ON F-NORMS OF QUASI-MODULAR SPACES

By

Shôzô KOSHI and Tetsuya SHIMOGAKI

- §1. Introduction. Let R be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and ρ be a functional which satisfies the following four conditions:
- $(\rho.1) \qquad 0 \leq \rho(x) = \rho(-x) \leq +\infty \quad \text{for all } x \in R;$
- $(\rho.2) \qquad \rho(x+y) = \rho(x) + \rho(y) \quad \text{for any } x, y \in R \text{ with } x \perp y^{1};$
- (\rho.3) If $\sum_{\lambda \in A} \rho(x_{\lambda}) < +\infty$ for a mutually orthogonal system $\{x_{\lambda}\}_{\lambda \in A}^{2}$, there exists $x_{0} \in R$ such that $x_{0} = \sum_{\lambda \in A} x$ and $\rho(x_{0}) = \sum_{\lambda \in A} \rho(x_{\lambda})$;
- $(\rho.4) \qquad \overline{\lim}_{\xi \to 0} \rho(\xi x) < +\infty \quad \text{for all } x \in R.$

Then, ρ is called a quasi-modular and R is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if R is a non-atomic quasi-modular space which is semi-regular, then we can define a modular³⁾ m on R for which every universally continuous linear functional⁴⁾ is continuous with respect to the norm defined by the modular⁵⁾ m [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular ρ on a linear space L which satisfies the following conditions:

- (A.1) $\rho(x) \ge 0$ and $\rho(x) = 0$ if and only if x = 0;
- $(A.2) \qquad \rho(-x) = \rho(x);$
- (A.3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for every $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$;
- (A.4) $\alpha_n \to 0$ implies $\rho(\alpha_n x) \to 0$ for every $x \in R$;
- (A.5) for any $x \in L$ there exists $\alpha > 0$ such that $\rho(\alpha x) < +\infty$.

They showed that L is a quasi-normed space with a quasi-norm $||\cdot||_0$ defined by the formula;

- 1) $x \perp y$ means $|x| \cap |y| = 0$.
- 2) A system of elements $\{x_{\lambda}\}_{{\lambda} \in A}$ is called mutually orthogonal, if $x_{\lambda} \perp x_{r}$ for ${\lambda} \neq {\gamma}$.
- 3) For the definition of a modular, see [3].
- 4) A linear functional f is called *universally continuous*, if $\inf_{\lambda \in A} f(a_{\lambda}) = 0$ for any $a_{\lambda} \downarrow_{\lambda \in A} 0$. R is called *semi-regular*, if for any $x \neq 0$, $x \in R$, there exists a universally continuous linear functional f such that $f(x) \neq 0$.
- 5) This modular ρ is a generalization of a modular m in the sense of Nakano [3 and 4]. In the latter, there is assumed that $m(\xi x)$ is a convex function of $\xi \ge 0$ for each $x \in R$.

(1.1)
$$||x||_0 = \inf \left\{ \xi ; \rho \left(\frac{1}{\xi} x \right) \leq \xi \right\}^{6}$$

and $||x_n||_0 \to 0$ is equivalent to $\rho(\alpha x_n) \to 0$ for all $\alpha \ge 0$.

In the present paper, we shall deal with a general quasi-modular space R (i. e. without the assumption that R is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on R and to investigate the condition under which R is an F-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular ρ on Rdoes not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: $(\rho.1)\sim(\rho.4)$ with those of ρ [6], we can not apply the formula (1.1) directly to ρ to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular ρ^* which satisfies $(A.2)\sim(A.5)$ on an arbitrary quasi-modular space R in §2 (Theorems 2.1 and 2.2). Since R may include a normal manifold $R_0 = \{x : x \in \mathbb{R} \mid x \in \mathbb{R} \}$ $x \in R$, $\rho^*(\xi x) = 0$ for all $\xi \ge 0$ and we can not define a quasi-norm on R_0 in general, we have to exclude R_0 in order to proceed with the argument further. We shall prove in §3 that a quasi-norm $||\cdot||_0$ on R_0^{\perp} defined by ρ^* according to the formula (1.1) is semi-continuous, and in order that R_0^{\perp} is an F-space with $\|\cdot\|_0$ (i. e. $\|\cdot\|_0$ is complete), it is necessary and sufficient that ρ satisfies

$$\sup_{x \in R} \{\overline{\lim}_{\alpha \to 0} \rho(\alpha x)\} < + \infty$$

(Theorem 3.2).

In §4, we shall show that we can define another quasi-norm $\|\cdot\|_1$ on R_0^\perp which is equivalent to $\|\cdot\|_0$ such that $\|x\|_0 \le \|x\|_1 \le 2\|x\|_0$ holds for every $x \in R_0^\perp$ (Formulas (4.1) and (4.3)). $\|\cdot\|_1$ has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano [4; §83]. At last in §5 we shall add shortly the supplementary results concerning the relations between $\|\cdot\|_0$ -convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in §5 are already known in those cases [3].

Throughout this paper R denotes a universially continuous semi-ordered linear space and ρ a quasi-modular defined on R. For any $p \in R$, [p] is a projector: $[p]x = \bigcup_{n=1}^{\infty} (n|p| \cap x)$ for all $x \ge 0$ and 1 - [p] is a projection operator onto the normal manifold $N = \{p\}^{\perp}$, that is, $x = [p]x + (1 - \lceil p \rceil)x$.

⁶⁾ This quasi-norm was first considered by S. Mazur and W. Orlicz [5] and discussed by several authors [6 or 7].

§2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular ρ , we have

- (2.1) $\rho(0) = 0$;
- (2.2) $\rho(\lceil p \rceil x) \leq \rho(x)$ for all $p, x \in R$;
- (2.3) $\rho([p]x) = \sup_{\lambda \in A} \rho([p_{\lambda}]x) \quad \text{for any} \quad [p_{\lambda}] \uparrow_{\lambda \in A} [p].$

In the argument below, we have to use the additional property of ρ :

$$(\rho.5) \qquad \rho(x) \leq \rho(y) \quad \text{if } |x| \leq |y|, \ x, y \in R,$$

which is not valid for an abitrary ρ in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular ρ satisfies (ρ .5).

Theorem 2.1. Let R be a quasi-modular space with quasi-modular ρ . Then there exists a quasi-modular ρ' for which $(\rho.5)$ is valid.

Proof. We put for every $x \in R$,

$$\rho'(x) = \sup_{0 \le |y| \le |x|} \rho(y).$$

It is clear that ρ' satisfies the conditions $(\rho.1)$, $(\rho.2)$ and $(\rho.5)$.

