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W. Orlicz and Z. Birnbaum proved in [7] , that an Orlicz space $L_{\Phi}(G)$

is finite if and only if the function $\Phi$ satisfies the following condition: for
some $\gamma>0$ and $t_{0}>0,$ $\Phi(2t)\leqq\gamma\Phi(t)$ for every $t\geqq t_{0}$ . (In case of mes $(G)$

$=+\infty,$ $\Phi(2t)\leqq\gamma\Phi(t)$ for all $t\geqq 0.$ )
This fact was generalized for arbitrary monotone complete modulars

on non-atomic space by I. Amemiya in [1], that is, suppose that $R$ is a
universally continuous semi-ordered linear space and has no atomic element,
then every monotone complete finite modular on $R$ is semi-upper bounded.

T. Shimogaki showed in [8] a new simple proof of this Amemiya’s
Theorem. In this paper we investigate the properties of the conjugate
modular of a semi-upper bounded modular, i.e. the semi-lower bounded
modular. Throughout this paper we use the terminologies and notations
used in [5].

In gl we give corollaries of Amemiya’s Theorem and a theorem relate
to Amemiya’s Theorem. In \S 2 we investigate the relations between a
modular or the modular norms and semi-lower bounded modular. In \S 3 we
express the properties of a semi-upper and semi-lower bounded modular.

\S 1. Let $R$ be a universally continuous semi-ordered linear space
and $m$ be a modular on $R^{1)}$ . A modular $m$ is said to be ”finite”, if
$ m(x)<+\infty$ for every $x\in R$ . A modular $m$ is said to be ” monotone complete“,
if for $0\leqq a_{\lambda}\uparrow_{\lambda\in\Lambda},$

$\sup_{\lambda\in}m(a_{\lambda})<+\infty$ there exists $a\in R$ for which $a_{\lambda}\uparrow_{\lambda\in\Lambda}a$ .
And a modular $m$ is said to be ” semi-upper bounded “, if for every $\epsilon>0$

there exists $\gamma=\gamma(\epsilon)>0$ such that $ m(x)\geqq\epsilon$ implies $m(2x)\leqq\gamma m(x)$ .
In [1] I. Amemiya proved:

Theorem 1.1. Suppose that $R$ has no atomic element, then every
monotone complete, finite modular on $R$ is semi-upper bounded.

We say a modular $m$ on $R$ to be ” domestic”, if for any $a\in\{a:m(a)$

$<+\infty,$ $a\in R$} there exists $\xi=\xi(a)>1$ such that $ m(\xi a)<+\infty$ . On $R$ , we
define the two functionals $||a||,$ $|||a|||(a\in R)$ as follows:

1) For the definition of the modular see H. Nakano [5].
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11 $a||=\inf_{\epsilon>0}\frac{1+m(\xi a)}{\xi},$ $|||a\backslash |||=\inf_{m(\xi a)\leqq 1}\frac{1}{|\xi|}$ .

Then it is easily seen that both 11 $a||$ and lli $a|||$ are norms on $R$ and satisfy
always 111 $a|||\leqq||a||\leqq 2|||a|||$ for all $a\in R$ (cf. [6]). The norms 11 $a||$ and
111 $a|||$ are called the first norm and the second (or modular) norm by $m$

respectively.
Remark 1.1. (i) If a modular $m$ on $R$ is finite, then $m$ is domestic;

(ii) if $m$ is domestic, then $\inf_{0\neq x\in R}m(\frac{x}{|||x|||})=1$ ; (iii) $\inf_{0\neq x\in R}m(\frac{x}{|||x|||})>0$

implies $|||\cdot|||$ is continuous; (iv) if $|||$ . lli is continuons, then $m$ is finite,
when $R$ has no atomio element.

Because, $\backslash (i)$ is trivial. (iii) and (iv) is well known2). Therefore we

have only to prove (ii). If $m(\frac{x}{|||x|||})<1$ for some $x\in R$ , there exists

$\epsilon>0$ by domesticness such that

$ 1<m((1+\epsilon)\frac{x}{|||x|||})<+\infty$ .

Thus there exists $\gamma<1$ , for which $m(\gamma(1+\epsilon)\frac{x}{|||x|[[})=1$ . Therefore we

obtain $\gamma(1+\epsilon)=\Vert|\gamma(1+\epsilon)\frac{x}{|||x|||}\Vert|=1$ , and hence $m(\frac{x}{|||x|||})=1$ , contradicting

$m(\frac{a}{|||x|||})<1$ .

