{0}^{L}$ .
9) $S(\Lambda)$ is the set of all real functions defined on $\Lambda$ .
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Theorem 3.1. Let $R$ be a quasi-modular space. Then $R_{0}^{\perp}$ becomes $a$

quasi-normed space with a quasi-norm $||\cdot||_{0}$ which is semi-continuous, i.e.
$\sup_{\lambda\in}||x_{\lambda}\{|_{0}=||x||_{()}$ for any $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x$ .

Proof. In virtue of Theorems 2.1 and 2.2, $\rho^{*}$ satisfies $(\rho.1)\sim(\rho.6)$

except $(\rho.3)$ . Now we put

(3.1) $||x||_{0}=\inf\{\xi;\rho^{*}(\frac{1}{\xi}x)\leqq\xi\}$ .

Then,
$i)$ $ 0\leqq||x||_{0}=||-x||_{0}<\infty$ and $||x||_{0}=0$ is equivalent to $x=0$ ; follows

from $(\rho.1),$ $(\rho.6),$ $(2.1)$ and the definition of $R_{0}^{\perp}$ .
ii) 1 $x+y||_{0}\leqq||x||_{0}+||y||_{0}$ for any $x,$ $y\in R$ ; follows also from (A.3)

which is deduced from $(\rho.4)$ .
iii) $\lim_{\alpha_{n^{-}}>0}||\alpha_{n}x||_{0}=0$ and $\lim_{||x_{n}|^{1}0+0}||\alpha x_{n}||_{0}=0$

; is a direct consequence of

$(\rho.5)$ . At last we shall prove that $||\cdot||_{0}$ is semi-continuous. From ii) and

iii), it follows that $\lim_{a\rightarrow\alpha_{0}}||\alpha x||_{0}=||\alpha_{0}x||_{0}$ for all $x\in R_{0}^{\perp}$ and $\alpha_{0}\geqq 0$ . If $x\in R_{0}^{\perp}$

and $[p_{\lambda}]\uparrow_{\lambda\in\Lambda}[p]$ , for any positive number $\xi$ with I $[p]x||_{0}>\xi$ we have

$\rho^{*}(\frac{1}{\xi}[p]x)>\xi$ , which implies $\sup_{\lambda\in\Lambda}\rho^{*}(\frac{1}{\xi}[p_{\lambda}]x)>\xi$ and henoe $\sup_{\lambda\in\Lambda}||p_{\lambda}$ ] $x||_{0}$

$\geqq\xi$ . Thus we obtain
$\sup_{\lambda\in\Lambda}||[p_{\lambda}]x||_{0}=||[p]x||_{0}$ , if $[p_{\lambda}]\uparrow_{\lambda\in A}[p]$ .

Let $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}x$ . Putting

$[p_{n,\lambda}]=[(x_{\lambda}-(1-\frac{1}{n})x)^{+}]$

we have
$[p_{n,\lambda}]\uparrow_{\lambda\in\Lambda}[x]$ and $[p_{n.\lambda}]x_{\lambda}\geqq[p_{n,\lambda}](1-\frac{1}{n})x$ $(n\geqq 1)$ .

As is shown above, since
$\sup_{\lambda\in}||[p_{n,\lambda}]x_{\lambda}||_{0}\geqq\sup_{\lambda\in\Lambda}\Vert[p_{n,\lambda}](1-\frac{1}{n})x\Vert_{0}=\Vert(1-\frac{1}{n})x||_{0}$ ,

we have
$\sup_{\lambda\in}||x_{\lambda}||_{0}\geqq\Vert(1-\frac{1}{n})x\Vert_{0}$

and also $\sup_{\lambda\in}1x_{\lambda}||_{0}\geqq|\downarrow x||_{0}$ . As the converse inequality is obvious by iv),

$||\cdot||_{0}$ is semi-continuous. Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that

$\lim_{n’\infty}||x_{n}||_{0}=0$ if and only if $\lim_{n-\succ\infty}\rho(\xi x_{n})=0$ for all $\xi\geqq 0$ .
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In order to prove the completeness of quasi-norm $||\cdot||_{0}$ , the next
Lemma is necessary.

