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1. Introduction. The theory of Hilbert transform has been studied.
by many authors. Its references will be found in the book of E. C. Titch-
marsh [30]. Recently A.P. Calder6n-A. Zygmund [5] show that this
classical theory can be treated by another method in the nm-dimensional
Euclidean space. The foundation of their arguments is the interpolation
of linear operation. There are several studies of J. Marcinkiewicz in Fourier
series from this point of views. In particular he has presented a brief
note in Comptes rendus vol. 208 (1939), 1271-1273, without proof. Recently
A. Zygmund [36], a teacher of his, has completed these theorems.

In chapter 1, we shall extend one of these theorems on-the totally
o-finite measure space in a sense of P.R. Halmos [11] This may give
an answer to the problem of Prof. A. Zygmund. :

Using this as a main tool, we may extend the Hilbert transform to
the other direction. These are treated in chapter 2.

In chapter 3 we shall prove the reciprocal formula of this operator
by the complex variable methods. Setting this result as the base of
arguments, we treat analytic functions in a half-plane. The ordinary
case is due to R.E.A.C. Paley-N. Wiener [25] and E. Hille-J.D. Tamarkm
[15, 16].

*>  This contain the detailed argument of papers published in the Proc. Japan Academy,
vol. 84~5 (1958~9).
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Next N.I. Achiezer [1] has introduced the modified definition of
Hilbert transform for the purpose to treat the more extensive class of
functions. In [21, V], the author has introduced another modified one
under the same idea, there we have proved that our modified transform
well conserves the property having the original one. Here we only limit
to the generalized Hilbert transform of order 1 and study the property
of -this operator in further details. This is defined by the following
formula ' :

C x @i [ F@)  dt
(1.01) Ji(x)= - i m—t
This may be written formally
(1.02) Fo)=1 f f (t) dt+ 1 f f(t) dt
=Ff(@)+ 47,

Therefore if we assume the: A’ to be finitely determined then f exists

a.e. and from properties of fy(x), those of f(x) can be derived. We re-
mark that the modified transform (1.01) will be equivalent that of N.I.
Achiezer for certain class of functions. Our main object is functions of
class W, to be defined later. These are argued in chapter 4.

In chapter 5, we intend to find the spectral relation between S(x)
and its Hilbert transform. Our main tools are N. Wiener’s generalized
Fourier transform and the Tauberian theorem which is called the Wiener
formula [32]. These are main purpose of this paper.

Chapter 1. Interpolation of the operation

2. Let (X, R, 'p) and (Y, S,v) be two measure spaces with finite
measures ¢ and vy respectively. We denote by L, the class of functions,
which are defined on X, are g-measurable and such that

201 =S vlfl’d;z>%<oo,

where 7 is any positive number.
Let us consider the operation

(2.02) f=1f

where f and }'\ are real or complex valued functions of #-measurable and
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v-measurable which are defined on these measure spaces X and Y respec-
tively. ' : .
We introduce several notations of operation after A. Zygmund [36].

- Definition 1. The operation T will be called a quasi-linear if
T(k,fi+k.f.) is uniquely defined whenever Tf, and Tf, are defined with
constants k, and k. of any real or complex number and satisfies

(2.03) TR = (I T+ TS

(2.04) | T®EN =k |TS],

-where k£ 18 a constant independent on f, and f. _
Definition 2. The operation T will be called a strong type (a,b).

Ir f Tf s defined for every f im L% and f belongs to L: and it
satisfies

(2.05) N F s *Mllfliw
where M s independent on f. The least value M 1is called the (a,b)-
norm of the operation T.

Definition 3. The operation T wzll be called a weak type (a,b).
If f Tf s deﬁned SJor every f in L% and if we denote e,, the set of
Yy in which | f(y)[>*r, it satisfies

(2.06) | e,) =(ZNF M)

where r is any positive real number and M is independent on f and r.
The least value M 1is called the (a,b)-norm of the operation T.

We note that in these definitions, ¢ and b are any positive real
number or may be infinite. If the a is infinite, we interprete

207 || f ||, = e88. sup. | f],
and similarly for the b. We observe that Definition 2 contains Definition
3. If the b is infinite in Definition 8, in this case we promise that the
difference between the type of strong and that of weak vanish.
Then J. Marcinkiewicz-A. Zygmund proved the following theorem
Theorem (J. Marcinkiewicz-A. Zygumund) Suppose that w(X) and
(Y) are both finite and that a quasi-linear operation f =Tf is of weak
type (a,a) and (b,b), where 1<a<b< . Suppose also that ¢(u), u=>0,
18 a continuous increasing function satisfying the condition
(2.08) : ©(0)=0
and ‘
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(2.09) o(2u) = O(p(w))
@10) " el) gp— O<M>
] | - tb+1 | %b
o) g of 2
@11) J e dt = O(‘u—a>

for u—>oc. Then f: Tf 1s deﬁned for every f of ¢(f]) to be p-inte-
grable and ‘ ‘ :

(212) JeFhdv =K [o(fDdn+L,

where K and L are independent on f.

In [21, I] the author extended this theorem on spaces with infinite
measures. From now on, let (X, R, ) and (Y, S,v) be measure spaces
of totally o-finite in a sense of P.R. Halmos [1]. In this paper it is
sufficient to consider the operation under definitions 2 and 3, but in some
cases such as Fourier transforms it is convenient to consider the operator
under somewhat relaxed conditions. Let us suppose that the operation T
is only defined on the class of simple function. Then the above definitions
are relaxed as follows.’ T

Definition 2’. The operation T which is defined for every simple
Sfunction is of strong type (a,b), if it satisfies (2.05) for every simple
Sfunction f with constant M to be independent on f.

Definition 3’. The operation T which is defined for every simple
Sfunction is of weak type (a,b), if it satisfies (2.06) for any positive
real number with constant M to be independent on f and 7.

We begin with simple functions. A simple function

(2.18) Sf(x) = j:; CiXei(2)

on measure space (X, R, ¢) is integrable if y(ei) is finite for -every index
i for which ¢,2=0.. We limit the simple function only to the integrable
one. Then the class of simple function is dense in every Lj, 0<r< oo,

Let ¢(u) be defined for positive real arguments u=0 and constinuous
increasing function with ©(0)=0. By L¢ we denote the class of
functions which are pg-measurable and ¢(|f|) to be p-integrable on X.
We need the following two lemmas in the later arguments. '

Lemma A,. Let f(x) be a function of Lf. Then there exists a
sequence of mon-negative simple functions f,(x) such that f,(x) tend to



On the Hilbert Transform , 157
| f(x)| increasingly for a.e. x and
@14) Jettddut [efDdn, (n—>e).
p.¢ X
Furthermore we have

(2.15) [ Fa=Fubdn—>0, (m,n—>eco).

Lemma A,. Let f,(x) be a sequence of function which are not neces-
sarily simple and belong to the class L5  Let f,(x) be the mean
Jundamental with respect to ¢o(u). That is

(2.16) | Jelf=Fubdp—>0, (m,n—>0).

Then there exists a sub-sequence (n,) and f in L% such that
(2.17) Fo (@) > f(x), ae. x

(218) Jelf=fuhdn—>0,  (n—>eo),

where f(;fc)' 18 uniqely determined for a.e. x.

Proofs of Lemmas A, and A,. The Lemma A, is immediate. For
the Lemma A,, from (2.16) we can find that the sequence f, form that
of fundamental in measure. From this fact, (2.17) and (2.18) are obtained
by the usual argument.

Next let us introduce the function ¢(u) which is defined for positive
real argument. The ¢(u) is a continuous increasing function and satisfies
the following properties with a,b such as 1<a<b< o,

(2.08) @(0) =0
and 4
(2.09) o(2u) = O(p(u))
o) 7 _ ofe()
(2.10) u Wdt_o(—&b—>
| o) 7 _ oW
(2.11) f Zi—ﬂ—dt_-0< b )
for u—> oo, |
(219 o(u) = O(p(u/2))
\ (t) ()
(2'_20) | f # at=0 (%f )
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(2.21) ‘ 20 gr = o9
‘ / ta+ ‘ ua
for u—0. |
Under these assumptions we observe that |
Lemma A;. Let ¢(u) be a continuous increasing function and satisfy
the above properties (2.08)~(2.11) and (2.19)~(2.21). Then we have

(2.22) Au* < o(u) < Bu?
for w—>o, and ' .
(2.23) A'u* = ¢o(u) = B'u®

Jor u—>0 respectively with suitable constants.

Lemma A,. The following functions satisfy the above properties
(2.08)~(2.11) and (2.19)~(2.21). '

(2.24) o(u) =u", a<r<bd,
(2.25) o(u) = u log (1+u),
and more generally ‘

(2.26) o(w) = wr(u),

where Y(u) is a slowly varying function as w—>0 and u— oo respectively.
Then we have o
" Theorem A. Let (X, R, ) and (Y, S, v) be two measure speces of
totally a-ﬁfmlte.‘ Let f =Tf be a quast-linear operation defined for all
simple function f on (X, R, p) with-f on (Y,S,v). Suppose that T is
stmultaneously of the weak type (a,a) and (b, b) with 1<a<b<oo. Then
we have S
(2.27) 15 o = A0 F lloe

where A, ts constant independent on f. In particular the operation T
can be uniquely extended to the whole space LY preserving the (2.27).

In [21, 1], the author gave the brief proof under strong definition.
The completion can be done by Lemmas A, and A,. ‘ \

In the (2.27) if we put ¢(u)=u", a<r<b, then we get

.(2.28) . N s = AN S o

This is the Theorem of A.P. Calder6n-A. Zygmund [5], there they proved
the two more interpolating theorems which are concerning to the
ordinary Lebesgue measure. We can state in the following form.

Theorem B. Let (X, R,p) and (Y,S,v) be two measure spaces of
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totally o-finite. Let J/”\: TFf be a quasi-linear operation defined for all
simple functions f on (X, R, 1) with f on (Y,S,v). Suppose that T is
simultaneously of weak type (1,1) and (p, p) for some p>1. Then we
have for any sub-set S, of S with finite v-measure

(2.29) J1F1dv= A [1£1{1+log" S0y | £ [N+ Bu(Sor7

where v is any positive number and A, B, are absolute constants. In
particular, the operation T can be uniquely extended to the whole space
L,log*L, preserving (2.29).

Theorem C. Let (X R, 1) and (Y,S,v) be two measure spaces of
totally o-finite. Let f =Tf be a quasi-linear operation defined for all
simple functions f on (X, R, p) with f on (Y,S,v). Suppose that T 1s

of weak type (1,1). Then we have for any sub-set S, of S with finite
v-measure ’ .

(2.30) (171 ds= Ausy( [1r1a2) ",

where ¢ 18 any positive number such as 0<e<l and A 18 an absolute
constant. In particular the operation T can be umquely extended to
the whole space L, preserving (2.30).

There is no dlf'ferent point essentially in proofs of these theorems.
For any pg-measurable function f, we shall denote by [f*(), 0<ti<c, a
non-increasing function equi-measurable with |f|. We also introduce a
function

(2381) L y= ,Bf(ac)_——ff(t)dt x>0

and the function inverse to y=p,(x) will be denoted by xz=p5’ (y).‘ These
are used by A.P. Calder6on-A. Zygmund [5] For Theorem B, we only
observe that the following lemma

Lemma B,. We have

(2.32) L[ 1fldr= 8.
iflzy
This is deduced by the geometrical consideration easily.
The Theorem C can be proved by the same arguments as their proof
The extension to the Whole space can be obtalned by Lemmas A, and A,
as before. :
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Chapter 2. The Hilbert transform

3. Let f be a real or complex valued measurable function over
(— o0, o). Let f be the Hilbert transform of f, that is

(3.01) F@) =1im L Il S g,
(G AT 2—%
The property of this smgular integral has been studied by many authors.
In particular we feel interest in the result of L. H. Loomis [22], H. Kober
[20] and A.P. Calder6n-A. Zygmund [5, 6].
We consider the Hilbert transform on the totally o-finite measure
space (X, R, 1), where X is one dimensional space, R is the class of

measurable sets in the ordinary Lebesgue sense and

. B B da ) .
(3.02) e, a)=pe)= f Tl (oéafl)
for every ecR. We shall write simply |
(3.03) ‘ u(x)=p{(0, ), a} x>0, p(—x)=p((x).
Let f be a function such that ,
1@ 4

_f 1+lxl o, (p=1).
Then we have o
(3.04) fw T ' fw |f1e da.

The class of functions of which the integral defined by (8.04) is finite,
will be denoted by LZ. In mathematical speaking, this measure function
plays as a role of convergence factor and this enables us to treat the
Hilbert transform for the more extensive class than the ordinary class L~”.
On the other hand it may be interpreted that the introduce of this
measure adds some varieties.

The purpose of this chapter is the systematlc treatment of the Hilbert
transform from the point of view of the linear operation.

We begin with the ordinary case a=0.

Theorem 1. Let f belong to L? (p>1). Then the Hilbert operator

f exists for a.e. x, and we have

(3.05) - JIiF@prd=a, [Cr@ de
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and

(3.06) f T f@)— Fu@) | dz—>0, 10,

where A, is a constnat to be independent on f.
"This is due to M. Riesz [28] for general p.

Theorem 2. Let f belong to L. Then the Hilbert operator f exists
for a.e. x and of weak type (1,1). That is for any positive number r,

if we denote by°E, the set of points at which’| f(x)|>r, then we have
(3.07) | 1B ] ===~ 71l:

where M 1s a constant to be zndependent on f.