A modular norm 111 $x|||(x\in R)$ is said to be ”finitely monotone” (cf.
[9]), if for every $\epsilon>0$ , there exists an integer $n_{0}=n_{0}(\epsilon)$ such that
$x=\oplus\sum_{i=1}^{n}x_{i},$ $|||x|||\leqq 1,$ $|||x_{f}|||\geqq\epsilon(i=1,2, \cdots, n)$ implies $n\leqq n_{0}$ . A modular

$m$ is said to be ” uniformly finite”, if

$\sup_{m(x)\leqq 1}m(\xi x)<+\infty$ for all $\xi\geqq 0$ .

In [9, Theorems 1.1, 2.1 and 2.2], it is shown that if a norm on $R$

is uniformly monotone8), then it is finitely monotone; if a modular $m$ is
uniformly finite, then the modular norm by $m$ is finitely monotone; if the
modular norm by $m$ is finitely monotone, then $m$ is uniformly finite when
$R$ has no atomic element; if a norm is finitely monotone, then the every
norms which is equivalent to it is also finitely monotone.

2) T. And\^o obtained (iii). For (iv) see [1].
3) A norm on $R$ is said to be uniformly monotone, if for any $\epsilon>0$ there exists $\delta=\delta(e)>0$

such that $a\cap b=0,$ $||a||=1,$ $||b||\geqq e$ implies $||a+b||\geqq 1+\delta$ (cf. [4]).
$B$
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$\overline{R}^{m}$ denotes the totality of all universally continuous linear functionals4)

on $R$ which are bounded under the modular norm $|||\cdot|||$ by $m$ . On $\overline{R}^{m}$ the
conjugate modular of $m(x)$ is defined as follows

$\overline{m}(\overline{a})=\sup_{x\in R}\{\overline{a}(x)-m(x)\}$ for every $\overline{a}\in\overline{R}^{m}$

$\overline{m}(\overline{a})$ satisfies the modular conditions and is monotone complete (cf. [5, \S 38]).
It has been known that if $R$ is $semi- regular^{5)}$ , the first norm by the

conjugate modular $\overline{m}$ is the conjugate norm of the second norm by $m$ and
the 8econd norm by the conjugate modular $\overline{m}$ is the conjugate norm of
the first norm by $m$ .

Lemma 1 ([5, Theorem 39.4]). If $R$ is semi-regular, then $R$ is
isometric6) to $a$ . complete semi-normal manifold of the conjugate space
$\overline{\overline{R}^{m}}$ of $\overline{R}^{m}$ by the correspondence

$R\ni a\rightarrow a^{R^{-m}}\in\overline{\overline{R}^{m}}$ , $a^{\overline{R}^{m}}(\overline{x})=\overline{x}(a)$ for $\overline{x}\in\overline{R}^{m}$ .
Corollary 1 of Theorem 1.1. Suppose that $R$ has no atomic element.

If the modular norm $|||\cdot|||$ by $m$ is finitely monotone, then $m$ is semi-
upper bounded.

Proof. Since $m$ is uniformly finite by assumption, $\overline{\overline{m}}$ is uniformly
finite on $\overline{\overline{R}^{m}}$ ([5, Theorems 48.4, 48.5]). Since $\overline{\overline{m}}$ is monotone complete
and $\overline{\overline{R}^{m}}$ has no atomic element, we obtain by Theorem $1.1m=$ is semi-upper
bounded on $\overline{\overline{R}^{m}}$ . Therefore $m$ is semi-upper bounded by Lemma 1. Q.E.D.

Remark 1.2. If a modular $m$ is semi-upper bounded and semi-
simple, then $m$ is uniformly finite.

Because, if for some $\gamma>1$ we have $m(2x)\leqq\gamma m(x)$ for every $x$ such
that $m(x)\geqq 1$ , then we have obviously $m(2^{\nu}x)\leqq\gamma^{\nu}m(x)(\nu=1,2, \cdots)$ for
every $x$ such that $m(x)\geqq 1$ . Since $m$ is finite by assumption, we obtain

$\sup_{m(x)\leqq 1}m,(2^{\nu}x)\leqq\sup_{|\leqq m(x)\ovalbox{\tt\small REJECT}}m(2^{\nu}x)$

$\leqq\sup_{1\leqq m(x)\leqq 3}\gamma^{\nu}m(x)\leqq 2\gamma^{\nu}<+\infty(\nu=1,2, \cdots)$ .