Lemma 2. Let $p_{n,\nu},$ $x_{\nu}\geqq 0$ and $a\geqq 0(n, \nu=1,2, \cdots)$ be the elements of
$R_{0}^{\perp}such$ that

(3.2) $[p_{n,\nu}]\uparrow_{\nu\rightarrow-1}^{\infty}[p_{n}]$ with $\bigcap_{n=1}^{\infty}[p_{n}]a=[p_{0}]a\neq 0$ ;

(3.3) $[p_{n,\nu}]x_{\nu}\geqq n[p_{n,\nu}]a$ for all $n,$ $\nu\geqq 1$ .
Then $\{x_{\nu}\}_{\nu\geqq 1}$ is not a Cauchy sequence of $R_{0}^{\perp}with$ respect to $||\cdot||_{0}$ .

Proof. We shall show that there exist a sequence of projectors
$[q_{m}]\downarrow_{m=1}^{\infty}(m\geqq 1)$ and sequences of natural numbers $\nu_{m},$ $n_{m}$ such that
(3.4) $||[q_{m}]a||_{0}>\frac{\delta}{2}$ and $[q_{m}]x_{\nu_{m}}\geqq n_{m}[q_{m}]a$ $(m=1,2, \cdots)$

and
(3.5) $n_{m}[q_{m}]a\geqq[q_{m}]x_{\nu}m-1$ $n_{m+1}>n_{m}(m=2,3, \cdots)$ ,
where $\delta=||[p_{0}]a||_{0}$ .

In fact, we put $n_{1}=1$ . Since $[p_{1,\nu}][p_{0}]\uparrow_{\nu=1}^{\infty}[p_{0}]$ and $||\cdot||_{0}$ is semi-
continuous, we can find a natural number $\nu_{1}$ such that

$||[p_{\iota}, 1][p_{0}]a||_{0}>\frac{||[p_{0}]a||_{0}}{2}=\frac{\delta}{2}$ .
We put $[q_{1}]=[p_{1,\nu_{1}}][p_{0}]$ . Now, let us assume that $[q_{m}],$

$\nu_{m},$ $n_{m}(m=1$ ,
2, $\cdots,$

$k$) have been taken such that (3.4) and (3.5) are satisfied.
Since $[(na-x_{\nu_{h}})^{+}]\uparrow_{n=1}^{\infty}[a]$ and $||[q_{k}]a||_{0}\geq\frac{\delta}{2}$, there exists $n_{k+1}$ with

$||(n_{k+1}a-x_{\nu_{k}})^{+}[q_{k}]\alpha||_{0}>\frac{\delta}{2}$ .
For such $n_{k+1}$ , there exists also a natural number $\nu_{k+1}$ such that

$||[p_{n_{k+1},\nu_{k+1}}][(n_{k+1}a-x_{\nu_{k}})^{+}][q_{k}]a||_{0}>\frac{\delta}{2}$ .
in virtue of (3.2) and semi-continuity of $||\cdot||_{0}$ . Hence we can put

$[q_{k+1}]=[p_{n_{k+1},\nu_{k+1}}][(n_{k+1}a-x_{\nu_{k}})^{+}][q_{k}]$ ,
because

$[q_{k+1}]\leqq[q_{k}],$ $||[q_{c+1}]a||>\frac{\delta}{2},$ $[q_{k+1}]x_{\nu_{k+1}}\geqq n_{k+1}[q_{k+1}]a$

by (3.3) and $[q_{k+1}]n_{k+1}a\geqq[q_{k+1}]x_{\nu_{k}}$ by (3.5).
For the sequence thus obtained, we have for every $k\geqq 3$
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$||x_{\nu_{k+1}}-x_{\nu_{k-1}}||_{0}\geqq||[q_{k+1}](x_{\nu_{k+1}}-x_{\nu_{k-1}})||_{0}$