This is due to L.H. Loomis [22]. We remark that in (3.05) and so in
(8.07), f(x) may be replaced by f,(x) and sup [ fi(x)| where the constants
Ap‘and M are independent on A and f. i

4. Throughout of this section we use the term—weak or strong
type of operation, linear, derivative, measurable—all in a sense concermng

with . This section contains two fundamental theorems.
One of these is as follows:

Theorem 3. Let f belong to L% (p>1, O<a<1) then the Hilbert
operation is the strong type (p, p). :

Proof of Theorem 8. The existence of f(x) is obtained by that of

(8.01) for the ordlnary class L?, and the Holder inequality. Because if
we write

(4.01) f S (@) = m, (@) +7.(x)
where v
(4.02) ' 'mn(rx;)—{ 0 , . elsewhere.

(4.03) | 7,(x) = f(@)—m,(%)
Then 7, (x) exists a.e.  in (— oo, ) by Theorem 1 and %,(x) does also
for a.e. x in |x—n|=<1/2 by the Holder inequality. This gives the existence
of f(x) for a.e. |

Now if we define’

. w1 [ f(y) dy
(4.04) ) F*(x)= =) o—y 1110l
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then we have

e @ 1~ f) el—lyf
(4.05) A ey n_fw TF|oF G+ sP Y

By Theorem 1, we have

(4.06) ' 170 = 4, —L—
Thus if we prove 7
T J? S
(4.07) Hf e =
Then we have
S

(4.08)

H_l—l—[mlﬁ »
and putting S=a/p we obtain Theorem 3. , :

Our aim is to prove the relation (4.07) but instead of this formula
we prove the equivalent bilinear form (c.f. G. H Hardy-J. E. Littlewood-
G. Pélya [14, Th. 2867).

(4.09) f f°° iﬁl@{fs 1'1({””){& K(z, ) dz dy
g

éA“l—I—ly['g P x|? lla

where
__ =" =1yl*]

10 K = T+
and ’
(4.11) : | %+%=1

We have by the Holder ihequality the absolute value of left-hand side of
(4.09) does not surpass than .

e T e e

<Ay o] Iﬁ)dy}”{% SR (The) ‘al’,

where
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\ | 1 1+ |yl
(4.12) - K= f K@, DI opr 9

' _1 14 |x]”
(4.13) Koy =" L K@, )7 2

and the 7 is a constant to be decided later.
If we put x/y=wu in (4.12) we have
nN<2 (1 JylP|l1—wf] 1+]y|™
K <= f du
(W)= [1—u|] 14+]uy|® 1+|uy|™
We estimate this integral by decomposing into.three cases accordmg to
the value of y.

(i) 1/2=|y|<2. We have

j1—u?| du _ ‘
K(y)_Af |1— ul 14+uf 14+w? —0(1).

for B3>0, and 7'>0.
(ii) 2<]y|. If we decompose into the following

Ko =a( [+ [+ )
0 1/2 2

» = A(I'4+-I’+1?), say.
Then we have

. 2y lP Clypr
I'<A
= f 1—I—]uy]‘9 14+ ]uyl|™®

=4 [" gt =ow,

for 0<B+rp<l,
If_s_Alell__Wdu:(‘)a) ‘

Y, =]

for ,8>O, and

IP< Af — % —0(1)

for r>0. _
(iii) Jyl<1/2. If we decompose similarly,

K= [ [+ [+ ]
0 iz 2 iy
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:A(Il4+115+I16+I17) , Say.
Then we have

I;gAf’(Hly[w)]y]ﬂdu:oa)

“for >0, >0,
I’ = 0Q1)
for 5>0, y>0, similarly,

17y )
Ingf |y |Puf-t du=0(1)

for >0, and

' ® - du .
Ingf W‘O(D
1/y

for y>0. Thus we have for all ¥
(4.14) ) K,(y) = 0Q1)
Next if put y/x=wu in (4.13) we have

2 M~ 1 [P ]1—w’| 14]x|
Ky(x) < — d
() n:of, [1—u| = 1+[2)®  14]|ua|® “

We can estimate this integral by the similar kmanner.
(i) 1/2=|x|=<2. We have

- Ky(x) = O(1)
for yq>pB>0.
-, (i) 2<]x|. We have
\ Ky(x) = O(1)
for 0<yrg<1. ‘
(iii) |x|<1/2. We have .
Ky(x) = O(1)
for 0<B<rq. Thus we have for all x
(4.15) ' Ky(x) = O(1)

for 5>0, y>0, and 1>7r¢>8.
From above formulas we have |

S

4.16 —J
( ) 1+|xl’3 lp

D

a

»

for
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(4.17) - B>0, >0, 1>B+rp>0 and 1>7g=>8.
Hence for any p>1, 0<a<1, if we put B=a/p, r=1/pq then the
relation (4.17) are all satisfied. We have proved Theorem 3 completely.
Theorem 4. Let f belong to L, (0=a<1). Then the Hilbert opera-
tion is of weak type (1, 1). '

Proof of Theorem 4. The existence of f (x) of 0<a<1 is obtained
by the similar manner. Proof of the weak type runs on the line of A.
Zygmund [36]. '

Without loss of generality we may. suppose that

(4.18) £=0, |fll.=1.

We may also suppose that f=0 in the neighbourhood of . Let us
write

(4.19) . F@)= f “rdu
For any fixed positive 7, @ denotes the set of point x such that
(4.20) F(x+h)—F(x) —r

. ' u(x, x+h)

for some h=h,>0. From an absolute continuity and s-additivity of p(e, a),
if we apply the F. Riesz lemma [26] to the function F'(x)—r (sign x)
©(0, [x]), then the set @, if not empty, is a family of finite or denumerable
number of disjoint open intervals I,=(a, b,) (7=1,2,---) and satisfies the
following properties,

F()—F(a;) _
(e, bj)

(4.22) | Fiz)= f(x)=r, ae. in P,

where the set P is the complement of set @ Under our assumptions,

the set @Q is bounded. Therefore let G(x) be a function which coincide
with F(x) in P and in each of I,

(4.21) r, for all 7,

(4.28) - Gw)=F(a,)+re(a, x), =zl
and let H(x) define by the equation
(4.24) F(x)=G(x)+ H(x).

Then G(x) and H(x) have the following properties. The derivative G.'(x)
=g(x) exists a.e. and so also does H,(x)=~h(x) a.e. and we have

(4.25) - f@)=g@)+hr(x), ae.
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' _ f(x), a.e. in P
(4.26) | g(?c)—{ . inQ
(4.27) 0=g(x)=r, a.e.
(4.28) e Jo@ du= [ f()dp
. I 7
for every 7 and ’
(4.29) | H(x)=0 in P, h(x)=0, a.e. in P,
(4.30)  HQ=SuI)== [ f@)dp.
' Q

Since the set @ is bounded and (4‘.27) holds; g(x) belongs to L~ for every
for every p=1 and so h(x) does to L,. Thus we have

(4.31) f@)=5(x)+h(x), ae. 2,
and | '
(4.32) E. [\ fIICEI[§|1+E.[|k]],

where E,,[|f]] denotes. the set of point « such that | f(x)]>2'r and

similarly as for E.[|§|] and E.[|%]] respectively.
Firstly we have by Theorem 3, (4.27) and (4.28)

(4.33) - WEFID =2 fw "ol d

| _—<-_—J—f—‘ Jo; f de.
Next we have by (4.29) . :
(4.34) ; h(m) f h(t) dt = f h(t) P

and we may prove that

. h(t) ‘
4.35 = [dp,| | =22-dt|<M h)| d
(4.35) pf*#,jj‘xt,_”,[-l()lm

for every j, and the set P* will be defined later.
For this purpose we need the following lemma:

Lemma 4,. For any interval I,=(a;b;) and 0=<a<l, there exist
two contiguous intervals I.=(aj, a,) and I*=(b,, b}) such that
(4.36) | w(ly) = (L), p(I*) = u(I3)
(4.37) A L2 =1 | = Al L|/2
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(4.38) . B.L|2=<|I*|=<B.| |2
where S
(4.39) L=(a,c,), Ii=(c,b,), 2c,=a,+b,.’

and by |I,| we denote the length of interval I,.

Proof of Lemma 4, Without loss of generality we can assume that
la;,| =1b;], b;>0. In this case as to I* it is trivial since it is enough as
I* to take the same length as I?. As to I,, if a,<0 then this case
is also trivial. Therefore it is sufficient .to prove the case 0<a;<b;,, We
denote simply a,=a, é6=c¢;,—a,=|1,|/2, d,=a,—a; and we show that the
existence of 6* such as »
' A < 6* <o
and v

waj a)~ pa, c;)?
We observe that for all x
' 1 1
\ 1+]z|*  A+]|z])r
(i) any a>0, d=a. We have |

20 dx 2(a+1) Q-a__
— 2~ e d :—————— a+1)-*
1+|x[“ [1 prdr=t et
[ [ o aem el
1+lw| . 1—a

. Agqlat+1d
If ‘we put‘Aa—2—2‘“ then we have

[in= [ o

Aqa .
and it is enough to take 5*—(1 —A)a. This estimation is also effective
for a/2=<0=2a.

(ii) O<a<l, 0<d<a/2. We have

f dy~f““” -adx§5{3(“+1)}'“

Ja [eanca (o)

a—adx a+1—20dx

Thus it is sufﬁc1ent to put 0,=3""9 with absolute constant multlple

1) By f(x)~g(x), we mean that there exist two absolute constant such that Ag(x)
= f(z) = Bg(%).
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(ili) a>1, 0<o<a/2. We have , v
+4 a+ 3 3 -—a -
f’ | d;z~f x‘“dxgﬁ(a—l—ﬁ)‘“gé(—z—a)

\f“d,,e~f x-adxga*(a—a*)-“ga*(;_j“"
a—3x - a--0x :
because 1/1+|z|*~1/[x|* for |x]=1. It is sufficient to put §,=3"% with
absolute constant multiple. ' , ‘
(iv) a>0, 6=na (n=2,8,--+). First we observe that if »n>3!!"*

then we have ,
. fad# § fnad#

Therefore if we put n,=[37!"*]+1, then the cases a>0, 0<di<nya,
n=2,3,---, N, are obtained by the case (i) of dy,=mny'a with absolute
constant multiple. ' | R

Next as for n>mn, we write d=kn, (k=2,8,---) and we prove the

case k=2. We have
‘/"naad# _ fad#

2nya 2ng(a+1) 21 —.a - 1
[T~ [T e de= 2= L et 1)
. hand(4 4

na nola+1)
—a —(a+1) l-a___
dy~f lxl‘“dxz—g—l—(a—{—l)“v“
l1—a -~
. -3a —-8(a+1)
and
21-«__1 31-

271 ey >3 = g ye,
l—a l—a
Thus it is sufficient to put d.,=ba: As for general k=3 it is sufficient
to put d,=(k+1)a, because we have

Emgar Fmoa+1) kl-e—1

dp~ [T wde = S CLCR S
700 ‘ ngla+1)
—a % l-a__ 1
d,a~f || de =2 "1 (g4 1y-e,
“ka —k(a+1) -

Other case are obtained by the simple process of interpolation of the

above cases.
We denote by the set @* the sum of family of intervals (af}, b)),
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(=b, —a}) (j=1,2,---) and by the set P*, the complement of the set @*.
Proof of (4.85). We may prove only to the following typical case

(4.40) 0<a,<b, and aj=a,—|I,|>0.
The other case will be contained in this one. We have by (4.28) and
(4.29) ’ :
4 1 1+[el* 1 |
(4.41) = f dp, f h(t)( _Ldlelt 1 g
P 7 - r—1 1+lt[ w_cj> |
: 1 1
< [dp. ht( — dt]
= [ap| [no)(—= x__cj)
Px 7, ‘ . )
h(t) |t]*—]el" ’_ i Ti
dp, I dt|=I}+1j, say.
+}/*‘.ﬂ J 1+t z—c, + 13 y
J
We have .
R(®)| [t—c, ] (A+]2])
4.42 = [ dt ; dpe,
(@42 J 1 i
and

[t—c,| A+]2])
J To—tllo—e]

~¥; 1;/' oo )
d#z:f _ +_fy+ =I,+1,+1,,, say.
—oo __a/j b’j )

By the Lemma 4,, we have for tcl;

e - t—c;
W= [ | i

B+ 17|

Similarly we have I,,=0(1) and

LYY M t/2 @ — | x|
: I12§2fj ( )dx=2<f —l"fj >:I14+115; say,
) 0 /2

(aj=a;—|I]).

dxgu,.;fwx—zdxzou).
151

we have _ , ,
| 7L A+t
I, <A J dx
= f t| L] (1+]e])
J' Afmta—lx-«dx_—.oa), if t=>1,
=4 ° :
lAf/zt"‘dxzoa), if 0<t<1,
and '
e j— [ Ix| lIIdx © .
I, <A J < A|I x 2dx=0(1).
= f jx—c;|le—t] — | jlf o)

/2 1 x|
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From the above estimation we have

(4.48) ' <A f | h(t)] de,
o J |

- Next we have

| p= (1Bl g (Ut —lel"| _dw
(4.44) f1+|t|d* le—c,| 1+]|2|

and if we decompose the inner integral into three parts as before

1'[ ”tll;:'c(:allal l—f:l;vxl“y——j(i—y +f +f ) 21+122+123,

_.al

and . o
b’j+aj Lo !
Iy = f + f :Iz4+125, say.
¥j Yita;
Since |[t|*—|c,|*|=|1;]a;~" for all tel, under the assumptlon (4.40), we
have .
b’j+a II Ia -1 1
L,<A f i 1 gz—o0a
24 L] % 1)
and |

= el =lel*] _ da
|o—c;|  1+|a]

L,=A [

b’J+aj

< A |b| f xdm =0(1), (b§+aj—cj:>__bj).
by

Similarly I,,=0(1) and if we write
Q& ;/2
12—2<fj +f ):Izs"l‘-[zn say.
aj/Z
Then we have

UL a5 g oy
%%Af e de =0

and ‘

<4 (15185 4oy,
e .[ e 70
a_72

From above estimations we have

(4.45) | HgAfmmwm.
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From (4.41), (4.43) and (4.45), we obtaln (4.35), and that it follows
by (4.25) and (4.28)

(4.46) . [ 1@ dr<a / |h(0)] de, <24 [ d,
' P* Q

Finally we obtain by (4.46) and (4.30)

(4.47) H(E, Elhl])<ﬂ(Q*)+2Affd <£ffdp

Thus we have.proved Theorem 4 completely.
We remark that in Theorems 3 and 4, the operation (3.01) can be
replaced by the following one

F=fm=2 [ SO
(4.48) T.f=Fie)== [f =
and
(4.49) T*f = sup | f(»)].