4) A linear functional $L$ on $R$ is said to be universally continuous, if for any
$a_{\lambda}\downarrow\lambda\in\Lambda 0$ we have $inf|L(a_{\lambda})|=0$ .

5) $R$ is said $tobe\lambda\iota\wedge$ semi-regular, if $\overline{a}[p]=0$ for all $\overline{a}\in\overline{R}^{m}$ implies $p=0$ . For $p\in R,$ $[p]$

denotes the projection operator defined by $[p]x=U(x\sim\nu\nu=1\infty|p|)$ for all $x\geqq 0$ .
6) A modulared space $R$ with a modular $m$ is said to be isometric to a modulared

space $\hat{R}$ with a modular $\hat{m}$ by a correspondence $R\ni a\rightarrow a^{\hat{R}}\in\hat{R}$ , if $R$ is isomorphic to $\hat{R}$ by
this correspondence and $m(a)=\hat{m}(a^{\hat{R}})$ for all $a\in R$ .
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Thus, $m$ is uniformly finite.
A norm on $R$ is said to be ” monotone”, if $0\leqq a<b$ implies Il $a||<||b||$ .

A norm on $R$ is said to be ” universally monotone complete”, if for
$0\leqq a_{\lambda}\uparrow_{\lambda\in A}$ , $\sup_{\lambda\in}||a_{\lambda}||<+\infty$ there exists $a\in R$ such that $a_{\lambda}\uparrow\lambda\in Aa$ ; if

$A=\{1,2, \cdots\}$ we say to be ” monotone complete”.

Corollary 2 of Theorem 1.1. If the modular norm $|||\cdot|||$ by $m$ is
monotone and monotone complete, then $m$ is uniformly $simple^{7)}$ , and $m$

is semi-upper bounded when $R$ has no atomic element.

Proof. (i) If the modular norm $|||$ . Ill by $m$ is monotone, than $|||\cdot|||$

is continuous.
Because, if $\inf_{0\neq x\in R}m(\frac{x}{|||x|||})<1,$ there exists $a\in R$ such that Hl $a|||=1$

and $m(a)<1$ , therefore we can suppose $[a]<1$ without difficulty, and hence
there exists $0<b\in R$ such that $a\cap b=0$ , $m(a+b)\leqq 1$ . Thus we obtain
obviously $|||a+b|||=|||a|||=1$ , which is contradicting $|||$ . lli is monotone.

Consequently we obtain $\inf_{0\neq x\in R}(\frac{x}{|||x|||})=1$ , and hence $|||$ . Ill is continuous by

Remark 1.1.
(ii) If the modular norm $|||$ . Ill by $m$ is monotone, then $m$ is simple8).

Because, if $m$ is not simple there exists $a\in R$ . such that $0<a$ and
$m(a)=0$ , then $m(a+b)=m(b)\leqq 1$ for any $0<b,$ $a\cap b=0$ and 1H $b|||=1$ .
Thus we have Ili $a+b|||=|||b|||=1$ , contradicting assumption that $|||\cdot|||$ is
monotone. Thus $m$ is simple.

If the modular norm $|||\cdot|||$ by $m$ is continuous and monotone complete,
then $m$ is monotone complete (cf. [5, Theorems 30.20, 40.7]). Thus we
obtain $m$ is monotone complete, simple and $|||\cdot|||$ is continuous by (i) and
(ii). Therefore $m$ is uniformly simple (cf. [11, Theorem 2.1]).

If $R$ has no atomic element, then uniformly simple modular $m$ is
uniformly finite ([10, Theorem 1.2]), and hence we obtain $m$ is semi-upper
bounded by Corollary 1 of Theorem 1.1. Q.E.D.

Theorem 1.2. Suppose that $\dot{R}$ has no atomic element. Each of the
following conditions implies that $m$ is semi-upper bounded

(1): $\inf_{0\neq x\in R}m(\frac{\alpha}{|||x|||}x)>0$ for some $0<\alpha<1$ ,

7) A modular $m$ is said to be uniformly simple, if $\inf_{m(x)\geq 1}m(fx)>0$ for all $\xi>0$ , that is,

$\lim_{\nu\rightarrow\infty}m(a_{\nu})=0$ implies $\lim_{\nu\rightarrow\infty}|||a_{\nu}|||=0$.
8) A modular $m$ on $R$ is said to be simple, if $m(a)=0$ implies $a=0$ .
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(2): $\sup_{0\neq x\in R}m(\frac{\alpha}{|||x|||}x)>0$ for some $\alpha\geqq 1$ .