$\geqq||n_{k+1}[q_{k+1}]a-n_{k}[q_{k+1}]a)||_{0}\geqq||[q_{k+1}]a_{0}||_{0}\geqq\frac{\delta}{2}$ ,

since $[q_{k+1}]\leqq[q_{k}]\leqq[(n_{k}a-x_{\nu- 1})^{+}]$ implies $[q_{k+1}]n_{k}a\geqq[q_{k+1}]x_{\nu_{k-1}}$ by (3.4).

It follows from the above that $\{x_{\nu}\}_{\nu\geqq 1}$ is not a Cauchy sequence.
Theorem 3.2. Let $R$ be a quasi-modular sPace with quasi-modnlar

$\rho$ . Then $R_{0}^{\perp}$ is an F-space with $||\cdot||_{0}$ if and only if $\rho$ satisfies $(\rho.4^{\prime})$ .
Proof. If $\rho$ satisfies $(\rho.4^{\prime}),$ $\rho^{*}$ is a quasi-modular which fulfils also

$(\rho.5)$ and $(\rho.6)$ in virtue of Theorem 2.3. Since 1 $x||_{0}(=\inf\{\xi;\rho^{*}(\frac{x}{\xi})\leqq\xi\})$

is a quasi-norm on $R_{0}^{\perp}$ , we need only to verify completeness of $||\cdot||_{0}$ . At
first let $\{x_{\nu}\}_{\nu\geqq 1}\subset R_{0}^{\perp}$ be a ’Cauchy sequence with $0\leqq x_{\nu}\uparrow_{\nu=1,2},$

$\ldots$ . Since $\rho^{*}$

satisfies $(\rho.3)$ , there exists $0\leqq x_{0}\in R_{0}^{\perp}$ such that $x_{0}=\bigcup_{\nu=1}^{\infty}x_{v}$ , as is shown in
the proof of Theorem 2.3.

Putting $[p_{n.\nu}]=[(x_{\nu}-nx_{0})^{+}]$ and $\bigcup_{\nu=1}^{\infty}[p_{n.\nu}]=[p_{n}]$ , we obtain

(3.6) $[p_{n,v}]x_{\nu}\geqq n[p_{n,\nu}]x_{0}$ for all $n,$ $\nu\geqq 1$

and $[p_{n}]\downarrow_{n=1}^{\infty}0$ . Since $\{x_{\nu}\}_{\nu\geqq 1}$ is a Cauchy sequence, we have in virtue of

Lemma 2, $\bigcap_{n=1}^{\infty}[p_{n}]=0$ , that is, $\bigcup_{n=1}^{\infty}([x_{0}]-[p_{n}])=[x_{0}]$ . And

$(1-[p_{n,\nu}])\geqq(1-[p_{n}])$ $(n, \nu\geqq 1)$

implies
$n(1-[p_{n}])x_{0}\geqq(1-[p_{n}])x_{\nu}\geqq 0$ .

Hence $w\dot{e}$ have
$y_{n}=\bigcup_{\nu=1}^{\infty}(1-[p_{n}])x_{\nu}\in R_{0}^{\perp}$ ,

because $R_{0}^{\perp}$ is universally continuous. As $\{x_{\nu}\}_{\nu\geqq 1}$ is a Cauchy sequence,
we obtain from the triangle inequality of $||\cdot||_{0}$

$\gamma=\sup_{\nu\geqq 1}||x_{\nu}||_{0}<+\infty$ ,

which implies

$||y_{n}||_{0}=\sup_{\nu\geqq 1}||(1-[p_{n}])x_{\nu}||_{0}\leqq\gamma$

for every $n\geqq 1$ by semi-continuity of $||\cdot||_{0}$ . We put $z_{1}=y_{1}$ and $z_{n}=y_{n}-y_{n-1}$

