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§1. Introduction. Let R be a wuniversally continuous semi-ordered
linear space (i.e. a conditionally complete vector lattice in Birkhoff’s sense
[1]) and p be a functi_onal which satisfies the following four conditions:

(p.1) 0=p@)=p(—2)<+ o for all xeR;

(0.2) p(x+y)=p(x)+p(y) for any x,yeR with x1y";

(0.3) If zg p(x;)<+ o for a mutually orthogonal system {x;},c.?,
A .

there exists x,€ R such that xz,= > 1« and p(x,)= > o(x,);
T €4 €4

(p.4) lim p(éx)<< 4 oo for all xzeR.
£>0

Then, p is called a quasi-modular and R is called a quasi-modular space.
In the previous paper [2], we have defined a quasi-modular space and
proved that if R is a non-atomic quasi-modular space which is semi-
regular, then we can define a modular® m on R for which every univer-
sally continuous linear functional® is continuous with respect to the norm
defined by the modular® m [2; Theorem 3.17.
Recently in [6] J. Musielak and W. Orlicz considered a modular e on
a linear space L which satisfies the following conditions:
(A.1) p(x)=0 and p(x)=0 if and only if x=0;
(A2)  o(—z)=p();
(A.3)  plawv+py)=p(x)+p(y) for every a, =0 with a+=1;
(A4) a, > 0 implies p(a,x) >0 for every xzeR;
(A.5) for any xeL there exists a>0 such that p(ax)< + co.

They showed that L is a quasi-normed space with a quasi-norm ||-{|,
defined by the formula ;

1) 21y means |z |~|y|=0.
2) A system of elements {x:}:e4 is called mutually orthogonal, if x:lx, for A=+y.
"~ 8) For the definition of a modular, see [3]. *
4) A linear functional f is called universally continuous, if 211615 f(a:)=0 for any ailic40.

R is called semi-regular, if for any x=+0, xR, there exists a upiversally continuous linear
functional f such that f(x)==0. "

5) This modular p is a generalization of a modular m in the sense of Nakano [3 and 4].
In the latter, there is assumed that m(&x) is a convex function of £=0 for each z&€R.
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ay Iz llo=int {¢3 o )=¢)"

and ||z,||, > 0 is equivalent to p(ax,) - 0 for all «a=0.

In the present paper, we shall deal with a general quasi-modular space
R (i. e. without the assumption that R is non-atomic or semi-regular).
The aim of this paper is to construct a quasi-norm on R and to investi-
gate the condition under which R is an F-space with this quasi-norm by
making use of the above formula (1.1). Since a quasi-modular o on R
does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as
is seen by comparing the conditions: (0.1)~(p.4) with those of o [6], we
can not apply the formula (1.1) directly to p to obtain a quasi-norm. We
shall show, however, that we can construct always a quasi- -modular p*
which satisfies (A.2)~(A.5) on an arbitrary quas1 -modular space R in §2
(Theorems 2.1 and 2.2). Since R may include a normal manifold R,={x:
xe R, o*(éx)=0 for all £=0} and we can not define a quasi-norm on E, in
general, we have to exclude R, in order to proceed with the argument
further. We shall prove in §3 -that a quasi-norm ||-||, on R defined by po*
according to the formula (1. 1) is semi-continuous, and in order that R¢

is an F—space with |[|][o (1 e. ||-]lo is complete), it is necessary and suﬂ'i-
cient that p satisfies _
(04" sup {lim p(ax)} < + oo
zER a->0 - .

(Theorem 3.2). o

In 84, we shall show that we can define another quasi-norm |[[-||; on
R which is equivalent to ||-||, such that ||z |[,=||z]|],<2|| ]|, holds for
every xeR} (Formulas (4.1) and (4.3)). ||-||; has a form similar to

that of the first norm (due to I.°*Amemiya) of (convex) modular in the
sense of Nakano [4;888]. At last in §5 we shall add shortly the supple-
mentary results concerning the relations between |[|-|[,-convergence and
order-convergence. The matter does not essentially differ from the case
of the (convex) modular on semi-ordered linear spaces and the ‘results
stated in §5 are already known in those cases [3].