Proof. (1): We prove first that the condition:

$\inf_{0\neq x\in R}m(\frac{1-\epsilon}{|||x|||}x)=\xi>0$ for some $1>\epsilon>0$

implies the condition:

$0\neq x\in n\overline{\overline{m}}(\frac{1-\epsilon^{J}}{|||\overline{x}-|||}x=)>0$ for some $\epsilon>\epsilon^{\prime}>0$ .

For $x=\in\overline{\overline{R}^{m}}$ with $|||\overline{\overline{x}}$ lli $=1$ there exists $x_{\lambda}\in R(\lambda\in\Lambda)$ such that $x_{\lambda}\uparrow_{\lambda\in\Lambda}x=$

(cf. [5, Theorem 5.34]), because $R$ is a complete semi-normal manifold of
$\overline{\overline{R}^{m}}$ by Lemma 1. Since the modular norm is semi-continuous and reflexive
(cf. [3]), we obtain 111 $ x_{\lambda}|||\uparrow\lambda\in\Lambda$ II1 $x=|||$ , and hence we have

$(1-\frac{\epsilon}{2})$ III $x_{\lambda}|||\uparrow_{\lambda\in\Lambda}(1-\frac{\epsilon}{2})$ .

Consequently there exists $\lambda_{0}$ such that $(1-\frac{\epsilon}{2})$ III $ x_{\lambda}|||\geqq 1-\epsilon$ for $\lambda\geqq\lambda_{0}$ .
If $\inf_{0\neq x\in R}m(\frac{1-\epsilon}{|||x|||}x)=\xi>0$ , we obtain easily $ m(x)\geqq\xi$ for every $x$ such that

111 $ x|||\geqq 1-\epsilon$ , thus we have obviously $ m((1-\frac{\epsilon}{2})x_{\lambda})\geqq\xi$ for $\lambda\geqq\lambda_{0}$ .

Therefore we have $\inf_{0\neq\overline{x}\in\overline{\overline{R}^{m}}}\leftrightarrow\overline{\overline{m}}(\frac{1-\frac{\epsilon}{2}}{|||_{X}^{=}|||}x=)>0$ .

Therefore, we obtain Ill $a=|||\backslash (\overline{\overline{a}}\in\overline{\overline{R}^{m}})$ is continuous by Remark 1.1, and,
since $\overline{\overline{R}^{m}}$ is non-atomic, $m=$ is finite on $\overline{\overline{R}^{m}}$ by Remark 1.1. As $\overline{\overline{m}}$ is mono-
tone complete, we obtain iii is semi-upper bounded by Theorem 1.1, and
hence we obtain finally that $m$ is semi-upper bounded by Lemma 1.

The proof for the condition (2) is similar. Q.E.D.

\S 2. Let $R$ be a modulared semi-ordered linear space with a modular
$m$ . and be semi-regular. In this section, our aim is to consider the relations
between properties of a modular or the modular norms and its semi-lower
boundedness.

A modular $m$ on $R$ is said to be ” semi-lower bouncled” if for every
$\epsilon>0$ , there exist $ 1<\alpha=\alpha(\epsilon)<\gamma(\epsilon)=\gamma$ such that $ m(x)\geqq\epsilon$ iffiplies $m(\alpha x)\geqq\gamma m(x)$ .

Theorem 2.1. If a modular $m$ is semi-upper bounded and semi-
simple, then the conjugate modular $\overline{m}$ of $m$ is semi-lower bounded.
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Proof. Since the case $\overline{m}(\overline{a})=+\infty$ is trivial, we can assume that

$\overline{m}(\overline{a})<+\infty$ . For every $\epsilon>0$ there exists $\gamma=\gamma(\epsilon)>0$ such that $m(x)\geqq\frac{\epsilon}{3}$

implies $m(2x)\leqq\gamma m(x)$ , by assumption. Then we have definition

$\overline{m}(\frac{\gamma}{2}\overline{a})=\sup_{x\in R}\{\frac{\gamma}{2}\overline{a}(2x)-m(2x)\}\geqq$
$\sup_{\text{\’{e}},\eta(x)\geq-3}\{\frac{\gamma}{2}\overline{a}(2x)-m(2x)\}$

$\geqq\gamma\sup_{m(x)\geq\frac{}{3}}\{\overline{a}(x)-m(x)\}$

$(\overline{a}\in\overline{R}^{m})$ .

