ON SEMI-LOWER BOUNDED MODULARS

By

Masahumi SASAKI

W. Orlicz and Z. Birnbaum proved in [7] that an Orlicz space $L_{\phi}(G)$ is finite if and only if the function Φ satisfies the following condition: for some $\gamma > 0$ and $t_0 > 0$, $\Phi(2t) \leq \gamma \Phi(t)$ for every $t \geq t_0$. (In case of mes(G) $= +\infty$, $\Phi(2t) \leq \gamma \Phi(t)$ for all $t \geq 0$.)

This fact was generalized for arbitrary monotone complete modulars on non-atomic space by I. Amemiya in [1], that is, suppose that R is a universally continuous semi-ordered linear space and has no atomic element, then every monotone complete finite modular on R is semi-upper bounded.

T. Shimogaki showed in [8] a new simple proof of this Amemiya's Theorem. In this paper we investigate the properties of the conjugate modular of a semi-upper bounded modular, i.e. the semi-lower bounded modular. Throughout this paper we use the terminologies and notations used in [5].

In $\S1$ we give corollaries of Amemiya's Theorem and a theorem relate to Amemiya's Theorem. In $\S2$ we investigate the relations between a modular or the modular norms and semi-lower bounded modular. In \$3 we express the properties of a semi-upper and semi-lower bounded modular.

§1. Let R be a universally continuous semi-ordered linear space and m be a modular on R^{1} . A modular m is said to be "finite", if $m(x) < +\infty$ for every $x \in R$. A modular m is said to be "monotone complete", if for $0 \leq a_{\lambda} \uparrow_{\lambda \in A}$, $\sup_{\lambda \in A} m(a_{\lambda}) < +\infty$ there exists $a \in R$ for which $a_{\lambda} \uparrow_{\lambda \in A} a$. And a modular m is said to be "semi-upper bounded", if for every $\varepsilon > 0$ there exists $\gamma = \gamma(\varepsilon) > 0$ such that $m(x) \geq \varepsilon$ implies $m(2x) \leq \gamma m(x)$.

In [1] I. Amemiya proved:

Theorem 1.1. Suppose that R has no atomic element, then every monotone complete, finite modular on R is semi-upper bounded.

We say a modular m on R to be "domestic", if for any $a \in \{a:m(a) < +\infty, a \in R\}$ there exists $\xi = \xi(a) > 1$ such that $m(\xi a) < +\infty$. On R, we define the two functionals ||a||, |||a||| $(a \in R)$ as follows:

¹⁾ For the definition of the modular see H. Nakano [5].

$$||a|| = \inf_{\xi>0} \frac{1+m(\xi a)}{\xi}, |||a||| = \inf_{m(\xi a) \leq 1} \frac{1}{|\xi|}.$$

Then it is easily seen that both ||a|| and |||a||| are norms on R and satisfy always $|||a||| \le ||a|| \le 2 |||a|||$ for all $a \in R$ (cf. [6]). The norms ||a|| and |||a||| are called the *first norm* and the *second* (or *modular*) norm by m respectively.

Remark 1.1. (i) If a modular m on R is finite, then m is domestic; (ii) if m is domestic, then $\inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) = 1$; (iii) $\inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) > 0$ implies $||| \cdot |||$ is continuous; (iv) if $||| \cdot |||$ is continuons, then m is finite, when R has no atomic element.

Because, (i) is trivial. (iii) and (iv) is well known²⁾. Therefore we have only to prove (ii). If $m\left(\frac{x}{|||x|||}\right) < 1$ for some $x \in R$, there exists $\varepsilon > 0$ by domesticness such that

$$1 < m\left((1+\varepsilon)\frac{x}{|||x|||}\right) < +\infty.$$

Thus there exists $\gamma < 1$, for which $m\left(\gamma(1+\varepsilon) \frac{x}{|||x|||}\right) = 1$. Therefore we obtain $\gamma(1+\varepsilon) = \left\| \gamma(1+\varepsilon) \frac{x}{|||x|||} \right\| = 1$, and hence $m\left(\frac{x}{|||x|||}\right) = 1$, contradicting $m\left(\frac{a}{|||x|||}\right) < 1$.