5. If we apply interpolating theorems to the result of the preceding
section we have immediately

Theorem 5. Let f(x) belong to L2 (0 =a<1) with the go(u) of Theo-
rem A with a=1, b>1. Then the Hilbert operation (3.01) emsts Jor a.e.
and also bolongs to the same class and we have

(5.01) - T4 [Terdn

— o0

(5.02) lim f so(lf—-f l)d# 0

In particular we have
Corollary 5,. Let f(x) belong to L2 (p>1, 0<a<1) then‘we have

(5.03)  [frde=a, [T
and ‘ - -
(5.04) | lim f T\ F—F P dp=0

Theorem 6. Let f(x) be a function such that
(5.05) JIF1A+log" | fhdp<eo, (O=a<1)
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Then the Hilbert operation exists a.e. and integrable over any set S,
with finite p-measure and

606 [171dn=4 [1F1{1+log” (S0 £ 1} det- Bu(S).

From this theorem we get
Theorem 7. Let f(x) be a function such that
(5.07) | fwlfllog* [(A+2)|fldp<oeo, (O<a<l).

— 00

Then the Hilbert operation is integrable over the whole interval (— o0, )
and we have

(5.08) [C171de= 4 [T ]og" [(A+a9) | £ dut B
and i e ;
(5.09) lim [ |F—F,|dp=0

7->0
—00

Proof of Theorem 7. In the first if we put

(5.10) Fay=F@)— 52 ("1 dp
where ' - |
(5.11) Kl(x):%, (if |#|>1, =0, elsewhere.

The same arguments of A.P. Calderén-A. Zygmund [5] lead

G12)  [TIFldp=4 [T1f[{1+1og" |z|+log” | Fidp+B

— o0

= A [T17 108" [A+e) | f1de+B.
Here if a>0 we have | 4
[ K@ dp<oo

and thus we get (5.08). From the above argument we get
Theorem 8. Let f(x) be a function such that

(13) 1108 LA+ FI< e
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Then we have

( .14) JTIFldz= A [T1Q+a%) | /1] dot B
(5.15) lim C|F,—F,|dz=0,
where -

(5.16) Fw)=Fix)— & (“) f F@dt.

Theorem 9. Let f(x) belong to L, (O<a<1) Then we have for
any sub-set S, with finite p-measure '

(5.17) . J17 1 de=Zusy( [T1r1dr)

where 0<<e<1 and A 28 an absolute constant.
From this we get

Theorem 10. Let f(x) belong to L, (0=<a<1). Then we have

(5.18) . f“llii‘x;ﬁ d#<a{ﬁ—;(41 a)}<f Ifld#>

5.19 : im [ =A g, =0
(5.19) ) T T

where 0<e<1, f>e(1—a) and A is an absolute constant.
Proof of Theorem 10. Since it holds that
on+1
f d# — O(zn(l—a)>’

on

we have by Theorem 9

om ([0

_211

=8,+8:+S;, say.
Then we have

621) S, < AgZ_"ﬁ fznﬂlfjl—s p<2 i; 2n{e<1—a>—ﬁ}(f°° | £l dg)l_

PR

= Gyl 1)
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Similarly we have

(5.22) S, < 8{5_6(1 a)}(f |fld#)
and '
(5.23) slg-‘;i( / “Iflan)

These give (5.18). The (5.19) is obtained by the usual way.

6. In this section we state the analogous results correspondmg to

the preceeding section for a sequential space.
- For any sequence

(6-01) X=(' * '_’ x—_m'-' sy Xlyqy Loy Lyy* * *,y Ly e .; ')

we define the Hilbert transform by the following sequence
(602) X=("'9%—-n7""ﬁ—l’?ﬁm%h“')%ni"')
where

(6.03) | Z, =SV _Im

m=—co T—M

the prime means that the term m=mn is omitted from summation.

Let us denote by i the class of element which is a sequence such

that

ot QD(I %, [) oo
(6.04) X lhw=e {2 {1 e )<
where ¢ '(u) is the inverse of ¢(u). If we put
(6.05) - f@)=x,, |r—n|[=Z1/4, (r=0,=%1,--:)

then it is equivalent that f(x) belongs to L% and X belongs to Z,“j.

particular if ¢(u)=u? (p=1) we will denote this class by If.

If we put _
‘ x%,, |n—z|=1/4, (=0, =x1,---),
6oy sw={t =
0, elsewhere.
Then we have | ‘
: e lml—vlsl/‘; u—v 3 nvi<is ¥ Y
=271 i’ ff:nm +x,8,(u)+O0(r,)

In

where ¢,(u) is a characteristic function of the interval [z—u|=1/4 and
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o0

(6.08) | =SV _Fn
m=-co (N—mm)*
This gives . |
(6.09) | 12,1 < M(| F)|+ | 2,3.(w) | +]7.])

Here if we put a(u)==,, BEuw)=%,, ¢(uw)=x,8,(v), 7(w)=r,, if |[n—u|=<1/2,
(=0, =1,.--). Then we have for all % in (— oo, =),
(6.10) ' |B(w)| < M(| F(w)|+]e @) |+]7w)]).

Now the correspondence from «(u) to %(u) defines a linear operation and
the proposition of weak type (1, 1) and strong type (p,») (p>1) of this
operation is equivalent to the following one

1 M & |x,|
) n:]§>r1+ln'a r «ool—i—l’n[“
and .
(6.12) S LA I S I T

= 14|nls T T 14|t
respectively. For this purpose it is sufficient to prove the same matter
for each of three terms of left-hand side of (6.10). That these are strong
type (p, ») (p>1) is obtained by the same argument as A.P. Calderén-
A. Zygmund [6]. That of weak type (1, 1) is obtained by the similar
manner in author [21, II].
Thus we obtain the following theorem:

Theorem 11. Let X belong to I2 (0=a<1). Then X can be defined
and belongs to the same class and we have

(6.13) HX fon = A, [| X ],
Corollary 11,. Let X belong to I (p>1, 0=a<1). Then we have
(6.14) ' X Vo = A, [ X ]y,
Theorem 12. Let X be a sequence such that
(6.15) - i Ixn! 108&‘[(1“'“'”'2) |2.]] < oo
= . 1+lnl“ :

where 0<a<1. Then X can be defined and we have

- S _|=. & x| log® [(1+7n%) |, |]
(6.16) §1+|n|“§‘4§ 1+|n] +5,

where A, B are absolute constants.
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Theorem 13. Let X be a sequence such that

(6.17) 33 ]| log* [(1+n?) |2, []< o

Then we have | :

(6.18) S @ < A S |w,| log* [(1+n9) |2, [1+B,
where | |

©19)  Z=3, z*:'z—%i}ox (=1, +2,- ),

Theorem 14. Let X belong to the class l. 0=Za<l). Then X can
be defined and we have

) oo 1-¢ A oo Ix [ 1-¢
6.20 £ ( H_) ’
( ) go 1+ |n|**? — {f—e(1—a)} go 1+|n}f
where 0<e<1, B>¢(1—a) and A is an absolute constant.

7. As a simple application we establish some theorems concerning
with the Dirichlet sin_gular. integral. This is defined as follows

(7o) D@, f)= aw_—ffoﬂ2@—ﬂa

This can be rewritten in the following form
(7.02)  Di(x, f)=SD4" f f (t) cos lt dt — €08 A% f f(t) sin zt it

Hence we have immediately.

Theorem 15. Let f(x) belong to .Lz 0<a<1l) with the o(u) of
Theorem 5. Then D,(x, f) can be defined and we have

(7.03) - 1D Dlloe = Al £l
and
(7.04) - Iim || Di@, )= Fll,.. =0.
Corollary 15. Let f(x) belong to L% (p>1, 0=a<1). Then we have
(7.05) | [| Di(@, F)llpe = Ap || lpos s
(7.06) lLm || Dy(#, )= F |lp,. = 0.

Theorem 16. Let f(x) be a function of Theorem 7. Then we have
(7.07) fwlDA(x, HNlde = Afmm log* [(14+?) | f|]1de+B,
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where 0<a<1, and A, B are absolute constants.
Furthermore we have

(7.08) hmf | Dy(e, £)—fldp=0. .
Theorem 17. Let f(x) be a function of Theorem 8. Then we have
(109  [TIDi@ f)lde= A f | £1log" [(1+3*) | S |] da+ B
(7.10) | zhm ID*(x f)—D¥x, f)|dz=0
where | - |
(7.11) DX, f)=D,(, f)—E& (”) f 1) s1n2(ac t)dt .
Theorem 18. Let f(x) belong to L, (O<a<1) Then we have
[ Dy(e, £)]' -
S e a>}<f SLON
i [T 1D, )= S|
(7.18) lim J TiTar =0

where 0<e<1, f>e(l—a) and A is an absolute constant.

8. In the final section of this chapter we show a negative example
for the existence of the Hilbert transform. ,

Theorem 19. For any given pair of nmumber (p>1, a=1) or (p=1,
a>1), there ewists a function of this class L. whose Hilbert transform
diverges for a.e. :

Proof of Theorem 19. It is sufficient to prove - cases (p>1, a=1),
(p=1, a>1). If we put '

(8.01) Flx)= {(log‘ (n+1)t, n=Zzx<n+l, (n=12---)

0 , elsewhere.
Then we have
8.02 AP a1
(8.02) f Tel T A og (nr 1

Of course this function belongs to L, for a>1. On the other hand we
have ’

(8.03) Fla)= f f “) dt=1lim f n—xf(_%dt

7> 00
—00
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and for ze(m, m+1) (m=1)

O < 1 -
(8.04) 0<f ‘ ggl B Tos D) <

(8.05) f iGN dt = exists for a.e. xe(m, m—+1),
x__
m—1 .
and , _
f(t) dt| > 1 —'c0, ‘oo
(8.06) {f ] i — e GED "

That is f(x) diverges for a.e. if x=1. Next if xze(m, m+1), m=<0, then
we have

t 4 1 |

8.07 | f S , o, o0,

(8.07) ) x—t ; (m|+k)log (b+1)

These establishes Theorem 19. This example shows that the case a=1 is
a critical case in some sense and if we wish to treat the Hilbert trans-
form in these space we need an introduce of modified definition. These
are treated in [21, IV], and we also study for the typical case in chapter 4.

Chapter 3. The analytic function in a half-plane

9. Corresponding to a rdle of conjugate function taking in a unite
circle, the Hilbert transform plays the same role in a half-plane. Con-
cerning to this there are studies of E. Hille-J. D. Tamarkin [15, 16]. Ex-
tension to their result for our class is the main purpose of this chapter.

Our main tools are the skew-reciprocal formula of Hilbert operator,
and the two theorems of Paley-Wiener [25]. The author learned references
of unicity theorem of analytic function from Prof. ‘K. Noshiro. The
author thanks to him. , ‘

We begin with the introduce of some definitions and notations. Let
f(?), z=z+1y, y>0, be analytic in a half-plane y>0. If the limit

(9.01) | lim flx+iy) = f(x)
exists for almot all z, f(x) W111 be called the limit function of f (). If

this limit exists in the sense of Stoltz—as an angular limit —then we
shall write

(9.02) S (S)-lim f(w-+3y) =f<x>.
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By 9% we denote the class of function f(?) analytlc in a half—plane
9y >0 and such that the integral

(9.03) 7+ ) = -( f lf(w+w)lpd#> <M,

where M, . is a constant Whlch depends only on p and a.
Let g(x) be measurable over (— oo, ). We set

(9.04) C(z, g)—-—— f dt
_1 __yadt
(9.05) - P(z,9)= f g()(t PRENW:
: L = __1 (t x) dit
(9.06) P(z, g)‘ f g() s PR

We shall call C(z,g) and P(z, g) integral of Cauchy type and of Poisson
type associated with the function g(¢) respectively. We observe that, on
setting 2=x—1y,

(9.07) - Peo=gy [0t -
ZC(Z, g)_C(zy g) ’
(9.08) P(z,9)=(—9){C(z 9)+C(Z 9)},
while
(9.09) 2C (2, 9)=P (2, 9)+iP(z,9). |
If g(x)=f(x) is the limit function of f(z2) analytic for ¥y >0 and such
that ' '
(9.10). : ' f(@)=C(z, f) or f()=P(z f)

then we shall say that f(z) is represented by its proper Cauchy integral,
or by its proper Poisson integral, omitting the adjective ‘ proper” if no
confusion arises. , ‘

Throughout of this chapter we assume that g(x) is a real valued
measurable function over (— o, o).