For every $0\leqq\overline{a}\in\overline{R}^{?n}$ such that $\epsilon\leqq\overline{m}(\overline{a})<+\infty$ , we have to consider the case

$\overline{m}(\overline{a})=\sup_{m(x)<\frac{}{3}}\{\overline{a}(x)-m(x)\}$

.

For any $\delta>0$ there $exis\ddagger sx\in R$ such that $m(x)<\frac{\epsilon}{3}$ and $\overline{a}(x)-m(x)\geqq\overline{m}(\overline{a})-\delta$ .
Since $m$ is uniformly finite by Remark 1.2 there exists $\beta=\beta(a)>1$ such

that $m(\beta x)=\frac{\epsilon}{3}$ .

Therefore we obtain $\overline{a}(\beta x)-m(\beta x)\geqq\overline{a}(x)-m(x)-m(\beta x)\geqq\overline{m}(\overline{a})-\delta-\frac{\epsilon}{3}$ .
Thus we have

$\gamma\sup_{m(x)\geq\frac{e}{3}}\{\overline{a}(x)-m(x)\}\geqq r(\overline{m}(\overline{a})-\frac{\epsilon}{3})\geqq\gamma’(\overline{m}(\overline{a})-\frac{\overline{m}(\overline{a})}{3})=\frac{2}{3}\gamma_{\overline{7}}n(\overline{a})$
,

and hence $\overline{m}(\frac{\gamma}{2}\overline{a})\geqq\frac{2}{3}\gamma\overline{m}(\overline{a})$ for every $\overline{a}$ such that $\overline{m}(\overline{a})\geqq\epsilon$ . Q.E.D.

Theorem 2.2. If a modular $m$ is semi-lower bounded, then $\overline{\overline{m}}$ is
semi-upper bounded.

Proof. If for every $\epsilon>0$ there exist $\gamma>\alpha>1$ such that $ m(x)\geqq\epsilon$

implies $m(\alpha x)\geqq\gamma m(x)$ , then we have by definition

$\overline{m}(\frac{\gamma}{\alpha}\overline{a})=\sup_{x\in R}\{\frac{\gamma}{\alpha}\overline{a}(\alpha x)-m(\alpha x)\}\leqq\gamma\sup_{\epsilon m(x)}\{\overline{a}(x)-m(x)\}+\sup_{m(x)<e}\{\gamma\overline{a}(x)-m(\alpha x)\}$

$\leqq\gamma\overline{\prime m}(\overline{a})+\gamma\sup_{m(x)<\epsilon}\{\overline{\alpha}(x)\}\leqq^{I}\gamma\overline{m}(\overline{a})+\gamma\sup_{m(x)<\text{{\it \’{e}}}}\{\overline{m}(\overline{a})+m(x)\}$

$\leqq\gamma_{\overline{7}}n(\overline{a})+\gamma(\overline{m}(\overline{a})+\epsilon)=\gamma\{2\overline{m}(\overline{a})+\epsilon\}$ ,

since by definition I $\overline{a}(x)|\leqq\overline{q\gamma\iota}(\overline{a})+m(x)$ for $\overline{a}\in\overline{R}^{m},$

$ x\in R\bullet$

Thus we have $\overline{m}(\frac{\gamma}{\alpha}\overline{a})\leqq 3\gamma\overline{m}(\overline{a})$ for every $\overline{a}$ such that $\overline{m}(\overline{a})\geqq\epsilon$ . Q.E.D.
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The ” conjugate” of ” uniformly finite” is ” uniformly increasing”,

i.e. $\lim_{\epsilon’\infty}\inf_{m(x)\geq 1}\frac{m(\xi x)}{\xi}=+\infty$ (cf. [5, \S 48]).

Theorem 2.3. If a modular $m$ is semi-lower bounded, then $m$ is
uniformly increasing.