Let $\{x_{\lambda}\}_{{\lambda}\in A}$ be an orthogonal system such that $\sum_{{\lambda}\in A} \rho'(x_{\lambda}) < +\infty$, then

$$\sum_{\lambda \in A} \rho(x_{\lambda}) < + \infty ,$$

because

$$\rho(x) \leq \rho'(x)$$

for all $x \in R$.

We have

$$x_0 = \sum_{\lambda \in A} x_{\lambda} \in R$$

and

$$\rho(x_0) = \sum_{i \in A} \rho(x_i)$$

in virtue of $(\rho.3)$.

For such x_0 ,

$$\rho'(x_0) = \sup_{0 \le |y| \le |x_0|} \rho(y) = \sup_{0 \le |y| \le |x_0|} \sum_{\lambda \in \Lambda} \rho([x_\lambda]y)$$
$$= \sum_{\lambda \in \Lambda} \sup_{0 \le |y| \le |x_0|} \rho([x_\lambda]y) = \sum_{\lambda \in \Lambda} \rho'(x_\lambda)$$

holds, i. e. ρ' fulfils (ρ .3).

If ρ' does not fulfil $(\rho.4)$, we have for some $x_0 \in R$,

$$\rho'\left(\frac{1}{n}x_0\right) = +\infty$$
 for all $n \ge 1$.

By $(\rho.2)$ and $(\rho.4)$, x_0 can not be written as $x_0 = \sum_{\nu=1}^{r} \xi_{\nu} e_{\nu}$, where e_{ν} is an atomic element for each ν with $1 \leq \nu \leq \kappa$, namely, we can decompose x_0 into

an infinite number of orthogonal elements. First we decompose into

$$x_0 = x_1 + x_1'$$
, $x_1 \perp x_1'$,

where $\rho'\left(\frac{1}{\nu}x_1\right) = +\infty$ ($\nu = 1, 2, \cdots$) and $\rho'(x_1') > 1$. For the definition of ρ' , there exists $0 \le y_1 \le |x_1'|$ such that $\rho(y_1) \ge 1$. Next we can also decompose x_1 into

$$x_1 = x_2 + x_2', \quad x_2 \perp x_2',$$

where

$$\rho'\left(\frac{1}{\nu}x_2\right) = +\infty \ (\nu = 1, 2, \cdots)$$

and

$$\rho'\left(\frac{1}{2}x_2'\right)>2$$
.

There exists also $0 \le y_2 \le |x_2'|$ such that $\rho(\frac{1}{2}y_2) \ge 2$. In the same way, we can find by induction an orthogonal sequence $\{y_{\nu}\}_{\nu=1,2,\ldots}$ such that

$$\rho\left(\frac{1}{\nu}y_{\nu}\right) \geq \nu$$

and

$$0 \leq |y| \leq |x|$$

for all $\nu \geq 1$.

Since $\{y_{\nu}\}_{\nu=1, 2, ...}$ is order-bounded, we have in virtue of (2.3)

$$y_0 = \sum_{\nu=1}^{\infty} y_{\nu} \in R$$

and

$$\rho\left(\frac{1}{\nu}y_{\scriptscriptstyle 0}\right) \geq \rho\left(\frac{1}{\nu}y_{\scriptscriptstyle \nu}\right) \geq \nu$$

which contradicts $(\rho.4)$. Therefore ρ' has to satisfy $(\rho.4)$. Q.E.D. Hence, in the sequel, we denote by ρ' a quasi-modular defined by the formula (2.4).

If ρ satisfies (ρ .5), ρ does also (A.3) in §1:

$$\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$$

for α , $\beta \ge 0$ with $\alpha + \beta = 1$.

Because, putting $[p]=[(|x|-|y|)^+]$, we obtain

$$\begin{split} &\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|) \\ &\leq \rho(\alpha \lceil p \rceil |x| + \alpha(1 - \lceil p \rceil) |y| + \beta \lceil p \rceil |x| + (1 - \lceil p \rceil) \beta |y|) \\ &= \rho(\lceil p \rceil |x| + (1 - \lceil p \rceil) |y|) \\ &= \rho(\lceil p \rceil x) + \rho((1 - \lceil p \rceil) y) \\ &\leq \rho(x) + \rho(y) \; . \end{split}$$

Remark 1. As is shown above, the existence of ρ' as a quasi-modular depends essentially on the condition $(\rho.4)$. Thus, in the above theorems, we cannot replace $(\rho.4)$ by the weaker condition:

$$(\rho.4'')$$
 for any $x \in R$, there exists $\alpha \ge 0$ such that $\rho(\alpha x) < +\infty$.

In fact, the next example shows that there exists a functional ρ_0 on a universally continuous semi-ordered linear space satisfying $(\rho.1)$, $(\rho.2)$, $(\rho.3)$ and $(\rho.4'')$, but does not $(\rho.4)$. For this ρ_0 , we obtain

$$\rho_0'(x)\!=\!\sup_{|y|\leq |x|}\rho_0(y)\!=\!+\infty$$

for all $x \neq 0$.

Example. $L_1[0,1]$ is the set of measurable functions x(t) which are defined in [0,1] with

$$\int_{0}^{1} |x(t)| dt < +\infty.$$

Putting

$$ho_0(x) =
ho_0(x(t)) = \int\limits_0^1 |x(t)| dt + \sum_{i=1}^\infty i \, \mathrm{mes} \, \left\{ t : x(t) = \frac{1}{i} \right\} \, ,$$

we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: (A.4), namely,

$$\lim_{\xi \to 0} \rho(\xi x) = 0 \qquad \text{for all } x \in R.$$

A quasi-modular space becomes, as is shown below, always a quasinormed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let ρ be a quasi-modular on R. We can find a functional ρ^* which satisfies $(\rho.1)\sim(\rho.6)$ except $(\rho.3)$.

Proof. In virtue of Theorem 2.1, there exists a quasi-modular ρ' which satisfies $(\rho.5)$. Now we put

(2.5)
$$d(x) = \lim_{\xi \to 0} \rho'(\xi x) .$$

It is clear that $0 \le d(x) = d(|x|) < +\infty$ for all $x \in R$ and

$$d(x+y) = d(x) + d(y)$$
 if $x \perp y$.

Hence, putting

(2.6)
$$\rho^*(x) = \rho'(x) - d(x) \qquad (x \in R).$$

we can see easily that $(\rho.1)$, $(\rho.2)$, $(\rho.4)$ and $(\rho.6)$ hold true for ρ^* , since $d(x) \leq \rho'(x)$

and

$$d(\alpha x) = d(x)$$

for all $x \in R$ and $\alpha > 0$.