10. In this section we show that the Hilbert operator is a skew-
reciprocal. The method of proof is the so-called complex variable method
which is different to the previous chapter quitely. Let us begin to prove
the following two theorems. ‘
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Theorem 20. Let g(x) belong to Lt (p=1), then
(10.01) (S)lim P(z 9) = g(z), a.e.
(10. 02) ' ’ hm | P(2, 9)—9(x)]l,,, = 0.

Proof of Theorem 20 (10.01) is nothing else the Fatou theorem
(c.f. C. Caratheodory [7, Band I, p. 45]), and a sumple apphcatlon of
Jessen’s inequality reads (10.02).

Theorem 21. Let g(x) belong to L2 (p>1) or let g(x) and g(x) both
belong to L., then we have

(10.03) (8)-lim P(z,9) =3x), a.e.
. y>
(10.04) ~ lim]| Pz, 9)—§(@)|lp,, = 0.
Proof of Theorem 21. By Theorem 20, it is sufficient to prove
(10.05) P(z,9) = P(z9).

We state this,property as a theorem.

Theorem 22. Let g(x) belong to L (p>1) or let g(x) and g(x) both
belong to L,.. Then we have

(10.05) P(z,9) = P(z,9).

We prove this by several lemmas which are almost all well known.
We introduce the Cauchy integral and the Poisson 1ntegral in a unit circle.

Lemma 22,. Let us write

(10.06) e(w, )= J o0,
(10.07) p(w, 9)=c(w, g)——c(w*, 9)
(10.08) - B(w, 9)=(—3){e(w, 9)+e(w*, 9)},
where w=re*’, {=e*, w¥=w"'. Then we have
(14 1 ’l"
(10.09) p(w, )= f e s

' io 7 sin (6 —¢)
(10.10) plw, g)_z_f 9(e™) 1—27 cos (0—g0)+r2d90

+ l.f g(e”) de.

271

_T
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Lemma 22,. Let us put for z=x-+1y, w=re"’
(10.11) w=11t2Z . ;1w
1412 . 1+w
Then this linear tramnsformation maps a half-plane y>0 into a wunit
circle |w|<1. . Its corresponding boundary is given by

1+t
10.12 . =
( ); . ' ¢ 1—at
and if we put {=e then t=tan ¢/2. Furthermore
(10.13) | wx = 1HR
' 1—22

Lemma 22,. Using the same mnotation of Lemmas 22, and 22, if
we substitute (10.12) into (10.6) and if we put g(t)=9(C), then we have

(10.14) c(w, 9) = C(z,9)—C
(10.15) c(w*, 9) =C(z,9)—C
where
(10.16) C =C(—1,9)
1 *© t 1 [~ dt
= t dt — t
o ) O 5 L AR
=C,+C,, say.
Then we have
. 1 = -t
10.17 21C,=— t dt
(10.17) | 1C;: =) ()1+t2
. 1 (., .

. = g9e®)d

(10.18) 2iCy=— _f (e do
Lemma 22,. Let us put
‘ ~ 1~ 1 ¢

19 *(o)= L f ( \o(t) dt

(10.19) =7 [ (i)
=g(x)+21C,

then if we substitute x=tan 6/2, t=tan ¢/2, we have
(10.20) 7*(x) = §(0),

where

(1021) 5(0):2_1_ f "(e) cot%(f)—go) do .

T
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Lemma 22, is due to H. Kober [20].

Proof of Theorem 22. By the above lemmas and the expansion to
Fourier series we have step by step

(10.22)

P(z, g)+R(2:C(—1, 9))
=P (2, 9%)
=p(w, §)
=P(w, 9)—13(2:C(—1, 9)) »
=P(z, 9)+2iC(—1, 9)—i3(2iC(—1, g))
=P(z, 9)+R(2iC(—1, g)). q.e.d.

Now we are in a position to establish the following ~fundamental

theorem.

Theorem 23. Under the same assumption of Theorem 22, we have

(10.23)

1 e . dt 1 (.. dt
1 ¢ — £) %t
omi f 9() t—z  2ri f W)

Proof of Theorem 23. For w= u—w v>0 we have by Theorems 21

and 20
(10.24)

dt

—o0

2—71nf zg(t)‘ =—

1 b dt . il du
LT i [ 2
Formal calculation shows that
(10.25) lim mg(u) '

t 2 v>0

= lim 27rf “ fg(u)"%

- 11;1515_ g( ) uf (t——z)(w——t)

-—0Q

-—hm—— g() L =—-ﬂ1%.fg(u) ud_uz

v>0 71- w—z . .

The (10.24) and (1'0.25) read (10.23). o
We may legitimate this formal transformation. For this purpose we
prove two lemmas. :
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Lemma 23,. Let g(x) belong to L2 (p=1) then the double integral

dt > g(u) du
t—z J_ w—t

(10.26)

18 absolutely convergent.
Proof of Lemma 23,. It is sufficient to prove that
A Ju—x]<2,

K
. °° dt Y,v.? ;
10.27 -
(10.27) f jt—2[[w—t] *{ loglu—=| i |y_n|>2.

=2 lu—z| '

Because we have by the H'c')lder inequality

(10.28) f lii Ilul oG] dui < A( ”% duf( “ﬁlf%?%[}_q duf

where B= (1 —_ﬁ)q >1.
. L V- p .
We have

K_fwn zH'w £
ds

2—[0 (82+y2)1/2[(u__x_s)2+,v2:|1/2
(a) the case |[u—x|[<2. We have

K=<2 [ - ds
= J (32+y2)1/2[(u_x_s)2+v2:|1/2

=2(f3+fm>=Kl+K2, say.
f 1 ds_o<_ylv_).

.
Kzgsfm oQ) .

(b) the case |[u—x|>2. We have

ke [T

le—x|—1 |lee—z| +1

:K3+K4+K5, say.

We have‘

and
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We have as for K,

K —2 1+ ju—m| =1 dr - g—. 2
4 Y ot ,,,[lu_xlz(l_,r)z_'_,vzjl/z = v lu—x[ ’
and as for K, |
2 |u -2 oo
K5;2(j +f ,)=K51+K52, say.
. : Jee—2] +1 2] -
then ;
: il dr ’ :
K. =2f ' =0(u—x|Y),
o ) Ju—zfr(—r) (fu—a]™
and

2l u—| ’ ‘ds
s(s—|u—=xf)

Ks,lng

lu—z| +1

lee—zt+1
- Ju—=x| s—|lu—x| s fu—ax|

In the last as for K,, we have

|w~2]/2 |lee—2z| —1 :
K3=2(f +f >=K31‘|‘K32’ say,
0 .

fee—a] /2
then
lee—2]/2 d,r' )
K, <2 f
= [(w—x)2r2+ 4] (1 —7)
v 9t o) =1 1 1
=2 tdr=0(—.— = ),
of e <y lu~wl’,> R
and

Kp=<z2[ W7___ds =o(lelu=zl),
A (ju—xz|—s)s fu—ax|
These above estimations give the Lemma 23,.
Lemxma 23,. For two complex numbers z=x-+1y, y>0 and wW=u—1v,

v>0, we have

w dt _ 2z
(10-29) | L (t—2)(w—t)  (w—=r)

10.30 =0
( ) _[c (t—2)(w—t)
Proof of Lemma 23,. We have
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0
__1T_fei(t—z)s ds,
? —o0

(10.32) I S § f Pgicu-0s g |
w—t 1 .

(10.31)

By applying the theorem of Plancherel of Fourier transform to (10.31)
and (10.32), we have

dt — o Oi(wi-z)s :___2L___
(10.33) f ==t 2 Jroeda= i(w—2)

—0o0

The similar arguments read to (10.30).

Now in (10.25), the first step is legitimated by Theorems 20 and 21,
the second one due to Lemma 23, and Fubini’s theorem, and the third
one is deduced by Lemma 23,. This proves Theorem 23 completely

If we use (10.30) instead of (10.29) we have

Theorem 24. Under the same assumption as Theorem 22, we have
) Y dt .
10.34 = TG - — f t) -2
asy 4o [e0T i)

From Theorems 20, 21, 23 and (10.08), we have immediately the reci-
procity relation.
Theorem 25. Under th_e same assumption as Theorem 22, we have

(10.35) gx)=—g(x), for a.e. x.

11. In this section we establish the representation theorem of analytic
function in a half-plane under the assumption of existence of boundary
function. '

Theorem 26.. Under the same assumption as Theorem 22, if we put

(10.01) f(2)=2C(z, 9)=P (2, 9)+iP(z, 9)

then f(z) is analytic in a half-plane y=>0, its limit function exists as
an angular limit and equals to ‘
(11.02) S(x) = g(x)+1i9(x)

Furthermore f(z) is representable by its Cauchy integral.

Proof of Theorem 26. That f(2) is analytic is trivial. That its
limit function f(x) is equal to g(x)+1%g(x) is obtained by Theorems 20 and
21. To prove that f(z) is representable by the Cauchy integral associated
with f(x) we have to prove that
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(11.08) ;1%— f “g(t) titz = 2;; fé(g(t)+i§(t)>t;‘_lf—

This is nothing else Theorem 23.

Theorem 27. If f () 18 represented by its Cauchy integral 'w'ith
the limit function f(x) of L% (p=1), we have

(11.04) ‘  Rf=8f and Jf=—9%r.
P%oof of Theorem 27. If we assume that

(11.05) . " f(2) =C(z f).

(11.06) lim £(2) = f(x).

Let us put | - '

(11.07) , S(@)=Rf+13f=f+ifs.

‘Then by (9.09), (10.01), (10.03) and (11.06), we have

(11.08) lim f@)=(f +if)

=%(f1+ifz>+%(fl+if;)

=Y Ay traF

=g Pt gt
From (11.06), (11.07) and (11.08) it follows that

(11.09) fi=—Ff and f,=7f
These give (11.04).

Theorem 28. Let f(z) be analytic in a half-plane y>0. Let f (?)
have limit function f(x) in L?(p=1) and satisfy

(11.10) Rf=3f.
Furthermore this limit exists as an angular limit on the point of set
x with a positive measure. Then f(z) is represented by its Cauchy integral.
We need the unicity theorem of analytlc function due to Lusin-
Priwaloff [23, p. 164]. ‘
Theorem D. Let f(z) be analytic interior of a wumnit circle. Let
F () have an angular limit equal to a constant a for the point of set
with- a posztwe measure which is situated on a circumference of this
circle. Then f (2) is identically equal to this comstant «.
- By the theorem of F. and M. Riesz [27], Theorem D is also effective
as for any domain whose boundary is a rectifiable cerve, in particular in
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our half-plane. _ :
Proof of Theorem 28. we have

111y  ImCGe = (),

Therefore we get by Theorem 23 and (11.10)
(11.12) | ()-lim Cz, /) = F@), ae. =
Thus Theorem D and (11.12) read

(11.13) (@) =C(, f).

As for equivalency of the integral representation of the Cauchy type
and that of the Poisson type, there is a study of G. Fichtenholtz [8] in
a unit circle and that of E. Hille-J. D. Tamarkin [16] in a half-plane for
the class £?. Now we have the following.

Theorem 29. Let f(z) be analytic in a half-plane y>0 and have
limit function in LY (p=1). Then whenener f(z) is representable by
tts Cauchy integral, it vs also by its Poisson integral and vice versa.

- Proof of Theorem 29. Let f(2) be represented by its Cauchy integral,
then we have Theorem 27, '

(11.14) S (x) = g9(x) +19(x) |
and g(x), g(x) both belong to L? (p=1). Thus by Theorems 22 and 25,
we have ' :

(115 C@n=§P@ymm+%ﬁ@amm

=§P@ywm+gpma4w

=Pz g+i)=P( f).
The second half-part postpones to the end of the next section.

"Remark 1. By Theorems 29, f(z) in Theorems 26, 28 and 29 belong
to the class 7. That is

(11.16) 1P @ ) lou = A, [|9]lp. (0<y < o0). |
Proof of (11 16). (a) O0<y=1l. Applying Jessen’s inequality

» 1 ry
| |P@ =L f l9@®)] ——)2+y dt
,, 1 [ ydu [g(x—|—u)[2
L[OIP(Z 9)| dﬂr‘?_w Y T da
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and

f°° lg@+uw) |* 5. — (T 1t+|ztul” |g@+u)| ‘dx
S ael ) Ti4fel 1+latul

< [TLEZ(a D latl g,
— 1-+|zlc 1+|ectul

« [ lg+w)|* 4
ézi A+l (ST

Therefore

1P oI, = lg@l? , [* Q+]ul)y
f 1+|] dxéz'_f 1+|v[" & f w'+y* {du

_S_.2“(1+!y|“)f iﬁr(?;)l}

oo

(b) y>1. Similarly -

I PG o)l f°° el 4 (= A+t
J, 14|zl 1+[e]*  J Q+|z|)LE—=2)*+v*]
Therefore it is enough to show that

sz y dx < A,
o A+ [E—)+y*] T 1|t
If |t|<1, then .
dx A.
L< [ Y% ~_ 2
f (t—x)*+9* x)z—l-y - 14+]|t|"
and if |t|>1 (we can assume that £>0), then

v [T [ [ )

/2
=L,+L,+L;+L,+L;, say.
From (t—2)*+y*>2|t—x]|y,

L=l O
' y x| t—ux]

_S_éfmx‘l‘“dw ——-‘Aat"“fv A
2J 14|t

Similarly L, < A,/ +|t]|®). Secondly

" da 1 [ A
L, < == xrdr < L
—f <1+1xr>|t—wl*t;,f~ =T
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and similarly L, < A,/(1+|t[®). In the last

% Yy dx
A+|z[)[(E—2)*+y*]

R © ydx :‘ A

IR LR A (R R A B T

=
i/2

Therefore

|P(2,9)]” lo@) 4
J = 15

These estimations give (11.16).