Throughout this paper R denotes a wuniversially continuous semi-
ordered linear space and p a quasi-modular defined on R. For any peR,

[p] is a projector: [p]x—U (n| p|ﬂx) for all x=0 and 1—[p] is a pro-

jection operator onto the normal manifold N={p}+, that is, a=[ple+@1
—[pD=.

6) This quasi-norm was ° ﬁrst considered by S. Mazur and W. Orlicz [5] and dlscussed
by several authors [6 or 7].
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8§2. The conversion of a quasi-modular. From the definition of a
quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular p, we have
@1)  p(0)=0;
(2.2)  o([ple)=p(x) for all p,xzeR;
(2.3) o(lplx)=sup o([p;]2) for any [piltic.lp].
In the argument below, we have to use the additional property of p:
(05)  o@)=p(y) if |z|=|y], 2, yekR,
which is not valid for an abitrary p in general.

The next theorem, however, shows that we may suppose without loss
of generality that a quasi-modular e satisfies (p.5).

- Tneorem 2.1. Let R be a quasi-modular space with quasi-modular
p. Then there exists a quasi-modular p’ for which (0.5) is valid.

Proof. We put for every zecR,
(2.4) p'(x)= sup p(y).

0s|yis(=z|

It is clear that p’ satisfies the conditions (p.1), (0.2) and (p.5).
Let {x;};c, be an orthogonal system such that > p’(x,) < + o, then
CAED - _

E p(x2)< + o,
. i€4
because
- o(x)=<p'(x) for all z¢R.
We have ‘
Xo= Z &X;¢c R
i€ 4

and )

()= E o(x,) in virtue of (p.3).

For such =z,
o ()= sup p¥)= sup > p([x.]y)

(AR EZY 0S|y |S[®o| 2€4

=31 sup p([xx:l?/)=2§1 o'(x:)

i€4 0s|yIS|%0) :
holds, i.e. p’ fulfils (p.3).
- If o’ does not fulfil (p.4), we have for some z,¢R,

y(%x;,) = foo for all n=>1.

By (0.2) and (p.4), ®, can not be written as z,= if,e,, where e, is an
/. ; 4 . : : cy=1

atomic element for each v with 1=<v=r, namely, we can decompose z, into
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an infinite number of orthogonal elements. First we decompose into
Ty=x,+x1, xLlaf,
where p’(—l—x >=—l—oo (»=1,2,---) and p'(x})>1. For the definition of p’,

there exists 0<y,< | | such that o(y)=1. ‘Next we can also decompose
x, into.

Xy =L+, 2,1,
where

(—x2> too (y=1,2, ---)

and ,
p’<_—1~w2> >2.
There exists also 0=<y,=< |x2| such that p( Ayz>>2. In the same way,

we can find by induction an orthogonal sequence {¥,},-., ., ... such that
1
—y, )=
P( 5 ?/») Y

0=|y.|=|z|

and

for all v=>=1. A
Since {¥.}.-1,q,... is order-bounded, we have in virtue of (2.3)

yoi ElyueR

(*yo)>p(;1—yv),__>_v ’

which contradicts (p.4). Therefore p’ has to satisfy (p.4). Q.E.D.
Hence, in the sequel, we denote by p’ a quasi-modular defined by the
formula (2.4).
If o satisfies (p. 5), 0 does also (A.3) in §1:

plax+By) = () +po(y)

and

for a, =0 with a+5=1.
Because, putting [p]=[(|x|—]|¥[)*], we obtain
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olax+By)=p(alz|+Bly )
=p(alp]lz|+a@—[pDly |+BLr] = |+(1— [p])ﬁlyl)
=o([p]l @ |+A—[pD| ¥
= o([pJx)+o((1—[p])y)
=p(®)+o(¥) .
Remark 1. As is shown above, the existence of p’ as a quasi-modular

depends essentially on the condition (p.4). Thus, in the above theorems,
we cannot replace (p.4) by the weaker condition: :

(04”)  for any xeR, there exists a=0 such that p(ax)< + .