$(n\geqq 2)$ . It follows from the definition of $y_{n}$ that $\{z_{\nu}\}_{\nu\geqq 1}$ is an orthogonal

sequence with I $|\sum_{\nu=1}^{n}z_{\nu}||_{0}=||y_{n}||_{0}\leqq\gamma$ . This implies
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$\sum_{\nu=1}^{n}\rho^{*}(\frac{z_{\nu}}{1+\gamma})=\rho^{*}(\frac{y_{n}}{1+\gamma})\leqq\gamma$

for all $n\geqq 1$ by the fomula (3.1). Then $(\rho.3)$ assures the existence of
$z=\sum_{\nu=1}^{\infty}z_{\nu}=\bigcup_{\nu=1}^{\infty}y_{\nu}$ . This yields $z=\bigcup_{\nu=1}^{\infty}x_{\nu}$ . Truly, it follows from

$ z=\bigcup_{n=1}^{\infty}y_{n}=\bigcup_{n=1}^{\infty}\bigcup_{\nu=1}^{\infty}(1-[p_{n}])x_{\nu}=\bigcup_{\nu=1}^{\infty}\bigcup_{n=1}(1-[p_{n}])x_{\nu}=\bigcup_{\nu=1}^{\infty}[x_{0}]x_{\nu}=\bigcup_{\nu=1}^{\infty}x_{\nu}\infty$ .
By semi-continuity of $||\cdot||_{0}$ , we have

$||z-x_{\nu}||_{0}\leqq\sup_{\mu\geqq\nu}||x_{\mu}-x_{\nu}||_{0}$

and furthermore $\lim_{\rightarrow\infty}1z-x_{\nu}||_{0}=0$ .
Secondly let $\{x_{\nu}\}_{\nu\geqq 1}$ be an arbitrary Cauchy sequence of $R_{0}^{\perp}$ . Then we

can find a subsequence $\{y_{\nu}\}_{\nu\geqq 1}$ of $\{x_{\nu}\}_{\nu\geqq 1}$ such that
$||y_{\nu+1}-y_{\nu}||_{0}\leqq\frac{1}{2^{\nu}}$ for all $u\geqq 1$ .

This implies

$||\sum_{\nu=m}^{n}$ I $y_{\nu+1}-y_{\nu}|||_{0}\leqq\sum_{\nu=m}^{n}||y_{v+1}-y_{\nu}||_{0}\leqq\frac{1}{2^{m- 1}}$ for all $n>m\geqq 1$ .

Putting $z_{n}=\sum_{\nu=1}^{n}|y_{\nu+1}-y_{\nu}|$ , we have a Cauchy sequence $\{z_{n}\}_{n\geqq 1}$ with $0\leqq z_{n}\uparrow_{n=1}^{\infty}$ .
Then by the fact proved just above,

$z_{0}=\bigcup_{n=1}^{\infty}z_{n}=\sum_{\nu=1}^{\infty}|y_{\nu+1}-y_{\nu}|\in R_{0}^{\perp}$ and $\lim_{n+\infty}||z_{0}-z_{n}||_{0}=0$ .
Since $\sum_{\nu=1}^{\infty}|y_{\nu+1}-y_{\nu}|$ is convergent, $y_{1}+\sum_{\nu=1}^{\infty}(y_{\nu+1}-y_{\nu})$ is also convergent and

$|1y_{1}+\sum_{\nu=1}^{\infty}(y_{\nu+1}-y_{\nu})-y_{n}||_{0}=||\sum_{\nu=n}^{\infty}(y_{\nu+1}-y_{\nu})||_{0}\leqq||z_{0}-z_{n}||_{0}\rightarrow 0$ .
Since $\{y_{\nu}\}_{\nu\geq 1}$ is a subsequence of the Cauchy sequence $\{x_{\nu}\}_{\nu\geq 1}$ , it follows

that
$\lim_{\mu\rightarrow\infty}||y_{I}+\sum_{\nu=1}^{\infty}(y_{v+1}-y_{\nu})-x_{\mu}||_{0}=0$ .