We need to prove that $(\rho.5)$ is true for ρ^* . First we have to note (2.7) $\inf_{\lambda \in A} d([p_{\lambda}]x) = 0$

for any $[p_{\lambda}] \downarrow_{\lambda \in A} 0$. In fact, if we suppose the contrary, we have $\inf d([p_{\lambda}]x_0) \ge \alpha > 0$

for some $[p_{\lambda}] \downarrow_{\lambda \in A} 0$ and $x_0 \in R$. Hence,

$$ho'\left(rac{1}{
u}\lceil p_{\lambda}
ceil x_0
ight) \ge d(\lceil p_{\lambda}
ceil x_0) \ge lpha$$

for all $\nu \ge 1$ and $\lambda \in \Lambda$. Thus we can find a subsequence $\{\lambda_n\}_{n\ge 1}$ of $\{\lambda\}_{\lambda\in\Lambda}$ such that

$$\llbracket p_{\scriptscriptstyle \lambda_{n}}
right] \!\! \geq \!\! \llbracket p_{\scriptscriptstyle \lambda_{n+1}}
right
ceil$$

and

$$\rho'\!\!\left(\frac{1}{n}([p_{\lambda_n}]\!-\![p_{\lambda_{n+1}}])x_0\right)\!\!\geq\!\!\frac{\alpha}{2}$$

for all $n \ge 1$ in virtue of $(\rho.2)$ and (2.3). This implies

$$\rho'\!\!\left(\frac{1}{n}x_{\scriptscriptstyle 0}\right)\!\!\ge\!\sum_{m\ge n}\rho'\!\!\left(\frac{1}{m}(\lceil p_{\scriptscriptstyle 1_m}\rceil\!-\!\lceil p_{\scriptscriptstyle 1_{m+1}}\rceil)x_{\scriptscriptstyle 0}\right)\!=+\infty\;,$$

which is inconsistent with $(\rho.4)$. Secondly we shall prove

$$(2.8) d(x) = d(y), if [x] = [y].$$

We put $[p_n] = [(|x|-n|y|)^+]$ for $x, y \in R$ with [x] = [y] and $n \ge 1$. Then, $[p_n] \downarrow_{n=1}^{\infty} 0$ and $\inf_{n=1, 2, ...} d([p_n]x) = 0$ by (2.7). Since $(1-[p_n])n |y| \ge (1-[p_n])|x|$ and

$$d(\alpha x) = d(x)$$

for $\alpha > 0$ and $x \in R$, we obtain

$$d(x) = d(\lceil p_n \rceil x) + d((1 - \lceil p_n \rceil)x)$$

$$\leq d(\lceil p_n \rceil x) + d(n(1 - \lceil p_n \rceil)y)$$

$$\leq d(\lceil p_n \rceil x) + d(y).$$

As n is arbitrary, this implies

$$d(x) \leq \inf_{n=1, 2, \dots} d([p_n]x) + d(y)$$
,

and also $d(x) \le d(y)$. Therefore we conclude that (2.8) holds. If $|x| \ge |y|$, then

$$\rho^*(x) = \rho^*([y]x) + \rho^*(([x] - [y])x)$$

$$= \rho'([y]x) - d([y]x) + \rho^*(([x] - [y])x)$$

$$\geq \rho'(y) - d(y) + \rho^*(([x] - [y])x)$$

$$\geq \rho^*(y).$$

Thus ρ^* satisfies $(\rho.5)$.

Q.E.D.

Theorem 2.3. ρ^* (which is constructed from ρ according to the formulas (2.4), (2.5) and (2.6)) satisfies (ρ .3) (that is, ρ^* is a quasimodular), if and only if ρ satisfies

$$\sup_{x\in R} \left\{ \overline{\lim}_{\xi\to 0} \rho(\xi x) \right\} = K < +\infty.$$

Proof. Let ρ satisfy $(\rho.4)$. We need to prove

$$\sup_{x\in R} d(x) = \sup_{x\in R} \{\lim_{\xi\to 0} \rho'(\xi x)\} = K' < +\infty,$$

where

$$\rho'(x) = \sup_{0 \le |y| \le |x|} \rho(y) .$$

Since ρ' is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put $n_0(x) = \rho(x)$ and $n_{\nu}(x) = \rho'\left(\frac{1}{\nu}x\right)$ for $\nu \ge 1$ and $x \in R$. Hence we can find positive numbers ε , γ , a natural number ν_0 and a finite dimensional normal manifold N_0 such that $x \in N_0^{\perp}$ with

$$\rho(x) \leq \varepsilon$$
 implies $\rho'\left(\frac{1}{\nu_0}x\right) \leq \gamma$.

In N_0 , we have obviously

$$\sup_{x\in N_0} \{\lim \rho'(\xi x)\} = \gamma_0 < +\infty.$$

If $\varepsilon \leq 2K$, for any $x_0 \in N_0^{\perp}$, we can find $\alpha_0 > 0$ such that $\rho(\alpha x_0) \leq 2K$ for all $0 \leq \alpha \leq \alpha_0$ by $(\rho.4')$, and hence there exists always an orthogonal decomposition such that

$$\alpha_0 x_0 = x_1 + \cdots + x_n + y_1 + \cdots + y_m + z$$

where $\frac{\varepsilon}{2} < \rho(x_i) \le \varepsilon$ $(i=1, 2, \dots, n)$, y_j is an atomic element with $\rho(y_j) > \varepsilon$ for every $j=1, 2, \dots, m$ and $\rho(z) \le \frac{\varepsilon}{2}$. From above, we get $n \le \frac{4K}{\varepsilon}$ and $m \le \frac{2K}{\varepsilon}$. This yields

$$egin{aligned}
ho'\Big(rac{1}{
u_0}lpha_0x_0\Big) &\leq \sum_{i=1}^n
ho'\Big(rac{1}{
u_0}x_i\Big) + \sum_{j=1}^m
ho'(y_j) +
ho'rac{z}{
u_0} \ &\leq n\gamma + \sum_{j=1}^m
ho'(y_j) +
ho'rac{z}{
u_0} \ &\leq rac{4K}{arepsilon}\gamma + rac{2K}{arepsilon}\Big\{\sup_{0\leq lpha\leqlpha_0}
ho(lpha x)\Big\} + \gamma \;. \end{aligned}$$

Hence, we obtain

$$\lim_{\varepsilon \to 0} \rho'(\xi x_0) \leq \rho'\left(\frac{\alpha_0}{\nu_0}x_0\right) \leq \left(\frac{4K+\varepsilon}{\varepsilon}\right)\gamma + \left(\frac{4K^2}{\varepsilon}\right)$$

in case of $\varepsilon \leq 2K$. If $2K \leq \varepsilon$, we have immediately for $x \in N_0^{\perp}$

$$\lim_{\xi \to 0} \rho'(\xi x) \leq \gamma.$$

Therefore, we obtain

$$\sup_{x\in R} \{\lim_{\xi\to 0} \rho'(\xi x)\} \leq \gamma'$$

where

$$\gamma' = \frac{4K + \varepsilon}{\varepsilon} + \frac{4K^2}{\varepsilon} + \gamma_0$$
.