In fact, the next example shows that there exists a functional p, on
a universally continuous semi-ordered linear space satisfying (o.1), (0.2),
(0.3) and (p.4”), but does not (p.4). For this p,, we obtain

oo (x) = Sup. po(Y)=+ o

for all x=:0. | |

Example. L,[0,1] is the set of measurable functions x(¢) which
are defined in [0,1] with

f1|m(t)|dt'<+oo,.

Putting :
o) = ou(a(t)) = f |2(t) | dt+ 3} i mes {t:at)="1],
1

we have an example satlsfylng the above conditions. ,
In order to define the quasi-norm, we need one more addltlonal condi-
tion: (A.4), namely,

(0.6) lim p(éz)=0 ~ for all zeR.
£-0 ’

A quasi-modular space becomes, as is shown below, always a quasi-
normed space excluding the trivial part, but not an F-space in general
This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let p be a quasi-modular on R. We can find a func-
tional p* which satisfies (p.1)~(0.6) except (p.3). "

Proof. In virtue of Theorem 2.1, there exists a quasi-modular p’
which satisfies (0.5). Now we put

(2.5) d(z)= lim p'(¢2) .
It is clear that 0=d(x)=d(| x|)<+oo for all xe R and



On F-Norms of Quasi-Modular Spaces : 207

~ d(x+y)=d(x)+d(y) | if xly.
Hence, putting - '

(2.6) o* (@) =p'(2) — d(x) o (@eR).
we can see easily that (p.1), (0.2), (0.4) and (0.6) hold true for p*, since
d(x)=<p'(x)

and
| d(ax)=d(z)

for all xe R and a>0.
We need to prove that (p.5) is true for p*. First we have to note

(2.7) _ inf d([p,]x)=0
€4
for any [0:]}ie40. In fact, if we suppose the contrary, we have
inf d([p;]xe)=a>0
€4 ;

for some [p;]4:e40 and x,¢c R.
Hence,

o (L Ipden) zd(lpide) =a

for all v==1 and 2¢4A. Thus we can find a subsequence {Z}nz1 Of {}ic,
such that
[p:,1=[ps,,,]

and . _
f o (2 (tp, 1~ [ps,, D) =5
for all n=1 in virtue of (p.2) and (2.8). This implies
o1 TR | . _
(o) =2 (, (P p, D)= +e,
which is inconsistent with (p.4).. Secondly we shall prove
(2.8) - d(x)=d(y) , : if [z]=[y].

We put [p,]=[(z|—mn|y|)*] for =, ye R with [#]=[%] and n=1. Then,
[9,]47.,0 and inf d([p,]2)=0 by (2.7). Since A —[p.Dn|y|=A—Lr.])]x]|
d 2 .

d(ax)=d(x)
for «>0 and ze R, we obtain ‘
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d(z)=d([p,]2)+d((1—[p,])x)
=d(Lp.Jx)+d(rn(1—[p,])y)
=d([p.]x)+d(¥) .
As n is arbitrary, this implies
d@)= mf d([pn]x)er(y),

and also d(x)=d(y). Therefore we conclude that (2.8) holds.
If |[z|=]v], then
p*(x)= p*([y]x)-l-P*(([w] [yD=z)
=o' ([¥12) — d([y]2) +o*([2]— [y ])x)
=0 @) —d@)+e*([2]— [¥]))
=p*(Y) . . |
Thus p* satisfies (p.5). . : Q.E.D.
Theorem 2.3. p* (which 1s constructed from p according to the
SJormulas (2.4), (2.,6) and (2.6)) satisfies (0.8) (that s, p* 18 a quasi-
modular), if and only if p satisfies : ’

(04") -~ sup{limp(a)} =K<+ .

‘ . Proof. Let p satisfy (0.4). We need to prove

(2.9) . sup d(x)= sup {lim p'(éx)} =K' < + o ,
: rTER rER  £>0 )

where

o(x)= sup p(y).
0siy (sl =]
. Since p’ is also a quas1-modular Lemma 2 in [2] or [8] can be appli-
cable, if we put n,(x)=p(x) and n,(x)=p <~x) for v=1 and zeR. Hence
. v
we can find positive numbers &, 7, a natural number v, and a finite dimen-
sional normal manifold N, such that xe N} with

p(x)=e implies p (“*-’”><T
In N, we have obviously
| sup {lim p'(§x)} =7o< +-oo .