A modular norm $|||x||| (x \in R)$ is said to be "finitely monotone" (cf. [9]), if for every $\varepsilon > 0$, there exists an integer $n_0 = n_0(\varepsilon)$ such that $x = \bigoplus \sum_{i=1}^n x_i$, $|||x||| \le 1$, $|||x_i||| \ge \varepsilon$ $(i=1,2,\cdots,n)$ implies $n \le n_0$. A modular *m* is said to be "uniformly finite", if

$$\sup_{n(x)\leq 1}m(\xi x)\!<\!+\infty \quad ext{for all} \quad \xi\!\geq\!0.$$

In [9, Theorems 1.1, 2.1 and 2.2], it is shown that if a norm on R is uniformly monotone³⁾, then it is finitely monotone; if a modular m is uniformly finite, then the modular norm by m is finitely monotone; if the modular norm by m is finitely monotone, then m is uniformly finite when R has no atomic element; if a norm is finitely monotone, then the every norms which is equivalent to it is also finitely monotone.

²⁾ T. Andô obtained (iii). For (iv) see [1].

³⁾ A norm on R is said to be uniformly monotone, if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that $a \frown b = 0$, ||a|| = 1, $||b|| \ge \varepsilon$ implies $||a+b|| \ge 1+\delta$ (cf. [4]).

M. Sasaki

 \overline{R}^m denotes the totality of all universally continuous linear functionals⁴⁾ on R which are bounded under the modular norm $||| \cdot |||$ by m. On \overline{R}^m the conjugate modular of m(x) is defined as follows

$$\overline{m}(\overline{a}) = \sup_{x \in R} \{\overline{a}(x) - m(x)\}$$
 for every $\overline{a} \in \overline{R}^m$.

 $\overline{m}(\overline{a})$ satisfies the modular conditions and is monotone complete (cf. [5, §38]).

It has been known that if R is semi-regular⁵, the first norm by the conjugate modular \overline{m} is the conjugate norm of the second norm by m and the second norm by the conjugate modular \overline{m} is the conjugate norm of the first norm by m.

Lemma 1 ([5, Theorem 39.4]). If R is semi-regular, then R is isometric⁶⁾ to a complete semi-normal manifold of the conjugate space $\overline{R}^{\overline{m}}$ of $\overline{R}^{\overline{m}}$ by the correspondence

$$R \ni a \to a^{\overline{R}^m} \in \overline{R}^m, \quad a^{\overline{R}^m}(\overline{x}) = \overline{x}(a) \quad for \quad \overline{x} \in \overline{R}^m.$$

Corollary 1 of Theorem 1.1. Suppose that R has no atomic element. If the modular norm $||| \cdot |||$ by m is finitely monotone, then m is semiupper bounded.

Proof. Since m is uniformly finite by assumption, \overline{m} is uniformly finite on $\overline{R}^{\overline{m}}$ ([5, Theorems 48.4, 48.5]). Since \overline{m} is monotone complete and $\overline{R}^{\overline{m}}$ has no atomic element, we obtain by Theorem 1.1 \overline{m} is semi-upper bounded on $\overline{R}^{\overline{m}}$. Therefore m is semi-upper bounded by Lemma 1. Q.E.D.

Remark 1.2. If a modular m is semi-upper bounded and semisimple, then m is uniformly finite.

Because, if for some $\gamma > 1$ we have $m(2x) \leq \gamma m(x)$ for every x such that $m(x) \geq 1$, then we have obviously $m(2^{\nu}x) \leq \gamma^{\nu}m(x)$ ($\nu = 1, 2, \cdots$) for every x such that $m(x) \geq 1$. Since m is finite by assumption, we obtain

$$\sup_{m(x)\leq 1} m(2^{
u}x) \leq \sup_{|\leq m(x)\leq 2} m(2^{
u}x) \leq \sup_{|\leq m(x)\leq 2} \gamma^{
u}m(x) \leq 2\gamma^{
u} < +\infty \quad (
u = 1, 2, \cdots).$$

4) A linear functional L on R is said to be universally continuous, if for any $a_{\lambda}\downarrow_{\lambda\in A}0$ we have $\inf |L(a_{\lambda})|=0$.

5) R is said to be semi-regular, if $\overline{a}[p]=0$ for all $\overline{a}\in \overline{R}^m$ implies p=0. For $p\in R$, [p] denotes the projection operator defined by $[p]x = \bigcup_{i=1}^{\infty} (x \frown \nu \mid p \mid)$ for all $x \ge 0$.