Let $\{x_{\lambda}\}_{{\lambda}\in A}$ be an orthogonal system with $\sum_{{\lambda}\in A} \rho^*(x_{\lambda}) < +\infty$. Then for arbitrary $\lambda_1, \dots, \lambda_k \in A$, we have

$$\sum_{\nu=1}^k d(x_{\lambda_{\nu}}) = d(\sum_{\nu=1}^k x_{\lambda_{\nu}}) = \lim_{\xi \to 0} \rho'(\xi \sum_{\nu=1}^k x_{\lambda_{\nu}}) \leq \gamma',$$

which implies $\sum_{i \in A} d(x_i) \leq \gamma'$. It follows that

$$\sum_{\lambda \in A}
ho'(x_{\lambda}) = \sum_{\lambda \in A}
ho^*(x_{\lambda}) + \sum_{\lambda \in A} d(x_{\lambda}) < + \infty$$
 ,

which implies $x_0 = \sum_{\lambda \in A} x_{\lambda} \in R$ and $\sum_{\lambda \in A} \rho^*(x_{\lambda}) = \rho^*(x_0)$ by $(\rho.4)$ and (2.7). Therefore ρ^* satisfies $(\rho.3)$.

On the other hand, suppose that ρ^* satisfies $(\rho.3)$ and $\sup_{x \in R} d(x) = +\infty$. Then we can find an orthogonal sequence $\{x_{\nu}\}_{\nu \geq 1}$ such that

$$\sum_{\nu=1}^{\mu} d(x_{\nu}) = d(\sum_{\nu=1}^{\mu} x_{\nu}) \geq \mu$$

for all $\mu \ge 1$ in virtue of (2.8) and the orthogonal additivity of d. Since $\lim_{\xi \to 0} \rho^*(\xi x) = 0$, there exists $\{\alpha_{\nu}\}_{\nu \ge 1}$ with $0 < \alpha_{\nu}$ ($\nu \ge 1$) and $\sum_{\nu=1}^{\infty} \rho^*(\alpha_{\nu} x_{\nu}) < +\infty$. It follows that $x_0 = \sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R$ and $d(x_0) = \sum_{\nu=1}^{\infty} d(\alpha_{\nu} x_{\nu})$ from (ρ .3). For such x_0 , we have for every $\xi \ge 0$,

$$ho'(\hat{\xi}x_0) = \sum_{\nu=1}^{\infty} \rho'(\hat{\xi}lpha_{
u}x_{
u}) \geq \sum_{\nu=1}^{\infty} d(x_{
u}) = +\infty$$
 ,

which is inconsistent with $(\rho.4)$. Therefore we have

$$\sup_{x\in R} (\lim_{\xi\to 0} \rho(\xi x)) \leq \sup_{x\in R} d(x) < +\infty .$$
 Q.E.D.

§3. Quasi-norms. We denote by R_0 the set:

$$R_0 = \{x : x \in R, \ \rho^*(nx) = 0 \text{ for all } n \ge 1\}$$
,

where ρ^* is defined by the formula (2.6). Evidently R_0 is a semi-normal manifold of R. We shall prove that R_0 is a normal manifold of R. In fact, let $x = \bigcup_{\lambda \in \Lambda} x_{\lambda}$ with $R_0 \ni x_{\lambda} \ge 0$ for all $\lambda \in \Lambda$. Putting

$$[p_{n,\lambda}] = [(2nx_{\lambda} - nx)^{+}]$$
,

we have

$$[p_{n,\lambda}]\uparrow_{\lambda\in\Lambda}[x]$$
 and $2n[p_{n,\lambda}]x_{\lambda}\geq [p_{n,\lambda}]nx$,

which implies $\rho^*(n[p_{n,\lambda}]x)=0$ and $\sup_{\lambda\in\Lambda}\rho^*(n[p_{n,\lambda}]x)=\rho^*(nx)=0$. Hence, we obtain $x\in R_0$, that is, R_0 is a normal manifold of R.

Therefore, R is orthogonally decomposed into

$$R = R_0 \oplus R_0^{\perp}$$
.

In virtue of the definition of ρ^* , we infer that for any $p \in R_0$, $[p]R_0$ is universally complete, i.e. for any orthogonal system $\{x_{\lambda}\}_{\lambda \in A}(x_{\lambda} \in [p]R_0)$, there exists $x_0 = \sum_{\lambda \in A} x_{\lambda} \in [p]R$. Hence we can also verify without difficulty that R_0 has no universally continuous linear functional except 0, if R_0 is non-atomic. When R_0 is discrete, it is isomorphic to $S(A)^{0}$ -space. With respect to such a universally complete space R_0 , we can not always construct a linear metric topology on R_0 , even if R_0 is discrete.

In the following, therefore, we must exclude R_0 from our consideration. Now we can state the theorems which we aim at.

⁷⁾ A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \le |a|$, $b \in R$ implies $b \in S$. Since R is univerfally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in A} x_{\lambda} \in R$, $0 \le x_{\lambda} \in S$ ($\lambda \in A$) implies $\bigcup_{\lambda \in A} x_{\lambda} \in S$.

⁸⁾ This means that $x \in R$ is written by x = y + z, $y \in R_0$ and $z \in R_0^{\perp}$.

⁹⁾ $S(\Lambda)$ is the set of all real functions defined on Λ .

Theorem 3.1. Let R be a quasi-modular space. Then R_0^{\perp} becomes a quasi-normed space with a quasi-norm $||\cdot||_0$ which is semi-continuous, i.e. $\sup_{\lambda\in A}||x_{\lambda}||_0=||x||_0 \qquad \text{for any } 0\leq x_{\lambda}\uparrow_{\lambda\in A}x.$

Proof. In virtue of Theorems 2.1 and 2.2, ρ^* satisfies $(\rho.1)\sim(\rho.6)$ except $(\rho.3)$. Now we put

$$||x||_0 = \inf\left\{\xi ; \rho^*\left(\frac{1}{\xi}x\right) \leq \xi\right\}.$$