Therefore $||\cdot||_{0}$ is complete in $R_{0}^{\perp}$ , that is, $R_{0}^{\perp}$ is an F-space with $||\cdot||_{0}$ .
Conversely if $R_{0}^{\perp}$ is $an\backslash $ F-space, then for any orthogonal sequence

$\{x_{\nu}\}_{\nu\geq 1}\in R_{0}^{\perp}$ , we have $\sum_{\nu=1}^{\infty}\alpha_{\nu}x_{\nu}\in R_{0}^{\perp}$ for some real numbers $\alpha_{\nu}>0$ (for all $\nu\geqq 1$ ).

Hence we can see that $\sup_{x\in}d(x)<+\infty$ by the same way applied in Theorem

2.1. It follows that $\rho$ must satisfy $(\rho.4^{\prime})$ . Q.E.D.
Since $R_{0}$ contains a normal manifold which is universally complete, if

$R_{0}\neq 0$ , we can conclude directly from Theorems 3.1 and 3.2
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Corollary. Let $R$ be a quasi-modular space which includes no uni-
versally complete normal manifold. Then $R$ becomes a quasi-normed
space with a quasi-norm $||\cdot||_{0}$ defined by (3.1) and $R$ becomes an F-space
with $||\cdot||_{0}$ if and only $\dot{q}f\rho$ fulfils $(\rho.4^{\prime})$ .

\S 4. Another Quasi-norm. Let $L$ be a modular sPace in the sense
of Musielak and Orlicz (g1). Here we put for $x\in L$

(4.1) $||x||_{1}=\inf_{\epsilon>0}\{\frac{1}{\xi}+\rho(\xi x)\}^{10)}$

and show that $||\cdot||_{1}$ is also a quasi-norm on $L$ and
(4.2) $||x||_{0}\leqq||x||_{1}\leqq 2||x||_{0}$ for all $x\in L$

hold, where $||\cdot||_{0}$ is a quasi-norm defined by the formula (1.1).
From (A.1), (A.2) and (A.5), it follows that $ 0\leqq||x||_{1}=||-x||_{1}<+\infty$

$(x\in L)$ and that $||x||_{1}=0$ is equivalent to $x=0$ . Since $\alpha_{n}\downarrow_{n=1}^{\infty}0$ implies
$\lim_{n\cdot\prime\infty}\rho(\alpha_{n}x)=0$ for each $x\in L$ and $\lim_{n+\infty}||x_{n}||_{1}=0$ implies $\lim_{n-\succ\infty}\rho(\xi x_{n})=0$ for all
$\xi\geqq 0$ , we obtain that $\lim_{n-\succ 0}1\alpha_{n}x||_{1}=0$ for all $\alpha_{n}\downarrow_{n=1}^{\infty}0$ and that $\lim_{n-\succ\infty}11x_{n}||_{1}=0$

implies $\lim_{n\star\infty}||\alpha x_{n}||_{1}=0$ for all $\alpha>0$ . If $||x||_{1}<\alpha$ and I $ y||_{1}<\beta$ , there exist
$\xi,$ $\eta>0$ such that

$\frac{1}{\xi}+\rho(\xi x)<\alpha$ and $\frac{1}{\eta}+\rho(\eta y)<\beta$ .
This yields

$||x+y||\leqq\frac{\xi+\eta}{\xi\eta}+\rho(\frac{\xi\eta}{\xi+\eta}(x+y))=\frac{1}{\xi}+\frac{1}{\eta}+\rho(\frac{\eta}{\xi+\eta}(\xi x)+\frac{\xi}{\xi+\eta}(W))$

$\leqq\frac{1}{\xi}+\rho(\xi x)+\frac{1}{\eta}+\rho(W)<\alpha+\beta$ ,

in virtue of (A.3). Therefore $||x+y||_{1}\leqq||x||_{1}+||y||_{1}$ holds for any $x,$ $y\in L$

and $||\cdot||_{1}$ is a quasi-norm on $L$ . If $\xi\rho(\xi x)\leqq 1$ for some $\xi>0$ and $x\in L$, we

have $\rho(\xi x)\leqq\frac{1}{\xi}$ and hence

$\frac{1}{\xi}\leqq\frac{1}{\xi}+\rho(\xi x)\leqq\frac{2}{\xi}$ .