12. In this section we study a function of $». These are converse
of the previous section. The key point is to find a limit function in each
functional space. Firstly in this section we mark only the case a=0.
All theorems which we follow have been established by E. Hille-J. D.
Tamarkin [15]. But our proofs are somewhat different. We need two
theorems of Paley-Wiener [25] as the base of our arguments.

Theorem E. Let F'(z) belong to H? (p>1) wn an upper half-plane
then for any given y>0 we have

(12.01) F(z+iyo)———— f F(t+wo)
and : : '
. 1 [~ . y dt
.02), F =— TF_oNe 2
(12.02) (+1y,) - Io F(t+1y,) G—2)i+ 3

Sfor all y>0 (z=x+1y).

They have proved originally for a case p=2 in the vertical strip
domain. The remaing case was proved by E. Hille-J. D. Tamarkin essenti-
nally by the sameé method. ’

Theorem F. The two following classes of analytic functions are
rdentical : ‘

(1) the class of all functions F(x+1iy) analytic for ¥y>0, and
such that

(12.03) fmllq‘(oc—i—?ly)l2 dx<const. (0<y<oo),

—o0

(2) the class of all functions defined by
(12.04) ) F(m —{..‘Q:y):l.j.m. [ f(t) e—it(.z'+iy) dt
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where f(t) belongs to L* over (—,0).

Here we remark that the f(¢) of (12.04) is 1ndependent on y. Then
we have from Theorem F by an application of the Plancherel theorem.

Theorem G. Let F(z) belong to 9. Then there exists a limit func-
tion F(x) in mean, that is . :

(12.05) | Flet+iy)—F@)|. >0 (¥—>0),
(12.06) | FE+ip |t F@ . @V 0).

By Theorems G and E, we have ‘ '

Theorem H. Let F'(z) belong to $°.° Then there exists limit SFunction
F(x) in mean and F(z) is represented by its Cauchy and its Poisson
integral. The F(z) tends to this F(x) along any non-tangential path
As for real part of F(x) we have
(12.07) F(x)=2C(z, RF)=P(z, iRF)—l—zP(z REF) .

Extension to the other class $* can be done by the following way : (a)
the case p>1. If we take ¥ as a parameter, f(x-+1iy) are of weakly
compact. Therefore applying Theorem of F. Riesz [46] (c.f. S. Banach
[38, p. 180]) to Theorem E we can prove that f(z) is represented by
its Cauchy and its Poisson integral respectively. The remaing part is now
obtained immediately. _

(b) the case 0<p=<1. There can be reduced to the case (a) by the
following factorization theorem. (c.f. A. Zygmund [37, p. 162]).

' Theorem I. Let F(2) belong to H? (0<p< ) then this can be written

(12.08) | F(2) = B:(2)H(2),

where H(z) belong to the same class H? and non-vanisk in a half-plane,
and v

(12.09) . By@=niT%. At
’ ) 22— z z,+1

with z, the sequence of zeros of F(z) in a half-plane y>0. The B(z)
will be called the Blaschke product assocw,ted with F'(2) and has follow-
ng prope'rtws :

(12.10) ' . | Bx(2) |<1, for all y>0,
(12.11) - ‘ lim B.(z) =1, a.e. 2.

>0

The case p=1 is due to E. Hille-J.D. Tamarkin and the case 0<p<1

is due to T. Kawata [43]. All of these are special case of the results
of R.M. Gabriel [9,10]. ' '

Now we extend to our class 9% the result of the preceding section.
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Theorem 30. Let f(2) belong to 92 (p=1) then the proposition of
Theorem E is also true.

Corollary 30,. Let f(2) belong to H- (p=1), then we have for any
positive number 7 ' ' '

(12.13) lim f(2) =0, wunif. in y=7>0.

z>0

By this corollary and the theorem of R. M. Gabriel we have

Theorem 31. Let f(z) belong to 2 (p=1) then the proposition of
Theorem I 1s also true. ,

Then we can establish the following theorem:

Theorem 32. Let f(z) belong to £ (p:z_lj then f(2) has the limit
Sfunction f(x) in L% along any mon-tangential path.

Proof of Theorem 32. 1f we put

(12.14) : F(z) = f(2)/(z+1)

then F(z) belong to $® (p=1) respectively. If we observe that the
existence of an angular limit of Blaschke product is guaranteed by
another theorem of Fatou (c.f. C. Caratheodory [7, Band II, p. 40]). The
Theorem 82 is a simple consequence from Theorem H.

Theorem 33. Let f(2) belong to D2 (p=1), then [f(2) is represented
by its Cauchy and. Poisson integral. As for real part of f(x) we have
also

(12.15) . f(@)=2C(z, Rf)=P(z, Rf)+iP e Rf).
Theorem 34. Let f(z) belong to D2 (0<p< ), then we have
(12.16) | f @+iy) — F @) |l 5. >0 (¥y—>0)

Proofs of Theorems 33 and 34. (a) the case p>1. If we appeal
to the idea of weakly compact toc. The first half-part of Theorem 33
is an immediate consequence of Theorem FE as before. Thus (12.16) is
obtained ‘by applying Jessen’s inequality.

(b) the case 0<p=<1. In the first, if we appeal to the Theorem 31,

we have (12.16). Hence the first half part of Theorem 33 for p=1
is an immediate consequence of Theorem 30 and (12.16).
(¢) By (a) and (b) and Theorem 27, we can write

(12.17) f(x) = g(x)+i9(x) .
Then by Theorem 23, we have
-(12.18) 2C (2, 9)=C(2, 9)+C(2,19)=C(z, /)=S(2) .
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In the last, the second half-part of Theorem 29 is obtained by Remark
1, Theorem 30 and (12.16).

Chapter 4. The generalized Hilbert transform

13.

Definition 4. By W,, we shall denote the class of functions to be
measurable over (— oo, o) and such that

(13.01) | [ {f L) gy < oo,

Throughout of this chapter let g(x) be a real valued measurable function
over (—oo, oo) which ‘belongs to the class W,. We begin to state the
obtained result in [21, V7. -
Theorem 35. Let g(x) belong to the class W,, then its generalized Hilbert
transform of order 1, g,(x) defined by (1.01) also does to the same class and
o0 | 2 2 «
13.02 19.@)F 4. [le@]
( ) f 1+a® o= Jo 1+za? o _
We introduce three integrals of the Cauchy type and the Poisson type
respectively.

03 C, _ (2+19) g(t) dt
(13.03) (& 9)= 271 J t+1 t—=z

04 Pz, 9)= (z"f"b) = 9@) ’!Jdt
(13.04) - Peo=EE) fw ot
13.05 Bz, )= — (z+12) [~ g(t) ({A—x)dt
( ) (2 g). t—i (t—2)+ 7
Among these formulae there is following relation. .
(18.06) . 20z, 9)=Py(z, 9)+iP\(z g),
But : ' ,
(13.07) P,(2, 9)%Ci(2, 9)—C\(7, 9) ‘
(13.08) " Py(2, 9)F(—1)(Ci(z, 9)+C\(Z, 9)).

Then we get

Theorem 36. Let g(x) belong to the class W,. Then
(13.09) \ | ﬁ1(z: 9)=Py(z, 7))

Proof of Theorem 36. From P(z, g)=P(z,7),
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Pz, g)=—(FTD (~9) (t—a)dt
. ’ ] T v t—l—’l: (t—x)“’—l—gﬁ
_ 2+ /‘°°<_l = g(t) ds > y dt |
w d, \wd, stit—s) G0ty

_z+1 (0.() y dt
T J_ 1 (t—x)*+y*
Theorem 37. Let g(x) belong to the class W;. Then
(13.10) ‘ Ci(z, 9)=C\(2, 1g,).
Then Proof of Theorem 37. From C(z,9)=C(z,19)

Ci(z 9)= 22+? tg—(i—t?b tcil_tz

= P,(z, 0.)-

:ﬁlf“<_z_ * g(s) ds_> dt -
t

271

Jo\mJ stit—s/t—=z
_2+1 «4g,(t) dt —C o
2m§£ t+i t—=z i(# w‘):
Theorem 32. Let g(x) belong to the class W,. Then
(13.11) (S)-lim P,(z, g9)=g(x), for a.. w,
>0
(13.12) lim | 21z 9)—9@) | _q.
y>0 -+ 2

Proof of Theorem 38. If we write

P,(z, 9)= x+1 (= g(t) y dt
’ r Jt+i (E—x) 4y

Yy (Cg®) - ydt |
+%7rv£ t+1 (t—x)*+y®

=P,+ P, say.

Then
P> @+9)2E_—g@), y—o0,
X+

for a.e. £ as an angular limit, and

"P2|§y<71r—fw-tg§_%

—o0

a) (L () @)

193
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[ (k) o

=o0(1), y—O0.
As for (13. 12), we have
x+1 2 : 14-a?
* Zf“ de [z41 [~ g(t) y dt
o J o 1+42% J t+t E—x)*+y°
> de | x+i [~g(t)  ydt F
J Tl =z J i e 0@

Lor (Pl F@E+D |1 o gt) ydi
2 wJ, t+i Grayp Lo

—g(x) da

=2?

2

1422
=P;+P,, say.

Then by Jessen’s inequality

Pyl [(LIOF g1 1 yde
' 3.l_ yl; 14¢2 nl; 1422 (t—z)+4°

< 92,2 * lg@®)|? —
<2y L T dt=0(1), y->o.

and

Ciples: (ClL [~9®)  ydt _ g@)f
P,|=2 ]_. - d
| 2] L 7 J_ ti G—aytyt wtil

=o(1l), y—>0
by Theorem 20.
Theorem 39. Let g(x) belong to the class W,. Then

(13.13) (S)-lir:% ﬁl(z, 9)=9,(x), ae
(13.14) lim | B 9)*51(”% —0.
Y0 r+1 2

This is obtained form Theorems 36 and 38. ,
Theorem 40. Let g(x) belong to the class W,. Then
(13.15) | @:(@)=—9g(), for ae. =

‘This is obtained from Theorem 37. Next we may prove
" Theorem 41. Let g(x) belong to the class W,. Then if we put
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18.16)  F@=@+ilim L J " (i sign ) Yo du
where
| —_— - f(t) —znt
(18.17) Y(w)=1im. Jzn vk dt
Then | : _
(13.18) FH)=fi(x), for ae. =

The author believes that this modified definition (18.16) was first
1ntroduced by N.I. Achiezer [1].

Proof of Theorem 41. We have

(xd) [ Sf() dt
2z J_ t4+1 t——z

:(x—i-jo)f tdt ilm——fA l(u)e““du

271 Z 4> 427
L (w+z) i
_1152 f «;r(u)dullmf

= lim q,lr(u) e T dy,
A->oco

, z=x+1y, y>0,

We put y—0, then
—(f(w)+zf1(w)) (2+4) Lim. = f () e du

A>o0

J— 1 y 3 1 4 txu _— a1 txu
_E(x—l—z){l.ﬂg.mi 1P(u\)e du—l—zllm«/ m—/;( 1 sign u) Y (u)e du}

=%<f(w)+7:?*(x».

From this we have (13.18)
. We also 1ntroduce another modified deﬁmtlon

(18.19) Fr@y=&—D (7 f@) dt

Jot—tx—t

Our first definition will be written

: z, _ x4i [ f(t) dt
(13.20) fi@)y=— J triw—t
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Then we get

Theorem 42. Let g(x) and h(x) both belong to the class 'VVg.

( ) f 1+ac = f 1+ao
Proof of Theore'm 42. We have from Theorems 35 and 38,
hm = g(x)P; (2, h) g(w)h*(w) dz
1+a? J_ o 14at '
Therefore
= g(@)P¢ (z R) q
1422

_ fw 9(®) (2+4) (= h(t) (t—=)dt
Jo 1+2* = J t4i (t—2x)’+9y°

.=f°°dt h(@) t—i [~ g(®) z+i (t—z)dx
1+ = J__ x—1 x+1 (t—x)*+y°

oo 1+ J t+i = J_ at+i (t—x)+y?

e R 1 [ g(x) (b—a) da
dg M) 1
_Hy_fw t+1 7 J_ 1+a® t—a)+ 9
=P,+P,+P, say, (w=t+1y, y>0). \

Then
h(®)|? > Jg@)[* dx
P 2_<_ 2 l dt
| P y_f 14+t J  1+42?

=o0(1), y—O0.
and similarly

P,=o0(1), y—O0.
and ‘

f OB (w,9) 4,
142

gr(h(t .
—_ — f l(—l)—tg)dt ag y—>0.