If e<2K, for any x,c Ny, we can find a,>0 such that olax,) <2K for
all 0=a=<a, by (p0.4’), and hence there exists always an orthogonal de-
composition such that
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ag®o="2%;+ - +x,+y,+ Y2

“where %<p(x,.)§s (:=1,2, ---,m), ¥, is an atomic element with o(y;)>¢e

for every j7=1,2,---,m and p(_z)=<f—82—. From above, we get ngiK and
‘ . -

m=< 2K . This yields

)
4 —aoxo)< 2 4 —»f-w >+ Z o (:uj)+p =
Yy
Snr+ 2 p’(yj)-l-p’—;
e { sup p(aw)}

) O=asag

Hence, we obtain
: / / K K:*
lim o'(§wo)=p (—“"— xo)é(f}i © )r+ i—~>
£->0 Yo &

in éase of e<2K. If 2K=<e¢, we have immedlately for xe N¢
lim o’ (¢x)=7.
’ £->0 .
Therefore, we obtain a
o ) ~sup {lim p'(é2)} =7’
zER  £-0
where

7= 4K+8+ K*_}"TO
&g )

Let {x:};c. be an orthogonal system with >3 o*(%;)<+oco. Then for
’ . €4

‘arbitrary 2;", «.-, 2,64, we have
E d(x, )= d(Z ; )—hm p’(SZ ; )<r ,
which implies Zd(x1)<r It follows that
Z o'(@)= 23 0" @)+ 2 (@) < oo,
which implies xy= Z 2, ¢ R and EZ/I o*(x;)=p*(x,) by (p.4) and (2.7). There-

fore o* satlsﬁes (p 3)
' On the other hand, suppose tha"t p* satisfies (0.3) and sup d(x)= + .

Then we can find an orthogonal sequence {x.},z; such that

3 d(w)=d(S) z) =
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for all =1 in virtue of (2.8) and the orthogonal additivity of d. Since

lim p*(§x)=0, there exists {a,},»; with 0<a, (v==1) and ip*(a,,x,,)<+oo,

- E->0 y=1 ’

It follows that x0=Z' a,2,€ R and d(x))=>d(a,x,) from (0.3). For such
v=1

*o We have for every £=0,
o' (§xo) = Zp(fa @ )>Z‘. d(z, )——I—oo ,

which is inconsistent with (p.4). VTherefore we have
sup (lim p(¢2))< sup d(x)< 4-oo . Q.E.D.
ZER  £>0 zER v

83. Quasi-norms. We denote by R, the set: |
R,={x:xecR, p*(nx)=0 for all n=>1},
where p* is defined by the formula (2.6). Evidently R, is a semi-normal

manifold” of K. We shall prove that R, is a normal manifold of B. In
fact, let = x; with R;32,=0 for all ieA. Putting

= LDn, ]=[(2nx,—nx)*],

[Pn:Jtiealz] and  20[pn,]2,=[pn,]nz,
which implies p*(n[p,,,]x)=0 and ?u},) p*(M[ 0w, ]2)=p*(n2x)=0. Hence, we
[

we have

obtain xe R,, that is, R, is a normal manifold of R.
Therefore, R is orthogonally decomposed into

R=R®R{ >
In virtue of the definition of p*, we infer that for any peR,, [p]R,

is universally complete, i.e. for any orthogonal system {x,},c 1A(xe[PIR,),
there exists x,= > x;e[p]E. Hence we can also verify without difficulty
i€ 4 . :

that R, has no universally continuous linear functional except 0, if R,
is non-atomic. When R, is discrete, it is 1somorph1c to S(4)”-space.
With respect to such a universally complete space R, we can not always
construct a linear metric topology on R, even if R, is discrete.

In the following, therefore, we must exclude R, from our considera-
tion. Now we can state the theorems which we aim at.