Proof. By assumption there exist $ 1<\alpha<\gamma$ such that $m(x)\geqq 1$ implies
$m(\alpha^{\nu}x)\geqq\gamma^{\nu}m(x)(\nu=1,2, \cdots)$ .
Therefore we obtain $\frac{1}{\alpha^{\nu}}m(\alpha^{\nu}x)\geqq(\frac{\gamma}{\alpha})^{\nu}m(x)(\nu=1,2, \cdots)$ for every $x$ such

that $m(x)\geqq 1$ , and consequently $m$ is uniformly increasing. Q.E.D.
Since the ” conjugate” of ”finitely monotone” is ”finitely flat”, i.e.

for every $\gamma>0$ there exists $\epsilon=\epsilon(\gamma)$ such that

$x=\oplus\sum_{i=1}^{n}x_{i},$ $||x||\geqq 1$ , il $x_{i}||\leqq\epsilon(i=1,2, \cdots, n)$

implies $n\geqq\frac{\gamma}{\epsilon}$ Il $x||$ (cf. [9, \S 1]), we have immediately by Corollary 1 of

Theorem i.l, Theorem’ 2.1 and Lemma 1 the following
Theorem 2.4. Suppose that $R$ has no atomic element. If the modular

norm $|||\cdot|||$ by $m$ is finitely flat, then $m$ is semi-lower bounded.
Remark 2.1. If a modular $m$ is uniformly increasing, then the

modular norm is finitely flat. The converse of this is valid, if we suppose
that $R$ has no atomic element (cf. [9]).

A norm $\downarrow|\cdot||$ on $R$ is said to be “flat”, if for any $a\neq 0,$ $a\cap b=0$ we. have

$\lim_{\epsilon+0}\frac{||a+\xi b||-||a||}{\xi}=0$ .

The ” conjugate” of ” uniformly simple” is ” uniformly monotone“,

i.e. . $\lim_{\xi+0}\frac{1}{\xi}\sup_{m(x)\leqq 1}m(\xi x)=0$ (cf. [5, \S 48]).

Theorem 2.5. If the first norm $||$ . Il by $m$ is flat and the first norm
IF $||$ by conjugate modular $\overline{m}$ of $m$ is continuous, then $m$ is uniformly
monotone, and $mr,s$ semi-lower bounded when $R$ has no atomic element.

Proof. Using Banach’s theorem (cf. [6, \S 44]) and reflexivity of the
norm $||$ . Il, we can prove that flatness of $||\cdot||$ implies monotony of $|||^{-}|||$ .
Thus we have $\overline{m}$ is simple by (ii) in proof of Corollary 2 of Theorem 1.1.
Since $||\overline{a}||$ is $conti4uous$ by assumption and $\overline{m}$ is monotone complete, we
obtain $\overline{m}$ is uniformly simple ([11, Theorem 2.1]). Thus $m$ is uniformly
monotone.
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On the other hand, if $m$ is uniformly monotone then $m$ is uniformly
increasing when $R$ has no atomic element ([10, Theorem 1.3]). By Theorem
2.4 and Remark 2.1 the proof is completed. Q.E.D.

A manifold $K$ of $R$ is said to be ” equi-continuous”, if for any
$\overline{a}_{\nu}\downarrow_{\nu=1}^{\infty}0,$

$\overline{a}_{\nu}\in\overline{R}^{m}$ and $\epsilon>0$ there exists $\nu_{0}$ for which we have $\overline{a}_{\nu_{0}}(x)\leqq\epsilon$ for
all $x\in K$.

Theorem 2.6. If a modular $m$ is semi-lower bounded, then a mani-
fold $K=\{x:m(x)\leqq 1, x\in R\}$ is equi-continuous. The converse of this is
true, if we suppose that $R$ has no atomic element.

Proof. If $m$ is semi-lower bounded, $m$ is uniformly increasing by
Theorem 2.3. Then we have $\overline{m}$ is uniformly finite, and hence the conjugate
norm of the modular norm by $m$ is continuous by Remark 1.1. There-
fore we obtain for any $\epsilon>0$ and $\overline{R}^{m}\ni\overline{a}_{\nu}\downarrow_{\nu=1}^{\infty}0$ there exists $\nu_{0}$ such that
$\overline{a}_{\nu_{0}}(x)\leqq\epsilon$ for all $x\in K$ ( $[5$ , Theorem 31.12]). That is, $K$ is equi-continuous.