10) For the convex modular $m$ , we can define two kinds of norms such as
$\Vert x\Vert=\inf_{\xi\rightarrow 0}\frac{1+m(}{\xi}\underline{\xi x)}$ and 1 $x\Vert|=\inf_{m(\xi x)\leqq 1}\frac{1}{|\xi|}$

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are notbing
but ones obtained by replacing $m(\xi x)$ by $\xi\rho(\xi x)$ in $\Vert|\cdot\Vert|$ and $\Vert\cdot\Vert$ respectively.
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This yields (4.2), sinoe we have $||x||_{0}\leqq\frac{1}{\xi}$ and $\rho(\eta x)>\frac{1}{\eta}$ for every $\eta$ with

$||x||_{0}>\frac{1}{\eta}$ . Therefore we can obtain from above

Theorem 4.1. If $L$ is a modular space with a modular satisfying
$(A.1)\sim(A.5)$ in $S_{*}1$ , then the formula (4.1) yields a quasi-norm $||\cdot||_{1}$ on
$L$ which is equivalent $t\sigma||\cdot||_{0}$ defined by Musielak and Orlicz in [6] as
is shown in (4.2).

From the above theorem and the results in \S 2, we obtain by the same
way as in \S 3

Theorem 4.2. If $R$ is a quasi-modular space with a quasi-modular
$\rho$ , then

(4.3) $||\dot{x}||_{1}=\inf_{\epsilon>0}\{\frac{1}{\xi}+\rho^{*}(\xi x)\}$ $(x\in R)$

is a semi-continuous quasi-norm on $R_{0}^{\perp}and$ $||\cdot||_{1}$ is complete if and only

if $\rho$ satisfies $(\rho.4^{\prime})$ , where $\rho^{\star}$ and $R_{0}$ are the same as in\S 2 and $\xi_{c}3$ . And
further we have
(4.4) $||x||_{0}\leqq||x||_{1}\leqq 2||x||_{0}$ for all $x\in R_{0}^{\perp}$

\S 5. A quasi-norm-convergence. Here we suppose that a quasi-
modular $\rho^{*}$ on $R$ sa.tisfies $(\rho.l)\sim(\rho.6)$ except $(\rho.3)$ and $\rho^{*}(\xi x)$ is not identi-
cally zero as a function of $\xi\geqq 0$ for each $0\neq x\in R$ (i.e. $R_{0}=\{0\}$ ). A
sequence of elements $\{x_{\nu}\}_{\nu\geqq 1}$ is called order-convergent to $q,$ and. denoted
by $0-\lim_{+\infty}x_{\nu}=a$ , if there exists a sequence of elements- $\{a_{\nu}\}_{\nu\geqq 1}$ such that
$|x_{\nu}-a|\leqq a_{\nu}(\nu\geqq 1)$ and $a_{\nu}\downarrow_{\nu=1}^{\infty}0$ . And a sequence of elements $\{x_{\nu}\}_{\nu\geqq 1}$ is called
star-convergent to $a$ and denoted by $s-\lim_{\rightarrow\infty}x_{\nu}=a$ , if for any subsequence

$\{y_{\nu}\}_{\nu\geqq 1}$ of $\{x_{\nu}\}_{\nu\geqq 1}$ , there exists a subsequence $\{z_{\nu}\}_{\nu\geqq 1}$ of $\{y_{\nu}\}_{\nu\geqq l}$ with $0-\lim_{\sim>0}z_{\nu}=a$ .
A quasi-norm $||\cdot||$ on $R$ is termed to be continuous, if $\inf_{\nu\geqq 1}||a_{v}||=0$ for any

$a_{\nu}\downarrow_{\nu=1}^{\infty}0$ . In the sequel, we write by $||\cdot||_{0}$ (or $||\cdot||_{1}$ ) the quasi-norm defined
on $R$ by $\rho^{*}$ In \S 3 (resp. in \S 4).