7) A linear manifold S is said to be semi-normal, if a€S, |b|<|a|, beR implies be:S.\
Since R is univerfally continuous, a semi-normal manifold S is normal if and only if U #:€R,
€4

.0<mES(2€/1) im'plies U mES

8) This means that xeR is written by x=y+2, ysR, and zER].
9) S(A) is the set of all real functions defined on A.
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Theorem 3.1. Let R be a quasi- -modular space. Then Rg becomes a
quasi-normed space with a quasi-norm ||-|lo which is semi-continuous, 1.e.
SuplleHO‘—HxHo Sor any 0=x1:c4® .

Proof. In virtue of Theorems 2.1 and 22 o* satisfies (p. 1)~(,o 6)
except (0.3). Now we put

(3.1) e llo=inf {¢ p*(—é%)é&} . ,

Then,

i) oZ|lzlle=| —x|ly<o and ]IxIIO—O is equivalent to x=0 ; follows
from (p.1), (0.6), (2.1) and the definition of Ry

i) le+yll=lzll,+l¥ll, for any x,yeR; follows also from (A.3)
which is deduced from (o.4).

iii) lim|| a,x|},=0 and lim || az,]|,=0; is a direct consequence of

an>0 [ xnllo>0
(0.5). At last we shall prove that ||-[|, is semi-continuous. From ii) and
iii), it follows that lim HaxIlo-—llaoxHO for all ze R and a,=0. If zeR}

a-rag

and [p:]t:es[P], for any positive number & with || [pJz|l,>& we have
o* (l[p]x>>$, which implies sup p*<l[pl]x>>é and hence sup || ]z ||,
& ie4 & : €4
=>¢. Thus we obtain
?g—? | [pa]e lo=Il CLoJxls, if [p:]%ieaslP].
Let 0=<x,4;c.x. Putting '

=[(o- (1 1))

we have , | .
puiIhieale] and (5,002 [P0 (1= )a (n=1).
As is shown above, since
sup || [p,.:1: [lo=sup \ [P, <1———> (1—ﬁ)
we have

sup || @, !IOzM <1—3?',—)x |

b

and also sup l| &, [lo=]| ®|l,. As the converse inequality is obvious by iv),

I|-1lo is seml-contmuous , QED.

Remark 2. By the definition of (3. 1), we can see easily that
lim ||z, ||,=0 if and only if lim p(éx,)=0 for all £=0.

n->oo 7> 00
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In order to prove the completeness of quasi-norm -1l the next
Lemma is necessary. ‘

Lemma 2. Let p,,, 2,0 and a=0(n,v=1,2, -..) be the eleménts of
Ry such that '
3.2) [P0, 1151 0,] with N [P.Je=[p]a0;

(3.3) [pn,y]x,gﬁ[pm,,]a Jor all m,v=>1.
Then {x.},21 is mot a Cauchy sequence of R§ with respect to ||-]|,.

Proof. We shall show that there exist a sequence of projectors
(@, ]Vm=1(m=1) and sequences of natural numbers v,,, %,, such that

(3-4) - ” [qm]a ”0>“§“ and EQm]wvmgnMEQm]a (mzly 2 .- ')
and .
(35) nm[qm]a’g [qm]xvm;l ’ ' nm+1>nm (')’)’L=2, 3: ° e ') )

where d=|| [p,]a ||,.

~ In fact, we put n,=1. Since [,,][p]4=lp,] and |||, is semi-
continuous, we can find a natural number v, such that

| Loy 020 ]a |l,> HLPodalls 0
| 2 2 |
We put [qIJZEPI’DI:H:pO]. NOW’ let us assume that[qm]’ Vm’ nm (’m:l;
2, -+, k) have been taken such that (3.4) and (3.5) are satisfied.

Since [(na—xuk)+]1‘,°;’._.1[a] vand_ [l [qk]all0>—g-,'there exists n,,, with

I (n,ma—oc,,k_)\+ [9:]e “0>‘g‘, .