Then,

- i) $0 \le ||x||_0 = ||-x||_0 < \infty$ and $||x||_0 = 0$ is equivalent to x = 0; follows from $(\rho.1)$, $(\rho.6)$, (2.1) and the definition of R_0^{\perp} .
- ii) $||x+y||_0 \le ||x||_0 + ||y||_0$ for any $x, y \in R$; follows also from (A.3) which is deduced from $(\rho.4)$.
- iii) $\lim_{\alpha_n \to 0} ||\alpha_n x||_0 = 0$ and $\lim_{\|x_n\|_0 \to 0} ||\alpha x_n||_0 = 0$; is a direct consequence of $(\rho.5)$. At last we shall prove that $||\cdot||_0$ is semi-continuous. From ii) and iii), it follows that $\lim_{\alpha \to \alpha_0} ||\alpha x||_0 = ||\alpha_0 x||_0$ for all $x \in R_0^{\perp}$ and $\alpha_0 \ge 0$. If $x \in R_0^{\perp}$ and $[p_{\lambda}] \uparrow_{\lambda \in A} [p]$, for any positive number ξ with $||[p]x||_0 > \xi$ we have $\rho^* \left(\frac{1}{\xi} [p]x\right) > \xi$, which implies $\sup_{\lambda \in A} \rho^* \left(\frac{1}{\xi} [p_{\lambda}]x\right) > \xi$ and hence $\sup_{\lambda \in A} ||p_{\lambda}]x||_0 \ge \xi$. Thus we obtain

$$\sup_{\lambda\in A}||[p_{\lambda}]x||_{0}=||[p]x||_{0}, \text{ if } [p_{\lambda}]\uparrow_{\lambda\in A}[p].$$

Let $0 \le x_i \uparrow_{i \in A} x$. Putting

$$[p_{n,\lambda}] = \left[\left(x_{\lambda} - \left(1 - \frac{1}{n} \right) x \right)^{+} \right]$$

we have

$$[p_{n,\lambda}] \uparrow_{\lambda \in A} [x] \text{ and } [p_{n,\lambda}] x_{\lambda} \ge [p_{n,\lambda}] \left(1 - \frac{1}{n}\right) x \qquad (n \ge 1).$$

As is shown above, since

$$\sup_{\lambda\in A}||[p_{n,\lambda}]x_{\lambda}||_{0}\geq \sup_{\lambda\in A}\left\|[p_{n,\lambda}]\left(1-\frac{1}{n}\right)x\right\|_{0}=\left\|\left(1-\frac{1}{n}\right)x\right\|_{0},$$

we have

$$\sup_{\lambda\in A}||x_{\lambda}||_{0}\geq \left\|\left(1-\frac{1}{n}\right)x\right\|_{0}$$

and also $\sup_{\lambda \in \Lambda} ||x_{\lambda}||_{0} \ge ||x||_{0}$. As the converse inequality is obvious by iv), $||\cdot||_{0}$ is semi-continuous. Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that $\lim_{n\to\infty}||x_n||_0=0$ if and only if $\lim_{n\to\infty}\rho(\xi x_n)=0$ for all $\xi\geq 0$.

In order to prove the completeness of quasi-norm $||\cdot||_0$, the next Lemma is necessary.

Lemma 2. Let $p_{n,\nu}$, $x_{\nu} \ge 0$ and $a \ge 0$ $(n, \nu = 1, 2, \cdots)$ be the elements of R_0^{\perp} such that

$$[p_{n,\nu}] \uparrow_{\nu=1}^{\infty} [p_n] \text{ with } \bigcap_{n=1}^{\infty} [p_n] a = [p_0] a \neq 0;$$

$$[p_{n,\nu}]x_{\nu} \geq n[p_{n,\nu}]a \text{ for all } n,\nu \geq 1.$$

Then $\{x_{\nu}\}_{\nu\geq 1}$ is not a Cauchy sequence of R_0^{\perp} with respect to $||\cdot||_0$.

Proof. We shall show that there exist a sequence of projectors $[q_m]\downarrow_{m=1}^{\infty}(m\geq 1)$ and sequences of natural numbers ν_m , n_m such that

$$(3.4) || [q_m]a||_0 > \frac{\delta}{2} \text{ and } [q_m]x_{\nu_m} \ge n_m[q_m]a (m=1, 2, \cdots)$$

and

$$(3.5) n_m [q_m] a \ge [q_m] x_{\nu_{m-1}}, n_{m+1} > n_m (m=2, 3, \cdots),$$

where $\delta = || [p_0]a||_0$.

In fact, we put $n_1=1$. Since $[p_1, p_1] \upharpoonright p_0 \upharpoonright p_0 \upharpoonright p_0$ and $||p_0|| = 1$ is semi-continuous, we can find a natural number p_1 such that

$$||\lceil p_{\scriptscriptstyle 1,\,
u_{\scriptscriptstyle 1}}
ceil \lceil p_{\scriptscriptstyle 0}
ceil a \,||_{\scriptscriptstyle 0}\!>\!rac{||\lceil p_{\scriptscriptstyle 0}
ceil a \,||_{\scriptscriptstyle 0}}{2}\!=\!rac{\delta}{2}\;.$$

We put $[q_1] = [p_{1,\nu_1}][p_0]$. Now, let us assume that $[q_m], \nu_m, n_m (m=1, 2, \dots, k)$ have been taken such that (3.4) and (3.5) are satisfied.

Since $[(na-x_{\nu_k})^+]\uparrow_{n=1}^{\infty}[a]$ and $||[q_k]a||_0>\frac{\delta}{2}$, there exists n_{k+1} with

$$|||(n_{k+1}a-x_{\nu_k})^+[q_k]\alpha||_0>rac{\delta}{2}.$$

For such n_{k+1} , there exists also a natural number ν_{k+1} such that

$$|| [p_{n_{k+1}, \nu_{k+1}}][(n_{k+1}a - x_{\nu_k})^+][q_k]a||_0 > \frac{\delta}{2}.$$

in virtue of (3.2) and semi-continuity of $||\cdot||_0$. Hence we can put

$$[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}][(n_{k+1}a - x_{\nu_k})^+][q_k]$$
,

because

$$\lceil q_{_{k+1}}
ceil \leq \lceil q_{_k}
ceil$$
 , $||\lceil q_{_{k+1}}
ceil a\,|| > rac{\delta}{2}$, $\lceil q_{_{k+1}}
ceil x_{
u_{_{k+1}}}
ceil \geq n_{_{k+1}} \lceil q_{_{k+1}}
ceil a$

by (3.3) and $[q_{k+1}]n_{k+1}a \ge [q_{k+1}]x_{\nu_k}$ by (3.5).

For the sequence thus obtained, we have for every $k \ge 3$

$$\|x_{
u_{k+1}} - x_{
u_{k-1}}\|_0 \ge \|[q_{k+1}](x_{
u_{k+1}} - x_{
u_{k-1}})\|_0$$
 $\ge \|n_{k+1}[q_{k+1}]a - n_k[q_{k+1}]a)\|_0 \ge \|[q_{k+1}]a_0\|_0 \ge \frac{\delta}{2}$,

since $[q_{k+1}] \leq [q_k] \leq [(n_k a - x_{\nu-1})^+]$ implies $[q_{k+1}] n_k a \geq [q_{k+1}] x_{\nu_{k-1}}$ by (3.4). It follows from the above that $\{x_{\nu}\}_{\nu \geq 1}$ is not a Cauchy sequence.