Conversely we suppose that $R$ has no atomic element and the manifold
$K=\{x:m(x)\leqq 1\}$ is equi-continuous. Since we have obviously by definition
$\{x:|||x|||\leqq 1\}=\{x:m(x)\leqq 1\}$ , the first norm by $\overline{m}$ is continuous ([5, Theorem
31.12]). Thus we obtain $\overline{m}$ is monotone complete and finite, because $\overline{R}^{m}$

is non-atomic by assumption. Thus we have $\overline{m}$ is semi-upper bounded by
Theorem 1.1, therefore we obtain by Theorem 2.1 and Lemma 1 $m$ is
semi-lower bounded. Q.E.D.

A manifold $K$ of $R$ is said to be ” weakly bounded”, if
$\sup_{x\in K}|\overline{a}(x)|<+\infty$ for all $\overline{a}\in\overline{R}^{m}$ .

Theorem 2.7. If a modular $m$ is semi-lower bounded, then every
weakly bounded manifold is equi-continuous. The converse of this is
truth, if we suppose that $R$ has no atomic element.

Proof. If $m$ is semi-lower bounded, the conjugate norm of a norm by
$m$ is continuous. Consequently every manifold $K$ for which $\sup_{x\in}||x||<+\infty$

is equi-continuous ([5, Theorem 33.10]). Therefore we have $\sup_{x\in}|\overline{a}(x)|$

$\leqq\sup_{x\in K}|||\overline{a}|||$
. li $x||$ for all $\overline{a}\in\overline{R}^{m}$ , and hence $K$ is weakly bounded by definition.

Conversely we suppose that $R$ has no atomic element. Since the norm
$|||$ . Ill is reflexive (cf. [3]), if a manifold $K$ is weakly bounded, then $K$ is
norm bounded, i.e.

$\sup_{\in}$ Hl $ x|||<+\infty$ ([5, Theorem 32.6]), and equi-continuous

by assumption. Then the first norm by the conjugate modular $\overline{m}$ of $m$

is continuous ([5, Theorem 33.10]. Thus we have obviously our conclusion
by the method applied to Theorem 2.6. Q.E.D.
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Theorem Z.7. Suppose that $R$ has no atomic element. Each of the
following conditions implies $m$ is semi-lower bounded

(1) $\inf_{0\neq x\in R}\frac{1}{\gamma}7n(\frac{\gamma}{|||x|||}x)\geqq 1+\delta$ for some $\gamma,$
$\delta>0$ ,

(2) $\sup_{0\neq x\in R}m(\frac{x}{||x||})<1$ .

Proof. (1) For every $\overline{a}\in\overline{R}^{m}$ with $||\overline{a}||=1$ , we have
$(1+\delta)\overline{a}(\xi a)-m(\xi a)\leqq\xi(1+\delta)-\xi(1+\delta)=0$

for every $a\in R,$ $|||a|||=1$ and $\xi\geqq\gamma$ .
Thus we have $\overline{m}((1+\delta)\overline{a})=\sup_{|||x|||\leqq\gamma}\{(1+\delta)\overline{a}(x)-m(x)\}\leqq\gamma(1+\delta)$ .
Suppose that $\overline{R}^{m}\ni\overline{a}_{\nu}\downarrow_{\nu=1}^{\infty}0$ and $\inf_{\nu\geq 1}11\overline{a}_{\nu}||\pm\alpha>0$ ,

then there exist $\epsilon_{0}>0,$
$\nu_{0}$ such that

$\Vert\frac{\overline{a}_{\nu}}{\alpha-\epsilon_{0}}\Vert\leqq 1+\delta$ for every $\nu\geqq\nu_{0}$ .

Since we have $1+\overline{m}(\frac{\overline{a}_{\nu}}{\alpha-\epsilon_{0}})\geqq\Vert\frac{\overline{a}_{\nu}}{\alpha-\epsilon_{0}}\Vert\geqq\frac{\alpha}{\alpha-\epsilon_{0}}$ for every $\nu\geqq\nu_{0}$ .

we obtain $1+\lim_{v\rightarrow\infty}\overline{m}(\frac{\overline{a}_{\nu}}{\alpha-\epsilon_{0}})\geqq\frac{\alpha}{\alpha-\epsilon_{0}}>1$ .

Since $\lim_{\nu\rightarrow\infty}\overline{m}(\frac{\overline{a}_{\nu}}{\alpha-\epsilon_{0}})=0$ , this is a contradiction.

Therefore $||\overline{a}||$ is continuous. Thus we have our conclusion by the method
applied to Theorem 2.6.