6) A modulared space R with a modular \hat{m} is said to be isometric to a modulared space \hat{R} with a modular \hat{m} by a correspondence $R \ni a \rightarrow a^{\hat{R}} \in \hat{R}$, if R is isomorphic to \hat{R} by this correspondence and $m(a) = \hat{m}(a^{\hat{R}})$ for all $a \in R$.

Thus, m is uniformly finite.

A norm on R is said to be "monotone", if $0 \leq a < b$ implies ||a|| < ||b||. A norm on R is said to be "universally monotone complete", if for $0 \leq a_{\lambda} \uparrow_{\lambda \in A}$, $\sup_{\lambda \in A} ||a_{\lambda}|| < +\infty$ there exists $a \in R$ such that $a_{\lambda} \uparrow_{\lambda \in A} a$; if $A = \{1, 2, \dots\}$ we say to be "monotone complete".

Corollary 2 of Theorem 1.1. If the modular norm $||| \cdot |||$ by m is monotone and monotone complete, then m is uniformly simple⁷, and m is semi-upper bounded when R has no atomic element.

Proof. (i) If the modular norm $||| \cdot |||$ by *m* is monotone, than $||| \cdot |||$ is continuous.

Because, if $\inf_{0\neq x\in R} m\left(\frac{x}{|||x|||}\right) < 1$, there exists $a \in R$ such that |||a|||=1and m(a) < 1, therefore we can suppose [a] < 1 without difficulty, and hence there exists $0 < b \in R$ such that $a \frown b = 0$, $m(a+b) \le 1$. Thus we obtain obviously |||a+b|||=|||a|||=1, which is contradicting $|||\cdot|||$ is monotone. Consequently we obtain $\inf_{0\neq x\in R}\left(\frac{x}{|||x|||}\right) = 1$, and hence $|||\cdot|||$ is continuous by Remark 1.1.

(ii) If the modular norm $||| \cdot |||$ by *m* is monotone, then *m* is simple⁸.

Because, if *m* is not simple there exists $a \in R$ such that 0 < a and m(a)=0, then $m(a+b)=m(b) \leq 1$ for any 0 < b, $a \frown b=0$ and |||b|||=1. Thus we have |||a+b|||=|||b|||=1, contradicting assumption that $|||\cdot|||$ is monotone. Thus *m* is simple.

If the modular norm $||| \cdot |||$ by m is continuous and monotone complete, then m is monotone complete (cf. [5, Theorems 30.20, 40.7]). Thus we obtain m is monotone complete, simple and $||| \cdot |||$ is continuous by (i) and (ii). Therefore m is uniformly simple (cf. [11, Theorem 2.1]).

If R has no atomic element, then uniformly simple modular m is uniformly finite ([10, Theorem 1.2]), and hence we obtain m is semi-upper bounded by Corollary 1 of Theorem 1.1. Q.E.D.

Theorem 1.2. Suppose that R has no atomic element. Each of the following conditions implies that m is semi-upper bounded

(1):
$$\inf_{0\neq x\in R} m\left(\frac{\alpha}{|||x|||}x\right) > 0 \qquad for some \ 0 < \alpha < 1,$$

7) A modular *m* is said to be uniformly simple, if $\inf_{m(x)\geq 1} m(\xi x) > 0$ for all $\xi > 0$, that is, $\lim_{x \to \infty} m(a_{\nu}) = 0$ implies $\lim_{x \to \infty} ||| = 0$.

8) A modular m on R is said to be simple, if m(a)=0 implies a=0.

(2):
$$\sup_{0\neq x\in R} m\left(\frac{\alpha}{|||x|||}x\right) > 0 \qquad for some \ \alpha \geq 1.$$

Proof. (1): We prove first that the condition:

$$\inf_{0\neq x\in R} m\left(\frac{1-\varepsilon}{|||x|||}x\right) = \xi > 0 \qquad \text{for some } 1 > \varepsilon > 0$$

implies the condition:

$$\inf_{\substack{\to \bar{\overline{x}} \in \overline{R^m}}} \overline{\overline{m}} \Big(\frac{1 - \varepsilon'}{||| \, \overline{\overline{x}} \, |||} \, \overline{\overline{x}} \Big) \! > \! 0 \qquad \qquad \text{for some } \varepsilon \! > \! \varepsilon' \! > \! 0.$$