Theorem 3.2. Let R be a quasi-modular space with quasi-modular ρ . Then R_0^{\perp} is an F-space with $||\cdot||_0$ if and only if ρ satisfies $(\rho.4')$.

Proof. If ρ satisfies $(\rho.4')$, ρ^* is a quasi-modular which fulfils also $(\rho.5)$ and $(\rho.6)$ in virtue of Theorem 2.3. Since $||x||_0 \left(=\inf\left\{\xi\,;\,\rho^*\left(\frac{x}{\xi}\right)\leq\xi\right\}\right)$ is a quasi-norm on R_0^\perp , we need only to verify completeness of $||\cdot||_0$. At first let $\{x_\nu\}_{\nu\geq 1}\subset R_0^\perp$ be a Cauchy sequence with $0\leq x_\nu\uparrow_{\nu=1,\,2,\,\ldots}$. Since ρ^* satisfies $(\rho.3)$, there exists $0\leq x_0\in R_0^\perp$ such that $x_0=\bigcup_{\nu=1}^\infty x_\nu$, as is shown in the proof of Theorem 2.3.

Putting $[p_{n,\nu}] = [(x_{\nu} - nx_0)^+]$ and $\bigcup_{\nu=1}^{\infty} [p_{n,\nu}] = [p_n]$, we obtain

(3.6) $[p_{n,\nu}]x_{\nu} \ge n[p_{n,\nu}]x_0 \qquad \text{for all } n,\nu \ge 1$ and $[p_n]\downarrow_{n=1}^{\infty}0$. Since $\{x_{\nu}\}_{\nu \ge 1}$ is a Cauchy sequence, we have in virtue of Lemma 2, $\bigcap_{n=1}^{\infty}[p_n]=0$, that is, $\bigcup_{n=1}^{\infty}([x_0]-[p_n])=[x_0]$. And

$$(1-[p_{n,\nu}]) \geq (1-[p_n]) \qquad (n,\nu \geq 1)$$

implies

$$n(1-[p_n])x_0 \ge (1-[p_n])x_\nu \ge 0$$
.

Hence we have

$$y_n \! = \! igcup_{\scriptscriptstyle
u = 1}^\infty (1 \! - \! [p_n]) x_{\scriptscriptstyle
u} \! \in \! R_{\scriptscriptstyle 0}^\perp$$
 ,

because R_0^{\perp} is universally continuous. As $\{x_{\nu}\}_{\nu\geq 1}$ is a Cauchy sequence, we obtain from the triangle inequality of $||\cdot||_0$

$$\gamma = \sup_{\nu \geq 1} ||x_{\nu}||_{0} < +\infty ,$$

which implies

$$||y_n||_0 = \sup_{\nu \ge 1} ||(1 - [p_n])x_{\nu}||_0 \le \gamma$$

for every $n \ge 1$ by semi-continuity of $||\cdot||_0$. We put $z_1 = y_1$ and $z_n = y_n - y_{n-1}$ $(n \ge 2)$. It follows from the definition of y_n that $\{z_\nu\}_{\nu \ge 1}$ is an orthogonal sequence with $||\sum_{\nu=1}^n z_\nu||_0 = ||y_n||_0 \le \gamma$. This implies

$$\sum_{\nu=1}^{n} \rho^* \left(\frac{z_{\nu}}{1+\gamma} \right) = \rho^* \left(\frac{y_n}{1+\gamma} \right) \leq \gamma$$

for all $n \ge 1$ by the fomula (3.1). Then $(\rho.3)$ assures the existence of $z = \sum_{\nu=1}^{\infty} z_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu}$. This yields $z = \bigcup_{\nu=1}^{\infty} x_{\nu}$. Truly, it follows from

$$z = \bigcup_{n=1}^{\infty} y_n = \bigcup_{n=1}^{\infty} \bigcup_{\nu=1}^{\infty} (1 - [p_n]) x_{\nu} = \bigcup_{\nu=1}^{\infty} \bigcup_{n=1}^{\infty} (1 - [p_n]) x_{\nu} = \bigcup_{\nu=1}^{\infty} [x_0] x_{\nu} = \bigcup_{\nu=1}^{\infty} x_{\nu}.$$

By semi-continuity of $||\cdot||_0$, we have

$$||z-x_{\nu}||_{0} \leq \sup_{\mu \geq \nu} ||x_{\mu}-x_{\nu}||_{0}$$

 $\lim_{\mu \geq \infty} ||z-x_{\nu}||_{0} = 0.$

and furthermore $\lim ||z-x_{\nu}||_0 = 0$

Secondly let $\{x_{\nu}\}_{\nu\geq 1}$ be an arbitrary Cauchy sequence of R_{0}^{\perp} . Then we can find a subsequence $\{y_{\nu}\}_{\nu\geq 1}$ of $\{x_{\nu}\}_{\nu\geq 1}$ such that

$$||y_{\nu+1}-y_{\nu}||_0 \le \frac{1}{2^{\nu}}$$
 for all $v \ge 1$.

This implies

$$||\sum_{\nu=m}^{n}|y_{\nu+1}-y_{\nu}|||_{0} \leq \sum_{\nu=m}^{n}||y_{\nu+1}-y_{\nu}||_{0} \leq \frac{1}{2^{m-1}}$$
 for all $n>m\geq 1$.

Putting $z_n = \sum_{\nu=1}^n |y_{\nu+1} - y_{\nu}|$, we have a Cauchy sequence $\{z_n\}_{n\geq 1}$ with $0 \leq z_n \uparrow_{n=1}^{\infty}$. Then by the fact proved just above,

$$z_0 \! = \! igcup_{n=1}^{\infty} z_n \! = \! \sum_{
u=1}^{\infty} |y_{
u+1} \! - \! y_{
u}| \in R_0^{\perp} \quad ext{and} \quad \lim_{n o \infty} ||z_0 \! - \! z_n||_0 \! = \! 0 \; .$$

Since $\sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}|$ is convergent, $y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu})$ is also convergent and

$$||y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_n||_0 = ||\sum_{\nu=n}^{\infty} (y_{\nu+1} - y_{\nu})||_0 \le ||z_0 - z_n||_0 \to 0$$
.