Now we prove
Theorem 5.1. In order that $||\cdot||_{0}$ (or $||\cdot||_{1}$ ) is continuous, it is neces-

sary and sufficient that the following condition is satisfied:
(5.1) for any $x\in R$ there exists an orthogonal $\dot{d}$ecomposition $x=y+z$ such

that $[z]R$ is finite dimensional and $\rho(y)<+\infty$ .
Proof. Necessity. If (5.1) is not true for some $x\in R$, we can find a
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sequence of projector $\{[p_{n}]\}_{n\geqq 1}$ such that $\rho([p_{n}]x)=+\infty$ and $[p_{n}]\downarrow_{n=1}^{\infty}0$ .
Hence by (3.1) it follows that $|\rfloor[p_{n}]x||_{0}>1$ for all $n\geqq 1$ , which contradicts
the continuity of $||\cdot||_{0}$ .

Sufficiency. Let $a_{\nu}\downarrow_{\nu=1}^{\infty}0$ and put $[p_{n}^{\text{{\it \’{e}}}}]=[(a_{n}-\epsilon a_{1})^{+}]$ for any $\epsilon>0$ and
$n\geqq 1$ . It is easily seen that $[p_{n}^{\epsilon}]\downarrow_{n=1}^{\infty}0$ for any $\epsilon>0$ and

$a_{n}=[a_{1}]a_{n}=[p_{n}^{\epsilon}]a_{n}+(1-[p_{n}^{\epsilon}])a_{n}\leqq[p_{n}^{e}]a_{1}+\epsilon a_{1}$ .
This implies

$\rho^{*}(\xi a_{n})\leqq\rho^{*}(\xi[p_{n}^{e}]a_{1})+\rho^{*}(\xi\epsilon(1-[p_{n}^{*}])a_{1})$

for all $n\geqq 1$ and $\xi\geqq 0$ . In virtue of (5.1) and $[p_{n}^{e}]\downarrow_{n=1}^{\infty}0$ , we can find $n_{0}$

(depending on $\xi$ and 6) such that $\rho^{*}(\xi[p_{n}^{\epsilon}]a_{1})<+\infty$ , and hence $\inf_{n\geqq 1}\rho^{*}(\xi[p_{n}^{\epsilon}]a_{1})$

$=0$ by (2.3) in Lemma 1 and $(\rho.2)$ . Thus we obtain
$\inf_{n\geqq 1}\rho^{*}(\xi a_{n})\leqq\rho^{*}(\xi\epsilon a_{1})$ .

Since $\epsilon$ is arbitrary, $\lim_{n\rightarrow\infty}\rho^{*}(\xi a_{n})=0$ follows. Hence we infer that

$\inf_{n\geqq 1}1a_{n}||_{0}=0$ and $||\cdot||_{0}$ is continuous in view of Remark 2 in \S 3. Q.E.D.