The proof for the condition (2) is similar. Q.E.D.

\S 3. Let $R$ be a modulared semi-ordered linear space with a semi-simple
modular $m$ . In this section, we express the properties of a semi-upper
and semi-lower bounded modulars.

If a modular $m$ is semi-upper and semi-lower bounded, then $m$ is said
to be ” semi-bounded “.

Lemma 3.1. Suppose that $R$ has no atomic element. If the norms
by a modular $m$ have the property:

$\inf_{0\neq x\in R}\frac{||x||}{|||x|||}=\gamma$ , where $\gamma>1$ is a fixed constant, then $m$ is semi-

bounded.
Proof. We have $m$ is uniformly finite and uniformly increasing by

the assumption (cf. [10, Theorem 1.1]). Therefore we obtain our conclu-
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sion by- Corollary 1 of Theorem 1.1 and Theorem 2.4. Q.E.D.

Lemma 3.2. If a modular $m$ is semi-bounded, then the norms by
$m$ have the property:

$\inf_{0\neq x\in R}\frac{||x||}{|||x|||}=\gamma$ for some $\gamma>1$ .

Proof. Since $m$ is uniformly finite and uniformly increasing.by Remark
1.2 and Theorem 2.3, we have our conclusion (cf. [10, Theorem 1.4]).

Q.E.D.
From these Lemmata, we obtain the following theorem
Theorem 3.1. Suppose that $R$ has no atomic element. A modular

is semi-bounded, if and only if the norms by the modular have the
property:

$\inf_{0\neq x\in R}\frac{||x||}{|||x|||}=\gamma$ for some $\gamma>1$ .

In the case when a modular $m$ on $R$ is of unique spectra (cf. [5,
\S 54]), semi-boundedness of $m$ implies boundedness9) of $m$ . In fact we have

Theorem 3.2. If a modular $m$ on $R$ is of unique $spect\gamma a^{10)}$ , then
semi-boundedness of $m$ is equivalent to boundedness of $m$ .

Proof. If $m$ is semi-bounded, then $m$ is uniformly finite and uniformly
increasing by Remark 1.2 and Theorem 2.3. Therefore $m$ has the upper
$exponenl^{10)}\rho_{u}$ and the lower $exponent^{1)}\rho_{l}$ such that $ 1\leqq\rho_{l}\leqq\rho_{u}<+\infty$ (cf.
[5, Theorems 54.8, 54.10]). Thus $m$ is bounded ([5, Theorems 54.4, 54.5]).

Q.E.D.
A modular $m$ of unique spectra is uniformly $convex^{1)}$ (or uniformly

$even^{10)})$ if and only if $ 1<\rho_{l}\leqq\rho_{u}<+\infty$ for the upper exponent $\rho_{u}$ and the
lower exponent $\rho_{t}$ (cf. [5, \S 50, \S 54]). Therefore we obtain also:

Theorem 3.3. A modular $m$ of unique spectra is uniformly convex
(or uniformly even), if and only if $m$ is semi-bounded.

Theorem 3.4. Suppose that $R$ has no atomic element. If a modular
$m$ is uniformly convex (or uniformly even), then $m$ is semi-bounded.

Proof. Let $m$ be uniformly convex. Then $m$ is uniformly simple
([5, Theorem 50.1]). Since $R$ is non-atomic by assumption, $m$ and $\overline{m}$ are
uniformly finite ([10, Theorem 1.2]), and hence $m$ and $\overline{m}$ are semi-upper

9) A modular $m$ on $R$ is said to be upper bounded, if there exist $\omega,$
$\gamma>1$ , for which we

have $m(\omega x)\leqq\gamma m(x)$ for all $x\in R$ ; and $m$ is said to be lower bounded. if there exist $r>\omega>1$

such that $m(\omega x)\geqq rm(x)$ for all $x\in R$ ; if a modular $m$ is upper and lower bounded, then $m$

is said to be bounded.
10) For the definitionv see [5].
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bounded by Corollary 1 of Theorem 1.1. Thus $m$ is semi-bounded.
Let $m$ be uniformly even. Then $m$ is uniformly finite and uniformly

monotone ([5, Theorems 51.1, 51.2]), and hence $m$ is semi-bounded by
Corollary 1 of Theorem 1.1 and Theorem 2.4. Q.E.D.

(Mathematical Institute, Hokkaid\^o University)
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