For such n,,, there exists also a natural number Y.+:1 sSuch that
, . 5
1Py o JE 0=, ) Mg Ja o >2

in virtue of (8.2) and semi-continuity of [|-]l Hence we can put
I:Qk+1]:[pnk+1, ,k*_lj[(nkﬂa——x,k)*][qk] ’

because

[0, 0=[q,], u[qmjau>§, [Geei]® . =ni[qens]a

k+I:“

by (3.3) and [q,,,]n...a=[q..,]z. by (3.5).
For the sequence thus obtained, we have for every k©>3
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(S [ e R Y

0
>H nk+1[Qk+1]a’ [ Q:+1]Q) Hoz”[qkn]ao ”0—‘2‘

since [¢.]=[2]<[(ma—=..,)'] implies [¢,..Jma=[a,]a,, , by (34).
It follows from the above that {«,},», is not a Cauchy sequence.

Theorem 3.2. Let R be a quasi-modular space with quasi-modnlar
p. Then Rt is an F-space with ||-||, if and only if p satisfies (p.4").

Proof. If p satisfies (p.4’), p* is a quasi-modular which fulfils also
(0.5) and (0.6) in virtue of Theorem 2.3. Since || x|, <=inf {E ; p* <%>§,S}>
is a quasi-norm on R, we need only to verify comxﬁleteness of ||-]l,. At
first let {z,},.1C R{ be a Cauchy sequence with 0=«x,},_; , ... Since p*
satisfies (p.8), there exists 0=x,¢ R} such that x,=U ., as is shown in

. v=1 '
the proof of Theorem 2.3.

Putting [p,,]=[(#,—nw,)*] and U[p,.]1=[p,], we obtain
(8.6) (D, ]2, =D, ]%, for all n,v=>1
and [p,]¥n-.0. Since {z,}.,>; is a Cauchy sequence, we have in Vlrtue of
Lemma 2, ﬂ[pn] 0, that is, U([wo] [p,])=[=,]. And
(1— [pm »])>(1 ») (n, v=1)
implies -
Hence we have '

U A—[p.Dx.c Ry,

because R is universally continuous. As {2.}.;, is a Cauchy sequence,
we obtain from the trlangle inequality of ||-||,

r=sup||@,[y<+oo,
which implies
19 llo=sup || A—Lp,Dx. =7
for every n=1 by semi-continuity of ||-|[,, We put 2,=y, and 2,=¥.—¥._,
(n=2). It follows from the definition of y, that {z,},-, is an orthogonal
sequence with Hgé, lo=Il¥.lle=7. This implies
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S = o* _yzz_>§
: g <1—l—r> p<1+r =7 '
for all n=1 by the fomula (3.1). Then (0.3) assures the existence of
i =G ¥,. This yields z:U x,. Truly, it follows from

y=1

z=nL=len U U (1—[p,])z, —U U(l [P D), —U Lo e, —U x,

n=1y=1 v=1 n=1

By semi-continuity of ||:|,, we have
12—, llu=sup |lz,—, [l,
and furthermore lim || z—=, ||,=0.

Secondly let {x.,},», be an arbitrary Cauchy sequence of R. Then we
can find a subsequence {y,},»; of {x.},>; such that
‘ 1

H Y1 Y, ”o§ o

for all v=>1.

This implies |

22 Y=o, o= 23| ?/hLl—?/yll(;eS_-én}f1 for all n>m=>1.

Putting znzi | ¥,+1—¥. |, we have a Cauchy sequence {z,},-; with 0=z,1...
y=1 ) B

Then by the fact proved just above, ‘

2%=Uz=3 =t |cRE and lim|lz—2,],=0.
ne e . n->00
Since > |9,..—¥.| is convergent, ¥, +>) (¥.,41—¥.,) is also convergent and
v=1 B v=1

194+ 2 W= ) =00 o= 1| 2 W= ) o=l 20—, [, >0

Since {y.}.=: is a subsequence of the Cauchy sequence {.},~;, it follows
that : _ |
hmlly1+2(yy+1 ¥.)—x,],=0.

n>oo
Therefore ||-||, is complete in Ry, that is, Ry is an F-space with ||-]|,.
Conversely if Ri is an F- space, then for any orthogonal sequence

{x.,},=.€ R, we have Z a,x,€ RY for some real numbers a,>0 (for all v=1).
y=1

Hence we can see that sup d(x) <<+ oo by the same way applied in Theorem

2.1. It follows that p must satisfy (p. 4’) | Q.E.D.
Since R, contains a normal manifold which is universally complete, if
R,2=0, we can conclude directly from Theorems 3.1 and 3.2 - :
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Corollary. Let R be a quasi-modular space which includes mo uni-
versally complete mormal manifold. Then R becomes a quasi-normed
space with a quasi-norm ||-||, defined by (8.1) and R becomes an F—spa,ce
with ||-|l, if and only if p fulfils (0.4').