Since $\{y_{\nu}\}_{\nu\geq 1}$ is a subsequence of the Cauchy sequence $\{x_{\nu}\}_{\nu\geq 1}$, it follows that

$$\lim_{\mu\to\infty} ||y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\mu}||_0 = 0.$$

Therefore $||\cdot||_0$ is complete in R_0^{\perp} , that is, R_0^{\perp} is an F-space with $||\cdot||_0$. Conversely if R_0^{\perp} is an F-space, then for any orthogonal sequence $\{x_{\nu}\}_{\nu\geq 1}\in R_0^{\perp}$, we have $\sum_{\nu=1}^{\infty}\alpha_{\nu}x_{\nu}\in R_0^{\perp}$ for some real numbers $\alpha_{\nu}>0$ (for all $\nu\geq 1$). Hence we can see that $\sup_{x\in R}d(x)<+\infty$ by the same way applied in Theorem 2.1. It follows that ρ must satisfy $(\rho.4')$.

Since R_0 contains a normal manifold which is universally complete, if $R_0 \neq 0$, we can conclude directly from Theorems 3.1 and 3.2

Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $||\cdot||_0$ defined by (3.1) and R becomes an F-space with $||\cdot||_0$ if and only if ρ fulfils $(\rho.4')$.

§4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz (§1). Here we put for $x \in L$

$$||x||_1 = \inf_{\varepsilon > 0} \left\{ \frac{1}{\varepsilon} + \rho(\varepsilon x) \right\}^{100}$$

and show that $\|\cdot\|_1$ is also a quasi-norm on L and

(4.2)
$$||x||_0 \le ||x||_1 \le 2 ||x||_0$$
 for all $x \in L$

hold, where $||\cdot||_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \le ||x||_1 = ||-x||_1 < +\infty$ $(x \in L)$ and that $||x||_1 = 0$ is equivalent to x = 0. Since $\alpha_n \downarrow_{n=1}^{\infty} 0$ implies $\lim_{n \to \infty} \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim_{n \to \infty} ||x_n||_1 = 0$ implies $\lim_{n \to \infty} \rho(\xi x_n) = 0$ for all $\xi \ge 0$, we obtain that $\lim_{n \to 0} ||\alpha_n x||_1 = 0$ for all $\alpha_n \downarrow_{n=1}^{\infty} 0$ and that $\lim_{n \to \infty} ||x_n||_1 = 0$ implies $\lim_{n \to \infty} ||\alpha x_n||_1 = 0$ for all $\alpha > 0$. If $||x||_1 < \alpha$ and $||y||_1 < \beta$, there exist $\xi, \eta > 0$ such that

$$\frac{1}{\xi} + \rho(\xi x) < \alpha$$
 and $\frac{1}{\eta} + \rho(\eta y) < \beta$.

This yields

$$||x+y|| \leq \frac{\xi+\eta}{\xi\eta} + \rho \left(\frac{\xi\eta}{\xi+\eta}(x+y)\right) = \frac{1}{\xi} + \frac{1}{\eta} + \rho \left(\frac{\eta}{\xi+\eta}(\xi x) + \frac{\xi}{\xi+\eta}(\eta y)\right)$$

$$\leq \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta,$$

in virtue of (A.3). Therefore $||x+y||_1 \le ||x||_1 + ||y||_1$ holds for any $x, y \in L$ and $||\cdot||_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \le 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \le \frac{1}{\xi}$ and hence

$$\frac{1}{\xi} \leq \frac{1}{\xi} + \rho(\xi x) \leq \frac{2}{\xi}.$$

$$||x|| = \inf_{\xi \to 0} \frac{1 + m(\xi x)}{\xi}$$
 and $|||x||| = \inf_{m(\xi x) \le 1} \frac{1}{|\xi|}$

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $\|\cdot\|$ and $\|\cdot\|$ respectively.

¹⁰⁾ For the convex modular m, we can define two kinds of norms such as

This yields (4.2), since we have $||x||_0 \le \frac{1}{\xi}$ and $\rho(\eta x) > \frac{1}{\eta}$ for every η with $||x||_0 > \frac{1}{\eta}$. Therefore we can obtain from above

Theorem 4.1. If L is a modular space with a modular satisfying $(A.1)\sim(A.5)$ in §1, then the formula (4.1) yields a quasi-norm $||\cdot||_1$ on L which is equivalent to $||\cdot||_0$ defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in §2, we obtain by the same way as in §3

Theorem 4.2. If R is a quasi-modular space with a quasi-modular ρ , then

$$(4.3) ||x||_1 = \inf_{\varepsilon > 0} \left\{ \frac{1}{\xi} + \rho^*(\xi x) \right\} (x \in R)$$

is a semi-continuous quasi-norm on R_0^{\perp} and $||\cdot||_1$ is complete if and only if ρ satisfies $(\rho.4')$, where ρ^* and R_0 are the same as in §2 and §3. And further we have

$$||x||_0 \leq ||x||_1 \leq 2 ||x||_0 \qquad \text{for all } x \in R_0^{\perp}.$$

§5. A quasi-norm-convergence. Here we suppose that a quasi-modular ρ^* on R satisfies $(\rho.1) \sim (\rho.6)$ except $(\rho.3)$ and $\rho^*(\xi x)$ is not identically zero as a function of $\xi \geq 0$ for each $0 \neq x \in R$ (i.e. $R_0 = \{0\}$). A sequence of elements $\{x_\nu\}_{\nu \geq 1}$ is called order-convergent to a and denoted by o- $\lim_{\nu \to \infty} x_\nu = a$, if there exists a sequence of elements $\{a_\nu\}_{\nu \geq 1}$ such that $|x_\nu - a| \leq a_\nu$ ($\nu \geq 1$) and $a_\nu \downarrow_{\nu=1}^\infty 0$. And a sequence of elements $\{x_\nu\}_{\nu \geq 1}$ is called star-convergent to a and denoted by s- $\lim_{\nu \to \infty} x_\nu = a$, if for any subsequence $\{y_\nu\}_{\nu \geq 1}$ of $\{x_\nu\}_{\nu \geq 1}$, there exists a subsequence $\{z_\nu\}_{\nu \geq 1}$ of $\{y_\nu\}_{\nu \geq 1}$ with o- $\lim_{\nu \to 0} z_\nu = a$. A quasi-norm $||\cdot||$ on R is termed to be continuous, if $\inf_{\nu \geq 1} ||a_\nu|| = 0$ for any $a_\nu \downarrow_{\nu=1}^\infty 0$. In the sequel, we write by $||\cdot||_0$ (or $||\cdot||_1$) the quasi-norm defined on R by ρ^* in §3 (resp. in §4).

Now we prove

Theorem 5.1. In order that $||\cdot||_0$ (or $||\cdot||_1$) is continuous, it is necessary and sufficient that the following condition is satisfied:

(5.1) for any $x \in R$ there exists an orthogonal decomposition x=y+z such that $\lceil z \rceil R$ is finite dimensional and $\rho(y) < +\infty$.