Then
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In the last we state two theorems.
Theorem 43. Let g(x) belong to the class W,. Then tf we put

(13.22) F1(z)=2C\(2, 9)

Then

(12.23) (S)—linol f1(z):g(x)+i§1(x),- a.e. .
-+ 2

where fl(w5=g(w)+i§1(x) and
(13.25) , f1(®)=C(z, f1)=P,(z, f1)

Theorem 44. Let fi(z) be analytic in an wupper half-plane a/nd
belong to the class 3, that is

dac<const (O<y< o).

(1326) f s
Then there exists the limit function f,(x) such that
(13.27) (S)-lim £,(2) =1 ()
‘ x4+
and tf we put Rf,=g then
(13.29) - | g:(w) =31 (%).
We can also representate
(13.30) f1(®)=Ci(z, f1)=P,(z, f1)= 26'1(2 9).

14. In this section let us assume that the ordinal Hilbert transform
exists. Then from identity

(1401) Gu(@)= (x:i) f ) ffi ﬁ .

1f Q(t) dt+1f g(t) dt,

it is equivalent to the constant term to be finitely "determined. This
constant will be called the Achiezer constant, and we write

(14.02) | =1 [T90) 5
' TJ t+1



198 S. Koizumsi

Then from the result of previous section the property of g(x) W111 be
reduced. 4

Theorem 45. Let g(x) belong to the class W, and g(x) exist for a.e.
Then g(x) also belongs to the same class and

(1403) ( |19f;'2 dz)* Z(f” Iffzclz der)” 4y e,

This is obtained from theorem 385 and (14.01).

Theorem 46. Let g(x) belong to the class W, and G(x) exist for a.e.
Then : '

(14.04) | '(S)-lir? P(z, 9)=g(x), a.e. «

} 14.05) . ’

( ) ' x+1 ’)

Proof of Theorem 46. From identity
14.0 B gty W
( 6) t-+1 t+1 T t4+2
We have
: dt

14.07 P == Y
(14.07) (=, 0)= f g() o

+ (=1 g(t) (t—2x)y dt
x J_t+i t—x) +yP

. 1 g(t) y2dt
)t ot
=P (z,9)+ Ps+1P,, say.

Then
vP8= — z-]y—?, f)l (z, g) ,
therefore
(14.08) (S)-lim P, =0, a.. x.
v->0
(14.09) N | Psl: >0, y—0,
and '

P=i Y Pz 9,
9 %z'l-’l: (2, 9)
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therefore :

(14.10) (S)-lim P, =0, ae. x
v->0

(14.11) | Psll: >0, 9—>0.

Thus our theorem is obtained from Theorem 38 and (14.07).
Theorem 47. Under the same assumption of theorem 46, we have

(14.12) (S)-lim P(z, 9)=g(x), a.. =,
(14.13) | ] Pg—0@| o y-o0.
. : x4+ 2
Proof of Theorem 47?. By the similar way as Theorem 46,
Pi(z 9)= f gt) 2
(2 9) O G

1 ce®)  G—or g,
+7r»_/°; t+1 (t—x)*+9y?

(—1) ~gt) (E—>y
T _./;t+i (t—x)2+y2dt

=Pz, 9)+ P,y + P, say.

Then
—a=l [0 v
rJ_ t+i (t—2)’+y°

and , |
(14.14) (S)-lim P,= A, for ae. x,
(14.15) ’ “ﬁ_ﬁl_ >0, y—0.

' x4+ 2
From

| P11%7%ﬁ1(z;g)
we have

(14.16) (S)-lim P,, = 0
y->0
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(14.17) HPyull:—0, y—>0
Therefore our theorem is obtained from Theorem 39.
We may prove ' ,
Theorem 48. Under the same assumption of Theorem 46, if we put

(14.18) | 2C(z, 9) = f(2)
Then ,
(14.19) | (S)-lim f(2)=f(2) =9(2)+ig()
(14.20) | t i(_zl_f_(f’fl y—0.
x+1 2

This is obtained.from Theorems 46 and 47.

In the last we adds some remarks.

Definition 4. By W,, we will denote the class of functions to be
measurable over (— oo, oo) and such that

. .

14.21 f Lf@PF g 0o, (p=1
(14.21) e dE<e, =)
Then for the class W, (p>1) the analogous result of this chapter may
be true. For the class W we get

Theorem 45’. Let f(x) belong to the class W. Then the ordinary

Hilbert transform f (x) exists for a.e. and for any given positive number
e such that 0<e<1,

i GO A 1r@| 4
e S = )

where 6>¢, and A is an absolute constant.
This is obtained from Theorem 4 of [21] easily.

Chapter 5. The generalized harmonic analysis of
Hilbert transform

15. In chapter 4, we define the class of functions‘ W,.. To this class
the generalized Hilbert transform of order 1 is precisely corresponding.
This modified one is defined by
x+t [~ f() dt

(15.01) Fi@)= J it
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The main purpose of this chapter is to determine the relation of spectrum
between any given function f(x) of W, and its Hilbert transform. For
this purpose it is enough to remark Theorem 35. We quote the Plancherel
theorem of Fourier transform repeatedly [3]. We introduce the generalized
Fourier transform due to N. Wiener [31 32]. This is defined by

(15.02) sf(u)___ f Ffla) L1 gy

1 et e

+Lim. ‘/—_—[j; +lf ]f(w) —

Let f(x) belong to the class W,. Then by the Plancherel theorem, the
Fourier-Wiener transform s’(u) is defined and we have

(15.03)  s'(u+e)—s’(u—e)=lim. __LfAf(x) ESi_ne_x_e—m dz
A->o0 N/277.' Ja U :

1506 L [Tl ur—s =) du=1 f | £y S d,

-—00 —00

If f (ac) belongs to the class Wz, then by Theorem 35, the Fourler-Wlener

transform of f,(x) is also defined. We will denote this by ‘sf(w). Through-
out to this chapter let g(x) be a real valued measurable function which
belong to the class W,. We also denote

(15.05) | fi(x)=g(x)+1ig,(2).
We may prove the following funndamental theorem:

Theorem 49. Let g(x) belong to the class W,. Then for any given
positive number e,

(i) if |u|>e, then \
(15.06) $o(u—+e)—s?(u—e)=(—1 sign %) {s?(u+¢)—s’(u—z¢)}
and
Gi) of |u|<e then |
(A5.07) . 59w+ ¢)— 59(u — &) = i{s"(u+ &) — 8%(u — &)} -+ 2r4(u +¢) + 2ri(u+e),

where

. 1 g(s) e—zus_l
15.08 g Li d
( ) ri(w)= Fre VerJ, s+i  —i %

15.09 gy =1lim. 1 [ 9 gius gs.
'( ) riu) ;ﬂ 1/271' s—l—z s
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We. begin with several lemmas: |
Lemma 49,. Let g(x) belong to the class W,. Then

(15.10) Liam. Lim. L [ Cy(z, 0) 250 -ov gt

y->0 A>o0 ;\/2_.7; 4

= ()= so(u— )} + {5 o) — Fe(u—e)).
Proof of Lemma 4._91. We‘ have by Theorems 38 and 39

(15.11) Lim. Cz, g) 280t _ 1o 5,y 2sinet

' y>0 t 2 t
Since the integral of square modulus of function leaves invariant under
the Fourier transform, (15.10) is obtained from (15.11).

Lemma 49,. We hcwe "

A 3 ’ —
(15.12) lim. L f f2sinet i g oy (u),
a3 427 t .

—A

where . (u) is the characteristic function on (—s¢, ¢).

Lémma 49,. We have

(15.13) Lim. -1 J Lo gp—gAEslEn Y on i
. 40 «/27; s—z 2

—A4
where z=t-+1iy, y>0.
From these two lemmas,
Lemma 49,. We have »
1 4 2ginet e '™

15.14 Lim. —=— dt (z=z-+1y, ¥y>0),
( ) A>o0 x/27r_A t s—=z ( y v=>0)

¢ (s—1Ye __ ,—i(8-1Yds

'\/271_ i e—i(s-iy)u € - 6. v , U>¢

| (s—1y)
— ﬁ }\/% i e—i(s—iy)u ez‘(s—iyi)-u___e.—i(s—iy)s’ _ei\uée
’ (s—1y)
0, u<—e

Lemma 49,. We have if o<y<1,
eis(s—-iy) _e—is(s-i-y)

(s—1y) :AH Sinsss l+ 1—|—1]s|}'

Proof of Lemma 49, We can write

(15.15)
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eif(s‘fﬂ)_e'i‘(s'iy) _ 2 Sin s eies(eey_l) _ e—ias(e—cy_l)
1(s—1y) s—y - 1(s—1y) 1(s—1y)
=K,+K,+ K, say,

~

then -

(K, |< 2sines _ 2sines |-
s—1y s

231nss {‘ _1’_1_1}
s s—1y

2smssl {‘ |+1}
s Ul s—ay

2 sin es 14y }
1+1<3
s {l—l—l ]+

Aesy < Ae 14+y < 3Ae
|s—ay |~ 1+4[s| ™ 1+}s|

| 2 sin es
I

IA

IA

sin ¢
S

IA
e

| K. <

and similarly

3Ae
1+4|s]

| Ky |=

Proof of Theorem 49. In the first we replace g(x) by gsz(x) which

is defined as follows
(15.16) g5(@)=g(x), if |x|<B, - =0, elsewhere,
Then

1817) - s(z gn)=lim. = [ Ci(e, 0. 2L om0 it
A-»>oo ~/277; v, v t

=Llim. 1 fA 2sin et e-tut dt z+’b B g(s). ds
A>c0 \/271‘ 1 211 J s+1i 8—2z

=Lim. 7908 ¢ fA zsin et 241 o= dt.
A>o0 \/271' 8—}—7, 4/271- t sS—z

From identity

(15.18) | LBt _ sty
, s—2 8s—=z

we have

203
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t .

B FA 1 -iy
(1519) sz 95)= o f o(s) ds Li.m. 1_, ‘2sinet e

i 9(s) dsLi f 2s1net o-iut
2rzf s+ ,}IE 7o et

_sl(u)—l—sz(u), say.
Then from Lemma 49,,

(15.20) s =7 [ % ds-y.(u).

We estimate s(z, g;) defined by (15.17) by decomposing into two cases.
(i) |u|>e. From (15.20) and Lemma 49,, - |

(15.21) Lim. Jl f C.(z, gy)ﬂi -t gy
A-)oo
=(1+Sign u) . B s ezs(s— y)_ezs(s iy —yt —fus :
2 JéE_B o( =
From (15.11) and Lemma 49,, |
(15.22) Lim. Cy(z, g,) 25met 1y L5 y2sinet
_ R ae t 2 t
and . |
(15.23) l.im. gB(S) 6i¢(s—z;y)__ e.—is(s—iy) :gB(s) M.
' y>0 i(s—1y) :
Therefore
) 3
Lim, [ L(gytiGa) ZSREL g gy
e ), 2 t
_ (1+signw) 1 fB . 2sines ;.
2, (@ e
and . ,
1 41 ~ 2sinet ..
ljg V2= ?(9+z91)—-t-—-e dt
_.(l—l—s1gnu)1~' 1 .‘/‘B 2gines _, ‘
=T 1im. — 220 et (s,
2 B 421 Jo 9(s) s ¢ , d
That is

(15.24) ' ——{Sg(u—i—s)——sg(u—e)}—l——{s (u+e)—sl(u—e)}
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:Lw {s(ut o) —s7(u—e)).

This gives (15.06).
(i) if |u|=<e. Then by the similar way but we consider now over
(—e, €), we have

(15.25) Lim, 7;; f %(ggwm)e-w dt

1 vB —z$u+s)v 1 B g(S)
— = d d
«/271"/ 9(9)° —18 S+J2n_B s+1 s

7 g(s) et — 1d8+¢2 f 9(s) e iureos g
Y[ .

«/271 s+1 —18 s-+1

Therefore \
1
Li d.m. J_

y WCu+edrs y B
—lim. -t (96 e 1 g im, b [T 90 gmicuron gy
‘ B> x/27r s+ —18 B->oo «/271'_B s+1

; (g_'_ial) 2Sin et e~

That is
(12.26) %{sg(u—!—s) — P (u— &)} + {50 +e)—Ft(u—2))

=wri(u—+e)+iri(u+-e).
This gives (15.07).
Theorem 50. Under the same assumption- as Theorem 49, if we

denote by s{(w) the Fourier-Wiener transform of f.(x) defined by (15.01),
then we have

(i) +f |u|>e then

(12.27) s{(u+¢e)—s{(u—e)y=(1-+sign u){s?(u+¢c) —s'(u—e)}
and |

(i) «<of [ u|<e, then
(15.28) s{(u—+e) —sl(u—e) =2ir{(u+e) +2iri(u+¢).

16. We introduce the following class of functions.

Definition 5. By S;, we denote the class of functions f(t) to be
measurable and such that

(16.01) - lim L f [FO P dt ewists.
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Then we shall prove

Theorem 51. Let g(x) be a real valued measurable function of the
class S,. Let us suppose that

(K) B hm——— ls"(u—l—s)——s"(u——e)lzdu 0

>0
and
(K3) there exists a constant a’ such that

g(S) —iusd - ;—ag
B-»oo ~/27' s+i ® \/7

e

hm —

>0

Then its generalzzed Hilbert transform of order 1, g,(x) does also to the
same class S, and ‘

(16.02) hm— f 13.) | de=1im f |g(@®) [ dt+]as o

For the proof of this theorem we quote N. Wiener’s Tauberian theorem
which is called the Wiener formula usually (N. Wiener [32], cf also S.
S. Bochner [3] and S. Izumi [17]).