§4. Another Quasi-norm. Let L be a modular space in the sense
of Musielak and Orlicz (§1). Here we put for xelL

. 10
(4.1) » el =int{ - +p(en)]
‘ o0 L E
and show that ||-||; is also a quasi-norm on L and .
(4.2) N ll=|lz|,=2] x|l for all xeL
hold, where ||-||, is a quasi-norm defined by the formula (1.1).
From (A.1), (A.2) and (A.5), it follows that O=|[z|,=| —x ;<400

(xreL) and that ||z]|/;=0 is equivalent to x=0. Since a,},-.0 implies
lim p(a,x)=0 for each xeL and 11m||96 [l;=0 implies 11m p(Ex,)=0 for all

€20, we obtain that hm||an96l|1—-0 for all a,y2..0 and that lim|| z,||,=0
’ n>0 >0

implies lim|lax,|[,=0 for all a>0. If ||z|l;<a and ||y ||,<B, there exist

&, 7>0 such that

%+p(§x)<a and %+P(77y)<ﬁ-

This yields

| £ty P &y | _1 l 1 Lp 7 |
< (
e y‘||_ &7 <S+>7 ? y)> § 7 <$+ (&) (W)>

§%+P(§x)+%+!’(ﬁy)<a+ﬁ,

in virtue of (A.3). Therefore IIx—}—y||1§|lac|[1—l—llyll1 holds for any z,yeL
and [|-||; is a quasi-norm on L. If &p(éx)<1 for some £>0 and xeL, we

have p(éx)g% and hence

1_1 2
SR GOES
e=e " ¢
' 10) For the convex modular m, we can define two kinds of norms such as
|z |=1inf - 1+m(Ex) and |jz|j= inf ——
€50 m(es1 | &

[8 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing
but ones obtained by replacing m(£x) by £p(éx) in [[-]| and [-]| respectively.
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This yields (4.2), since we have || x ||0§,~; and ,0(779(;)>L for every n with
v _ g ,

|| ||0>—1~. Therefore we can obtain from above
7] .

Theorem 4.1. If L is a modular space with a modular satisfying
(A.1)~(A.5) in §1, then the formula (4.1) yields a quasi-norm |[|-||, on
L which is equivalent to ||-||, defined by Muszelak and Orlicz in [6] as
18 shown in (4.2).

From the above theorem and’ the results in §2, we obtain by the same
way as in §3 _

Theorem 4.2. If R is a quasi-modular space with a quasi-modular
o, then : ’

(43 | Il =int {2+ o°Go) (e R)

s a semi-continuous quasi-norm on RE and ||-||, is complete if and only
if p satisfies (p.4"), where p* and R, are the same as in §2 and. §3 And

Jurther we have
(4.4) o Nelh=llz =2, for all xe Ry .

§5. A quasi-norm-convergence. Here we suppose that a qﬁasi-
modular p* on R satisfies (0.1)~(0.6) except (p.3) and p*(¢%) is not 1dent1-
cally zero as a function of £=0 for each 0XxeR (ie. R,={0}).
sequence of elements {x,},», is called order-convergent to g and, denoted
by o-limx,=a, if there exists a sequence of elements {a, }m such that

" ‘yy>oo
| 2, —a|<a ‘(v=1) and a,}=.0. And a sequence of elements {x,},>, is called
star-convergent to a and denoted by s-limx,=a, if for any subsequence

y->oo

{y.},21 of {@,},21, there ex1sts a subsequence {z, }m of {y,},; with o-lim z,=a.