Proof. Necessity. If (5.1) is not true for some $x \in R$, we can find a

sequence of projector $\{[p_n]\}_{n\geq 1}$ such that $\rho([p_n]x)=+\infty$ and $[p_n]\downarrow_{n=1}^{\infty}0$. Hence by (3.1) it follows that $||[p_n]x||_0>1$ for all $n\geq 1$, which contradicts the continuity of $||\cdot||_0$.

Sufficiency. Let $a_{\nu}\downarrow_{\nu=1}^{\infty}0$ and put $[p_n^{\varepsilon}]=[(a_n-\varepsilon a_1)^+]$ for any $\varepsilon>0$ and $n\geq 1$. It is easily seen that $[p_n^{\varepsilon}]\downarrow_{n=1}^{\infty}0$ for any $\varepsilon>0$ and

$$a_n = [a_1]a_n = [p_n^{\epsilon}]a_n + (1 - [p_n^{\epsilon}])a_n \leq [p_n^{\epsilon}]a_1 + \varepsilon a_1$$
.

This implies

$$\rho^*(\xi a_n) \leq \rho^*(\xi [p_n^*] a_1) + \rho^*(\xi \varepsilon (1 - [p_n^*]) a_1)$$

for all $n \ge 1$ and $\xi \ge 0$. In virtue of (5.1) and $[p_n^{\epsilon}] \downarrow_{n=1}^{\infty} 0$, we can find n_0 (depending on ξ and ε) such that $\rho^*(\xi [p_n^{\epsilon}] a_1) < +\infty$, and hence $\inf_{n \ge 1} \rho^*(\xi [p_n^{\epsilon}] a_1) = 0$ by (2.3) in Lemma 1 and (ρ .2). Thus we obtain

$$\inf_{n\geq 1} \rho^*(\xi a_n) \leq \rho^*(\xi \varepsilon a_1).$$

Since ε is arbitrary, $\lim_{n\to\infty} \rho^*(\xi a_n) = 0$ follows. Hence we infer that $\inf_{n\to\infty} ||a_n||_0 = 0$ and $||\cdot||_0$ is continuous in view of Remark 2 in §3. Q.E.D.

In view of the proof of the above theorem we get obviously

Corollary. $||\cdot||_0$ is continuous, if

(5.2)
$$\rho^*(a_{\nu}) \to 0 \quad implies \quad \rho^*(\alpha a_{\nu}) \to 0 \quad for \ every \ \alpha \geq 0.$$

From the definition, it is clear that s- $\lim_{\nu\to\infty} x_{\nu}=0$ implies $\lim_{\nu\to\infty} ||x_{\nu}||_0=0$, if $||\cdot||_0$ is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

Theorem 5.2. $\lim_{\nu\to\infty} ||x_{\nu}||_0 = 0$ (or $\lim_{\nu\to\infty} ||x_{\nu}||_1 = 0$) implies s- $\lim_{\nu\to\infty} x_{\nu} = 0$, if $||\cdot||_0$ is complete (i.e. ρ^* satisfies $(\rho.3)$).

If we replace $\lim_{y\to\infty}||x_y||=0$ by $\lim_{y\to\infty}\rho(x_y)=0$, Theorem 5.2 may fail to be valid in general. By this, reason, we must consider the following condition: $\rho^*(x)=0 \quad \text{implies} \quad x=0.$

Truly we obtain

Theorem 5.3. If ρ^* satisfies (5.3) and $||\cdot||_0$ is complete, $\rho(a_{\nu}) \rightarrow 0$ implies s- $\lim a_{\nu} = 0$.

Proof. We may suppose without loss of generality that ρ^* is semicontinuous, i.e. $\rho^*(x) = \sup_{\lambda \in A} \rho^*(x_{\lambda})$ for any $0 \le x \uparrow_{\lambda \in A} x$. If

¹¹⁾ If ρ^* is not semi-continuous, putting $\rho_*(x) = \inf_{y_{\lambda} \uparrow_{\lambda \in A} x} \{\sup_{\lambda \in A} \rho^*(y_{\lambda})\}$, we obtain a quasi-modular ρ_* which is semi-continuous and $\rho^*(x_{\nu}) \to 0$ is equivalent to $\rho_*(x_{\nu}) \to 0$.

$$ho(a_
u) {\leq} rac{1}{2^
u} \quad (
u {\geq} 1)$$
 ,

we can prove by the similar way as in the proof of Lemma 2 that there exists $\bigcup_{-1}^{\infty} |a_{\nu}| \in R$ in virtue of $(\rho.3)$.

Now, since

$$\rho\left(\bigcup_{\mu\geq\nu}^{\infty}\mid a_{\mu}\mid\right)\leq\sum_{\mu\geq\nu}^{\infty}\rho(a_{\mu})\leq\frac{1}{2^{\nu-1}}$$

holds for each $\nu \ge 1$, $\rho \left\{ \bigcap_{\nu=1}^{\infty} \left(\bigcup_{\mu \ge \nu}^{\infty} |a_{\mu}| \right) \right\} = 0$ and hence (5.3) implies

$$\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\mu \geq \nu}^{\infty} |a_{\mu}| \right) = 0$$
.

Thus we see that $\{a_{\mu}\}_{{\mu}\geq 1}$ is order-convergent to 0.

For any $\{b_{\nu}\}_{\nu\geq 1}$ with $\rho(b_{\nu})\to 0$, we can find a subsequence $\{b'_{\nu}\}_{\nu\geq 1}$ of $\{b_{\nu}\}_{\nu\geq 1}$ with $\rho(b'_{\nu})\leq \frac{1}{2^{\nu}}$ ($\nu=1,2,\cdots$). Therefore we have s- $\lim_{\nu\to\infty}b_{\nu}=0$. Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1 in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analougous to the above lemma of [9] and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If ρ^* satisfies (5.3) and $||\cdot||_0$ is complete and continuous, then (5.2) holds.

References

- [1] G. BIRKHOFF: Lattice theory, New York, 1948.
- [2] S. Koshi and T. Shimogaki: On quasi-modular spaces, Studia Math. (to appear).
- [3] H. NAKANO: Modulared semi-ordered linear spaces, Tokyo, 1950.
- [4] Topologies and linear topological spaces, Tokyo, 1951.
- [5] MAZUR and W. ORLICZ: On some classes of linear metric spaces, Studia Math., 17, (1958).
- [6] J. MUSIELAK and W. Orlicz: On modular spaces, Studia Math., 18, (1959).
- [7] S. ROLEWICZ: Some remarks on the space N(L) and N(l), Studia Math., 18, (1959).
- [8] T. Shimogaki: A generalization of Vainberg's theorem 1, Proc. Japan Acad., 35, No. 8, (1958).
- [9] S. YAMAMURO: Monotone completeness of normed semi-ordered linear spaces, Pacific Jour. Math., 7, (1957).

Mathematical Institute, Hokkaido University

(Received September 30, 1960)