Theorem J. If f(x)=0 for 0=<x< oo, and either of the limits

. 1 T .
16.03 lm L £) dt
(16.03) lim - f £
or
(16.04) lim -2 [ £(®) Sm et dt
- e>0 Te A

exists, then the other limit exists and assumes the same value.
From this theorem, Plancherel’s theorem and (15.04), we get

Theorem K. Let f(x) be a measurable function for which (16. 01)
18 bou’nded wn T of 1<T<oo. Then we have

(16.05) hm———f | £®) ]zdt-—-hm—f }sf(u+e)—|-sf(u—s) > du

wn the semse that if either side of (16.05) exists, the othe'r side does and
assumes the same value. ‘

Therefore it is enough to prove the following theorem..
Theorem 52. Under the same assumption of Theorem 51, we have

(16.06) lim 44_ f 80Ut — 52 (u—e) [ du

—00
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lim L
=lim
e>»0 43‘5

[T Ie@t—stu—e) [Fdu+|arl

Lemma 52,. Let g(x) belong to the class W,. Then for ri(u) deﬁfned
by (15.08) we have '

(16.07) lim 1 _ S " o) [F du=0
. | s (25)2 / 1 — V.
Proof of Lemma 52,. If we denote
(16.08) g =Lim. L. (96 -t gg

| A>oo «/Q;; s+
then by the Schwartz inequality

26 28 u 2
f ]rl(u)l"’du:[ 'Of 9.(v) dvi du
gofg'u(of“m(v) lzdé)du=of?6|@1<v) Pdvufg'udu

=ae | 16, |? d.

Thus we have

S 1) [ du=o(e), e—>0
[1]
Proof of _Then'rem 52. From Theorem 49,
—]:——fwlgf’(u+e)—’§f(u—e) lzdu:—l—f[s”(u—l—s)——s”(u—e) I du
dre J_ Are- e

+—1—f [{s*(u+e) — 87 (u—e)} —2irf(u &) — 2irs(u+e) |? du
- 4re ‘

| (<s
=I,+1, say, _
Then by Lemma 52, and (K,), (K;)

1
I=———f
2_ 4re l

lu(<s

s'(u+¢e)—s'(u—e) |? du—l——;:?_fe‘] ri(u) Pdu  +o(1)

=2 [ st —s'u—2) | du+t|ar[+o(), 0.
4re e

Thus
' 1
4re

—0o0

f°°1 st(u+e)—si(u—e) |* du
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=1 fwl s (u+ e)—s%(u—e) |* du+| @ |2—|—6(1), e—>0.
dre J_ : '

‘Thus we have proved Theorem 52 completely. Instead of Theorem 49 if
we use Theorem 50, then

Theorem 53. Under the same assumptions as Theorem 52, fi(x)=
g(x)+1g,(x) also belongs to the same class S, and

(16.09) lim 2 [Tl (ut-e)—sl(u—e) | du
>0 dre Yoo - .
N S Y - ,
—s'(u—e) | du-l—hm—f [S7(u—+e)—8¥(u—e) |* du
>0 e>0 dre J
R T e
(16.10) lim o [ 1501 dt

tim o [ lg(t)lzdt—l-llrh“ i) 1701 .

Proof of Theorem 53. Since g(x) is of real Valued

(16.11) §9(—U—+e) — 89— U —e) =8 (t+ &) — 89 (th— &)
we have ‘
(16.12) 4}% f 7 $(ue) — s (u—e) |2 du

-0

= j T s (ute) — s (u—s) |* du.

The remaining part is now obvious.

17. We attend in this section functions of classes .S and S’ which
are introduced by N. Wiener. These are defined as follows:

Definition 6. By S, we will denote the class of functions such that

(17.01) ¢’(2) =lim 2—T " Fe4+OF0 di

exists for every «.

Definition 7. By S’, we will denote the class of functions such that
o’ (x) exists for every x and continuous over (— oo, o)
It is clear that

(17.02) S'cScS,. ,
Theorem 54. Let g(x) belong to the class S. Let us suppose that
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(X)) S 11r§1—21 | 8% (u+e)— s (u—e) | du=0
e> &
and
. 1 2e g(s) - ; 2
K lim-1 L e ds—./ T ar| du=0.
®  tmo [l [ e s Jza e

for certain comstnat a’. Then its generalized Hilbert t'ra'nsfo'rm of order
1, 9.(x) does also to the same class S and : : o

(17.03) o so;’(w)*hm~— f g (x+8)g,@)dt

=¢(x)+|a’ |
We may prove through several lemmas Wthh are due to N. Wlener
[33].

Lemma 5'41. Let g(ac) belong to the class S. Then for any real
number a 3 '

(17.04) hm—— f | 9(¢+a) |* dt=lim f lg@®) |? dt.
| Lemma 54,. We have
(17.05) o(t+0® =—{| 9t +2)+9(0) P~ 9t +2)—g(0)

+i| gt +a)+ig(t) P—i| gt +x)—19() |7}

Lemma 54,. We have for any real or compleac number w such as

I w ‘“__lr
(17.06) Ig(t+x)+wg(t) [?=| g(t+x) P+lo@®) |?

- Fwgt+2)9(t) +wgt+a)g(t).
Then '

Lemma 54,. Let g(oc)' belong to the class S. Then for any real or
complex mumber w such as |w|=1, -

17.07) hm— f [ g(t +x) +wg(t) [2 dt
exists for every .

On the other hand , v . _
Lemma 54;. Let g(x) belong to the class Wz. Then we have



210. S. Koizumt

(17.08) f l {Si(u‘l'e) —sz(u—e)} —6““” {s'(u—+-e) —s"(u—e)} " du
.=0(¢%, >0,

where

(17.09) : 8§(u+§)—s£’(u—s)=l.jf£.;/—%_; f “g(t o) 28D L Sitn el g-iut gy,

-4
Therefore from Lemmas 54, and 54,

Lemma 54,. Let g(x) belong to the cass S Then fo'r any real or
complex number w such as |w|=1,

(17.10) - hm— f Ig(t+w)+wg(t) lzdt

) “'“”—l—% e?) | s?(u+¢) —s'(u—e) |* du.

&->0

and that
Lemma 54,. We have ’_ ‘
2+2cosux, if w=1,

. . 2 -itux — iuw:{ .
(17.11) twe T +w 6™ 2—2cosux, if w=-—1,
' I 24+-2sinux, if w=1
iux tur ’ ’
1712) . . 24we ™ +we _{2—-2sinux, if w=—i.

Thus we have . .
Lemma 54,. Let g(x) belong to the class S. Then we have

(17.13) o) =1i 41 f " e | s9(ute) —s'(u—e) | du
&->0 TE .
1 "
__l‘m(r)x 2mof cosuxlsg(ufe)_~s0(u—s) |? du.

Since g(x) is of real valued, the last formnla of (17.13) is obtained
from (16.11) easily.

Proof of Theorem 54 From Theorem 49 and conditions (K, (Ky),
we have

(17.14) 1 f (2+we‘””+we“‘”)[s"(u—l—s)—-—s{’(u—-s) I du
, 4re

-0

f 2+w e‘”‘”—l—i«i e'?) | sg(u—{—e) —s(u—e) > du

477.'6
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-|—Ia,9 l2_21_f. (2+,we—1:ux_l_€v—eiux) du—l—o(l), e—0.
. €,

In Lemma 54,, if we assume that g(x) belongs to the class W, then
(17.10) can be interpreted as follows. If'either of the two limits exist
then the other limit also does and assumes the same value. Therefore
for any real of complex number w such as |w]|=1,

hm-—— ]gl(t—}—x)—l—wgl(t) |? dt

T—)oo

exists and equals to

hm——f | gt +x)+wg(t) |? dt

+|a?}? hm———f 2+we ™ 4w e“”) du

Thus we get
(17.15) P =lim - J "G.6+07 dt
—-hm—a g(t—l—x)g(t) dt+|a’|?
T—)oo
=¢%(x) + l a? [

Theorem 55. Let g(x) belong to the class S’. Let us suppose that
conditions (K,) and (K,) are satisfied. Then g,(x) does to the same class
S’, and the (17.03) 1is true. .

This is obtained from (17.15).

As to fi(x) defined by (15.05) we shall prove’

Theorem 56. Under the same assumption as Theorem 54, the neces-
sary and sufficient condztwn that fi(x) defined by (15.05) belongs to the
class S, zt that

(17.16)  lim [ sin | st —su—e) | du

. >0 471:5 A

exists for every .
In this case we have

T TR —
717 pl@)=lim - f Ao F®dt
1

>0 e
0

" et | s0(u+e) —s9(u—e) |* du+| a? |*
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Proof of the mecessity. From theorem 50 and conditions (K,), (K2)
we have by the same arguments as Theorem 52

1 iuz r —afl(ry — 2
17.18) T fw | sf(ut-o) —sl(u—e) [ du

1 oc,e“””]s"(u_—}—e)—s*’(u—,l—‘e) [Fdu

e A
+larr L [enr duto(), >0
o 27 v,
Therefore if we assume that the. limit

lim 1
&>»0 47‘[5 v

o%ei“"’” .] si(u+e)—si(u—e) | du

exists then the following limit

(17.19) lim L [~ gine | sg(u—i-e)—s”(u—s) [? du

e>»0 TTE )
also exists and we get (17.16) from (17.19) and Lemma 54,. Thus the
necessity is proved.

Proof of sufficiency. From Theorem 50, conditions (K ), (K;) and
(17.16), for any real or complex number w such as [w|=1,

ius 4 g5 et) | s{(u—+e)—sf(u—e) |*du

&>0

ex1sts and equals to

lim — (2+'we L w e T | sg(u+e)—~sg(u—~e) |2 du
>0 TTE
+Iag lz . 1 f (z_l_we—iuz‘_l_'%—u‘eiux) du
e>0 w v,

Therefore we have by Lemma 54,

;131—2—— f |fit+a)+wfi(e) |2 dt

=1im
£§>»0 471'5

f C+we ™" +w e”””) lsf(u—e)-sf(u——e) Pdu -

=lim— f (24w e+ W e™?) | s¥(u+¢) —s'(u—ce) |2 du

s>0 7re
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+]a?|? hm ——f C+we ™ 4w e™”) dx.

Thus we get by Lemmas 54,, b4, 54, and 54,,
(17.20) 90’{(06)—11111—— f Fi(@+t) i) dt

exists for every x and equals to

lim-1 ooe“”‘|sg(u—l—as)—s"(u—e) |2 du—+|a|?.
e>0 TTE

We get

Theorem 57. Under the same assumption as Theorem 55, the neces-
sary and sufficient condition that fi(x) defined by (15.05) belongs to the
class S’ is that”

(17.21) lim-L [ sin ux | s7(u+te) —s?(u—e) |* du

e>0 TTE
0

exists for every x and continuous over (— oo, o).

On the other hand N. Wiener [33] also proved the following two
theorems:

Theorem L. If g(x) belongs to S and ¢*(x) is coninuous .at x=0,
then it is continuous for all real arguments and g(x) belongs to S’'.

Theorem M. If g(x) belongs to S, it will belong to S’ when and only
when

(17.22) lim Tim —1 [f”lf“’}|sv(u+e)._so(u—e)12du=o.
. A-oo >0 471'5 Yoo /
From these theorems we get immediately:
- Theorem 58. Under the same assumption as Theorem 55, if fi(x)
defined by (15.05) belongs to the class S then it does to the class S'.

Proof of Theorem 58. 1t is enough to prove that

(17.23) lim lim [ sinux | s'(u+e)—s'(@—e) | du

>0 >0

This is obtained from (17.22).
18. Let g(x) belong to the class W,. Let us assume that its ordinary

Hilbert transform of g(z) can be defined. We denote this by s°(x). Then
by repeating the same argument as Theorem 49 we get immediately:
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Theorem 59. Let g(x) belong to the class W,. Let us assume that
its ordinary Hilbert transform exist for a.e. x. Then we have

(1) of " |u|>e, then | _
(18.01) §9(u+¢)—5(u—e) =(—1 sign u){s*(u +¢) —s(u—e)}

and
(i) if [u|Ze, then ‘
(18.02) 89 (u—+e)—8(u—e)=1{s(u+c) —s'(u—e)}

+279(u+e) +2r8(u+e),
Here ri(u) is defined by (15.08) and

(18.03) L A=)y Z
where ri(u) is defined by (15.09) and ]
4 1 [ g(s)
: Al=— | £ gg,
(14.02) o - L I ds
We put' '_
(18.04) k - S@)=g(x)+ig(x)

and denote by s’(u), the Fourier-Wiener transform of f(x), then we have
Theorem 60. Under the same assumption as Theorem 59, we have
(i) if |u|>e, then

(18.05) s’ (u+e) —8(u—e) = (1+sign w){s'(u+¢) —s%(u—e)}

and _ | :
(i) of |u|<Ze, then :

(18.06) s’ (u+te) —s (u—e)=20r%(u+¢) + 2irf(u+e).
From these theorems and the same arguments as the previous section

we. get the following theorems. We state theorems without detailed
proofs. ' '

Theorem 61. Let g(x) belong to the class S,. Let us assume that

its ordinary Hilbert transform g(x) exists for a.e. x. Let us assume
conditions (K,) and

(K,) lim-1 f * " du=0.