v>0
A quasi-norm |[|-]| on Ris termed to be continuous, if 1nf Ila ||=0 for any

ay:2.0. In the sequel, we write by || lle C(or ||-|]) the quas1-norm defined
on R by p* in §3 (resp. in §4)
‘Now we prove R _

- Theorem 5.1. In order that [|+1lo (o ||-]],) is continuous, it is neces-
sary and sufficient that the following condition is satisfied : '
(56.1) for any xcR there exists an orthogonal decomposition x=y+z such

that [2]R 1is finite dimensional and p(y)< -+ co. ‘
Proof. Necessity. If (5.1) is not true for some xe¢R, we can find a
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sequence of projector {[p,]}.=: such that p([p,]z)=+c and [p,]Vn.0.
Hence by (3.1) it follows that ||[p,]z||,>1 for all n=1, which contradicts
the continuity of |(|-|,.

Sufficiency. Let a, le and put [p,]=[(a, ——sal)+:| for any &>0 and
n=1. It is easily seen that [p;]Js_,0 for any >0 and

a,=[a,]Ja,=[p;]a,+(A—[p])a,=[p.]a: +ea, .
This implies : _ :
- p*(Ea,)=p*(E[pn]a,)+po*(Ee(1—[pm])a,)
for all . »=1 and £=0. In virtue of (5.1) and [p;]J;..0, we can find =,
(depending on ¢ and ¢) such that p*(¢[p;]a,)< + oo, and hence il’glf p*(E[pila,)
=0 by (2.3) in Lemma 1 and (p.2). Thus we obtain
inf p*(éa,)<p*(Eea,) - |

Since ¢ is arbitrary, limp*(¢a,)=0 follows. Hence we infer that

igfllanllozo and |[|-||, is continuous in view of Remark 2 in §3. -Q.E.D.

" In view of the proof of the above theorem we get obviously
Corollary. ||-||, 7s continuous, if

(5.2) - o*(a,)—>0 implies p*(aa,)—>0 Sfor every a=0.

From the definition, it is clear that s-lim#,=0Q implies llmllx [lo0=0,

if ||-}l, is continuous. ‘Conversely we have, by ‘'making use of the well-
known method (ef. Theorem 33.4 in [3])

Theorem 5.2. hmlloc [lo=0 (or hmH:x; [l,=0) implies s-limz,=0, if

[|-1le ts complete (i.e. p* satisfies (p. 3)) ,
If we replace 11m|] z,||=0 by 11m o(x,)=0, Theorem 5.2 may fail to be

vahd in general. By this, reason, we must consider the following condltlon
(5.3) p*(x)=0 implies x=0.
Truly we obtaln

Theorem 5.3. If o* satisfies (5.3) and Hello 7s complete, p(a )—>0
implies s-lima,=0.
Proof. We may suppose without loss of generality that p* is semi-

continuous,'” ie. p*(x)=sup p*(x;) for any 0=af,c,x. If
i€ 4

11) If p*-is not semi-continuous, putting p.(x)= inf {sup 0*(y)}, we ‘obtain a quasi-
’ Vitiga® *€4
modular p, which is semi-continuous and p*(x,)—0 is equivalent to p.(x.,)—0.
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(v=1),

a =~ —
ola)=<1 >
we can prove by the similar way as in the proof of Lemma 2 that there
exists U |a,|e R in virtue of (p.3).

y=1

Now, since

p<‘lel a, l>§§ ola,)= 2}_1

holds for each v=1, p{r"_ﬁ([] la, |)}=0 and hence (5.8) implies

((0 1 a.l)=o0

Thus we see that {a,},: is order -convergent to 0.
For any {b }.=1 with p(b,)—0, we can find a subsequence {t'.},21 of {b}>1
with p(b'y)é—év-- (»=1,2, ---). Therefore we have s-limb,=0. . Q.E.D.

v->00

The latter part of the above proof is quite the same as Lemma 2.1
in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect
to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2
and 5.3, we can obtain further the next theorem which is analougous to
the above lemma of [9] and considered as the converse of Corollary of
Theorem 5.1 at the same time.

Theorem 5.4. If p* satisfies (5.3) and ||-||, is complete and continu-
ous, then (5.2) holds.
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