In view of the proof of the above theorem we get obviously
Corollary. $||\cdot||_{0}$ is continuous, if

(5.2) $\rho^{*}(a_{v})\rightarrow 0$ implies $p^{*}(\alpha a_{\nu})\rightarrow 0$ for every $\alpha\geqq 0$ .
From the definition, it is clear that $s-\lim_{\neq\infty}x_{\nu}=0$ implies $\lim_{+\infty}$ I $x_{\nu}||_{0}=0$ ,

if $||\cdot||_{0}$ is continuous. ConverseIy we have, by making use of the well-
known method (cf. Theorem 33.4 in [3])

Theorem 5.2. $\lim_{\nu+\infty}||x_{\nu}||_{0}=0$ (or $\lim_{\rightarrow\infty}1x_{\nu}||_{1}=0$) implies $s-\lim_{\nu\rightarrow\infty}x_{\nu}=0$ , if
$||\cdot||_{0}$ is eomplete (i.e. $\rho^{*}$ satisfies $(\rho.3)$).

If we replace $\lim_{\nu+\infty}||x_{\nu}||=0$ by $\lim_{\nu\rightarrow\infty}\rho(x_{\nu})=0$ , Theorem 5.2 may fail to be

valid in general. By this, reason, we must consider the following condition:
(5.3) $\rho^{*}(x)=0$ implies $x=0$ .

Truly we obtain
Theorem 5.3. If $\rho^{*}$ satisfies (5.3) and $||\cdot||_{0}$ is complete, $\rho(a_{\nu})\rightarrow 0$

implies s- $\lim_{\nu+\infty}a_{\nu}=0$ .
Proof. We may suppose without loss of generality that $p^{*}$ is semi-

continuous,11) i.e. $\rho^{*}(x)=\sup_{\lambda\in\Lambda}\rho^{*}(x_{\lambda})$ for any $0\leqq x\uparrow_{\lambda\in A}x$ . If

11) If $\rho^{*}$ is not semi-continuous, putting
$\rho_{*}(x)=\inf_{y_{\lambda}N_{\lambda\in\Lambda^{x}}}\{\sup_{\lambda\in\Lambda}\rho^{*}(y\lambda)\}$

, we obtain a quasi-

modular $\rho_{*}$ which is semi-continuous and $\rho^{*}(x_{\nu})\rightarrow 0$ is equivalent to $\rho_{*}(x_{\nu})\rightarrow 0$ .
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$\rho(a_{\nu})\leqq\frac{1}{2^{\nu}}$ $(\nu\geqq 1)$ ,

we can prove by the similar way as in the proof of Lemma 2 that there

exists $\nu=1U\infty|a_{\nu}|\in R$ in virtue of $(\rho.3)$ .
Now, since

$\rho(,\bigcup_{u\geqq\nu}^{\infty}|a_{\mu}|)\leqq\sum_{\mu\geqq\nu}^{\infty}\rho(a_{\mu})\leqq\frac{1}{2^{\nu-1}}$

holds for each $\nu\geqq 1,$ $\rho\{\bigcap_{\nu=1}^{\infty}(\bigcup_{\mu\geqq\nu}^{\infty}|a_{\mu}|)\}=0$ and hence (5.3) implies

$\bigcap_{\nu=1}^{\infty}(\bigcup_{\mu\geqq\nu}^{\infty}|a_{\mu}|)=0$ .
Thus we see that $\{a_{\mu}\}_{\mu\geqq 1}$ is order-convergent to $0$ .

For any $\{b_{\nu}\}_{\nu\geqq 1}$ with $\rho(b_{\nu})\rightarrow 0$ , we can find a subsequence $\{b_{\nu}^{\prime}\}_{\nu\geqq 1}$ of $\{b_{\nu}\}_{\nu\geqq 1}$

with $\rho(b_{\nu}^{\prime})\leqq\frac{1}{2^{\nu}}(\nu=1,2, \cdots)$ . Therefore we have $s-\lim_{\star\infty}b_{v}=0$. Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1
in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect
to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2
and 5.3, we can obtain further the next theorem which is analougous to
the above lemma of [9] and considered as the converse of Corollary of
Theorem 5.1 at the same time. $ 1^{\wedge}1\$ $

Theorem 5.4. If $p^{*}$ satisfies (5.3) and $||\cdot||_{0}$ is complete and continu-
ous, then (5.2) holds.
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