>0 21

1 i Bg(s) -tus - ?
13553'@?_8 me ds x/_zﬁA”

Then g(x) does also to the same class and
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(18.07) - 3153517 L 15 |2dt—-hm— f | g(®) I dt

Theorem 62. Under the same assumption of Theorem 61, f(x)
defined by (18.04) belongs-to the same class and : :

(18.08)  limon f | F(8) | dt
—hm—f | 9(t) I* de+lim —— f 15 |2 dt.

and

(18.09)

—s'(u—e) |?du

PRV

—s”(u—e) |? du.
e>0 TE

As to the élass S and S’ we have

Theorem 62. Let g(x) belong to the class S. Let us assume that
its ordinary Hilbert transform exist for a.e. x. Let us also assume the
conditions (K,) and (K;). Then g(x) also does to the same class and

(18.10) %'(x)=lim ;T f G@+t) 5@ dt
=¢(x)

=lim
>0 271-5

fmcos ux | s(u—+e)+s'(u—e) |* du.

; _
Theorem 63. Let g(x) belong to the class S’. Let us asume that

its ordinary Hilbert transform exist for a.e. x. Let us also assume the

conditions (K,) and (K;). Then g(x) also does to the same class S’ and

(18.10) 18 also true.

Theorem 64. Under the same assumption of Theorem 62, the neces-
sary and sufficient condition that f(x) defined by (18.04) belongs to the
class S 1ts that (17.16) is true. And we have

(18.11) - ¢@=lim f fxt) F@) dt
=lim —— [ e™* | s'(u+e)—s'(u—e) |>du
£>0 TTE

Theorem 65. Under the same assumption of Theorem 63, the neces-
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sary and suﬁcient condition that f(x) defined by (18.04) belongs to the
‘class S’ 1is that (17.21) is true.

and

Theorem 66. Under the same assumption of Theorem 63, if f(x)
defined by (18.04) belong to the class S, then it does to the class S’.

19. We apply the result of the precedlng sections to the almost
periodic function.

‘Theorem 67. Let g(x) be real valued measurable funciton over (— o,
). Let g(x) be the B,-almost periodic function®. Let us assume that
the condition (K,) is satisfied. Then the mecessary condition Jor the
generalized Hilbert transform §,(x) to be B,-almost periodic is that the
condition (K,) is satisfied for a’—the constant term of g,(x). If the
associated Fourier series with g(x) 1is

(1901) g(x) ~ 3 a, e'*n”
then '
(19.02) g.(x) ~ a’+ 3’ (—1i sign 2,) a, €2,

where the prime means that the summation does not contain the constant
term.

Lemma 67,. Under the same assumption of Theorem 67, we have
(19.03) O, =0, A,=—2, (®=12,...)

Proof of Lemma 67,. If we observe that g(x) is of real valued
then (19.03) is obtained easily.

Lemma 67.. Let g(x) be the B,-almost periodic function. Let wus
assume that the condition (K,) is satisﬁed Then we have

(cy) ' 0—llm——-/‘ g(t) dt=0

Proof of Lemma 67,., From (K,) we have

(19.04) hm— {s“(u+s)—s*’(u~e)} du=0,
and

1 ¢ N sin® et
19.05) L _f {sg(u—l—e)—sg(u—s)}du—\/; _fm o) 2 at

If we apply the theorem of Bochner-Hardy-Wiener[ 3, p. 307 we get (c,).

*  We mean the almost periodic function in the sense of Besicovitch [2]
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Proof of Theorem 67. In the first, from Lemmas 67 ., 67,, the Fourier
series of g(x) can be written as in (19.01). Next let us assume that g,(x)
be B,-almost periodic. Then we get '

o " in? et
(19.06) —— 1 f {s{’(u—{—s)——sf’(u——e)}du_jz_ _rl; 5, (t) e S e gy
and
(19.07) hm— U Bt o) —Fo(u—e)} du= é le_ "G.(t) e dt.
&0

Therefore by (1) of Theorem 49,
(19.08) llm ——f 9,(t) e *** dt=(—1 sign 2) hm _“f g(t) o it dt,

if 2=0.
and if we put

(19.09) al= hm — gl(t) dt,

T >0

then (19.02) is obtained. In the last 1f we apply Lemma 67, to (19.09)
we get : :

im_1_ (150 —§u— =1
o ame ) (u+e)—sf(u—e)} du—A/z_ﬂag.

Here from the Parseval theorem of almost periodic fuhction, we get im-
mediately

(19.11) hm-———f 15, P dt=] a? P+ 3 |a. |?

(19.10)

=|a’|? —l—hm———f | g(®) |? dt,

and that

(19.12) st(u+e)—si(—e) | du

e>0

—-[a"[z—{—llm—i}-— [s"(u—l—s)—s"(u——s) |? du.

From (19.12) and (K,) we get

(19.13)

—s/(u—e) P du=|a’|®.

&->0
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Substituting (19.10) to (19.13) we wet
(19.14) 1im_4_1_- 82w +¢) —§7(u— e} —v2r o |2 du=0.

e>0 4re
Applying (ii) of Theorem 49 to (19.14) and using (X;) and Lemma 52, we
obtain (K;). Thus we have proved Theorem 67 completely.

Theorem 68. Let g(x) be real valued measurable funetion over (— oo,
).” Let g(x) be the B.,-almost periodic function. Let us assume that
(K,) ts satisfied. Then the sufficient condition for the generalized Hilbert
transform g,(x) to be By-almost periodic is that the condition (K,) is
satisfied. If the associated Fourier series of g(x) be

(19.01) ‘ g(x) ~ 3" a, e**n”
then . : |
(19.02) 9:(x) ~ a?+3’(—1 sign ,) ¢**»". '

Proof of Theorem 68. Since g(x) is B,-almost periodic, for any given
positive number ¢>0, there exist a trigonometrical polynomial — the
Bochner-Fejér polynomial of order » — such that (c.f. S. Besicovitch [2]),

: . 1 T 9 2 <7 .‘
(19.15). | lim £ |9@®) —o% () | dt<e,
where |
(19.16) 0%, (¥) =0%(x)=3' dZ a, e+, dZ,=dE,
or ,
(19.16)’ g+ o (@) = 2/(1 +|_”~ll_>. . .(1_ 1wl ) a, ¢,
. (52 /92,”-,191;) 7, - m,
and

An= = B; + Y2 Bot e+ - ABp
"Ny ne i n,

Then we put .
19.17) : o%(x)=2"(—1sign 1,) dZ a, €**»”
and we denote by s°(w) and s°(u) the Fourier-Wiener transform of

o%(x) and &G%(x) respectively. If we observe (ii) of Theorem 49, (K,) and
Lemma 52, we get also

(19.14) lim —1 f “[{8%(u ) —57(—e)} — 427 a? | du=0

>0 471'5

Then from (i) of Theorem 49, and (19.14) we get immediately
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(19.18) hm——fl{sf(u—l—e)—s{’(u—s)} {s° (u—l—e)—s (u—e)}— J%a”xe(u)lzdu

«>0

__111?_4_— [{sg(u—l—e)—sg(u—e)} {s°(u+e)—s"(u—e)}|* du
Thus we have from (19.18) and Lemma 49,
(19.19) hm—-— f |5,(t) —5%(t)—as |* di

—llm— f | 9()—o%(2) | dt
Therefore we have

(19.20) | hm— f |G.(8) —{a7+35(0)}[*dt<e.

Thus the B;-almost periodicity of g,(x) is proved. The remaining part is
obvious.

Combining Theorems 67 and 68 we get

Theorem 69. Let g(x) be B.,-almost periodic and let us assume that
the condition (K,) is satisfied. Then the mnecessary and sufficient condi-
tion for f,(x)=g(x)+19,(x) to be also B,-almost periodic is that the condi-
tion (K,) is satisfied. If we write by (19.01) the associated Fourier series
of 9(x), then that of f,(x) is as follows

(19.21) fi(x) ~ia?4-2 Z a, e'*n”®,

If we assume that the ordmary Hllbert transform g(x) of a given
function g(x) exists for a.e. ®. Then by repeating the same argument,
we get. '

Theorem 70. Let g(x) be real wvalued measurable function over
(—o0, o). Let g(x) be Bs-almost periodic and let us assume that (Ky)
18 satisfied. Let us suppose that its ordinary Hilbert transform g(x)
exist for a.e. x. Then the necessary and sufficient condition for g(x) to
be By,-almost periodic and

(19.22) ao_hm—f g(t) dt=0

18 that the condition (K,) is satisfied. If we 'represent the associated
Fourier series of g(x) as follows

(19.01) g(x) ~ X' a, e'*n”
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the_n , : _
- (19.23) g(x) ~ 3'(—1sign 4,) a, €“»®

Theorem. 71. Under the same assumption of Theorem 7(-),, the neces-
sary and sufficient condition for f(x)=g(x)+1g(x) to be B,-almost periodic
and

(19.24) co_ymﬁ; f £(t) d=0

8 that the condztzon (K,) is satisfied.
We will end.this chapter adding some remarks.

Remark 2. Let g(x) be B;-almost periodic. In‘Lemma 67,, we proved
that if (X)) is satisfied then

: T
(e  a=lim f g(t) dt=0

Conversely, if we assume that (c;) is satisfied, then (K,) is deduced. Because
g(x) is B,-almost periodic and therefore belongs to the class S’. By
Bochner’s representation theorem of the positive definite function, we can
write (c.f. [3, 32]),

(19.25) @*() ————ZL f e dA(u),

-

where A(u) is a monotone increasing function of bounded variation over
(— 0. o) and ’

(19.26) A(u)—A('—u)zi.i‘.z?‘zi_a [1s0+e—sw—9) [ do |

—U

(19.27) A, 0)— A2, —0)=]a, [
In particular
(19.28) 11m—~— f ()~ A(—w)} du=]a "

If we observe that 4 _
s(—u+e)—8(—u—e)=s(u-+e)—s(u—e¢)

| then
. 1 s
1”1+n(}§£ {A(u)—A(—n)} du

d>0 &0

. . 1 ] 1 &
=lim lim — | du— [ |s?(v+4¢)—s(v—e) [P dv
[ h e [
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—1lim lim L "(1—_’;_) | s°(v+¢) —so(v—e) |* do’

>0 >0
€ 0

>Tim-2 c] s'(v+e)—s'(v—e) |2 dw.

e>0 g
"~ .Thus we get from (c,)

(K,) hm—zl— [s”(u—l—e) s"(u—-e)lzdu 0.

Therefore our assumption (K,) does not loss of generahty If we need
the general case, then (K)) is replaced by

(K, lim - f | {s°(u+e) —s"(u—e)} — J2na0|2du 0

We omit in details.

-Remark 3. Let g(x) be B.-almost periodic. Let associated Fourier
series of g(x) be

(19.01) | 9(x) ~ 3 a, e'*n®
Let us also assume that
(19.29) . glb. |4,—2,|>0

Agms 1,<<0
or _
(19.30) A,=—log (|n|+1), n=-—1,—2,---
then we get
(19.31) . - D) |a, et < oo,

in<0

If we assume that % (x) is the Bochner-Fejér polynomial of order p and
that _

(19.32) az=1 f "B(t) dt=—2i Sd? a, e*n,

t+1 1, <0
Then under our assumptlon (19.31), the condition (K;) is equivalent to
(c2) lim |a?—ag |=0.

proo

Because by Minkowski’s inequality, we have

N 2
(19.33) —Z—Ia"—a;’,|<%f Lim, L [ 98 ‘“‘sds—\/_g_a” du

B> «/271- s+1
+2 f -

B g - 2
l.i o5(s) “tusde— /T a2l du
i Jz,r s+i \/2 ’
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_I_é_f jllm 1 g(s)_o—B(S) ~ius dszdu
e B->oo J T s+1

- =I+1,41;, say.

Then |
(19.34) L=| S dfa,enL f “ler =1t du
A, +e<0 e
<L Ae(>|a, e ])’=o0(), >0,
2n<()
and .
19.35 o <B (Tle@=—aB) [ 4
( ,) _ - f 148 _ y
B 2
== 11m——f ]g(s)—oB(s)l ds.
e Too 2T
Therefore

li‘mlczl,”——a,‘;léIl-}—As(Zlane*n])2
and tending ¢ to 0 vggwget (c;) from (K,). Repeating the same argument
from (c;) we get (K).

Remark 4. In Theorem 2, the existence of Hilbert transform for
any feL was proved by N. Lusin, Privaloff and Plessner (c.f. [30]).
The real variable proof was given by A.S.Besicovitch [40] (c.f. also E.C.
Titchmarch [45]). As for Fourier series the weak type (1,1) of conjugate
function was proved by ‘A Kolmogoroﬁ:' [44].

Remark 5. In Theorem 28, we find that the additional condition
(11:10) is required. Therefore we should "correct the two theorems.
These are Theorem 8 of [21, IV] and Theorem 16 of [21, V]. And thus
we change the proofs of Theorems 33 and 34. '

Remark 6. In chapter 5, Theorems 57,58,65 and 66 shall be improved.
These are treated in the next paper.

Remark 7. After the preperation of this paper, the author knew
the paper of M.Cotlar [42] concerning with the maximal theorem of
"Hilbert transform in E"”. We learned this from Mr. Y.M.Chen. Author
thanks to him. '
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