For $\overline{x} \in \overline{R^m}$ with $|||\overline{x}|||=1$ there exists $x_{\lambda} \in R$ ($\lambda \in \Lambda$) such that $x_{\lambda} \uparrow_{\lambda \in \Lambda} \overline{x}$ (cf. [5, Theorem 5.34]), because R is a complete semi-normal manifold of $\overline{R^m}$ by Lemma 1. Since the modular norm is semi-continuous and reflexive (cf. [3]), we obtain $|||x_{\lambda}||| \uparrow_{\lambda \in \Lambda} |||\overline{x}|||$, and hence we have

$$\left(1-\frac{\varepsilon}{2}\right)|||x_{\lambda}|||\uparrow_{\lambda\in\Lambda}\left(1-\frac{\varepsilon}{2}\right).$$

Consequently there exists λ_0 such that $\left(1-\frac{\varepsilon}{2}\right)|||x_{\lambda}||| \ge 1-\varepsilon$ for $\lambda \ge \lambda_0$. If $\inf_{0 \neq x \in \mathbb{R}} m\left(\frac{1-\varepsilon}{|||x|||}x\right) = \varepsilon > 0$, we obtain easily $m(x) \ge \varepsilon$ for every x such that $|||x||| \ge 1-\varepsilon$, thus we have obviously $m\left(\left(1-\frac{\varepsilon}{2}\right)x_{\lambda}\right) \ge \varepsilon$ for $\lambda \ge \lambda_0$. $(1-\frac{\varepsilon}{2})$

Therefore we have

Therefore, we obtain $||| \overline{a} ||| (\overline{a} \in \overline{R^m})$ is continuous by Remark 1.1, and, since $\overline{\overline{R^m}}$ is non-atomic, $\overline{\overline{m}}$ is finite on $\overline{\overline{R^m}}$ by Remark 1.1. As $\overline{\overline{m}}$ is monotone complete, we obtain $\overline{\overline{m}}$ is semi-upper bounded by Theorem 1.1, and hence we obtain finally that m is semi-upper bounded by Lemma 1.

The proof for the condition (2) is similar. Q.E.D.

§2. Let R be a modulared semi-ordered linear space with a modular m and be semi-regular. In this section, our aim is to consider the relations between properties of a modular or the modular norms and its semi-lower boundedness.

A modular *m* on *R* is said to be "semi-lower bounded" if for every $\varepsilon > 0$, there exist $1 < \alpha = \alpha(\varepsilon) < \gamma(\varepsilon) = \gamma$ such that $m(x) \ge \varepsilon$ implies $m(\alpha x) \ge \gamma m(x)$.

Theorem 2.1. If a modular m is semi-upper bounded and semisimple, then the conjugate modular \overline{m} of m is semi-lower bounded.

118

Proof. Since the case $\overline{m}(\overline{a}) = +\infty$ is trivial, we can assume that $\overline{m}(\overline{a}) < +\infty$. For every $\varepsilon > 0$ there exists $\gamma = \gamma(\varepsilon) > 0$ such that $m(x) \ge \frac{\varepsilon}{3}$ implies $m(2x) \le \gamma m(x)$, by assumption. Then we have definition

$$\overline{m}\left(\frac{\gamma}{2}\overline{a}\right) = \sup_{x \in \mathbb{R}} \left\{ \frac{\gamma}{2}\overline{a}(2x) - m(2x) \right\} \ge \sup_{m(x) \ge \frac{\epsilon}{3}} \left\{ \frac{\gamma}{2}\overline{a}(2x) - m(2x) \right\}$$
$$\ge \gamma \sup_{m(x) \ge \frac{\epsilon}{3}} \left\{ \overline{a}(x) - m(x) \right\} \quad (\overline{a} \in \overline{R}^m).$$

For every $0 \leq \overline{a} \in \overline{R}^m$ such that $\varepsilon \leq \overline{m}(\overline{a}) < +\infty$, we have to consider the case $\overline{m}(\overline{a}) = \sup \{\overline{a}(x) - m(x)\}.$

$$n(a) = \sup_{m(x) < \frac{\epsilon}{3}} \{a(x) - m(x)\}$$

For any $\delta > 0$ there exists $x \in R$ such that $m(x) < \frac{\varepsilon}{3}$ and $\overline{a}(x) - m(x) \ge \overline{m}(\overline{a}) - \delta$. Since *m* is uniformly finite by Remark 1.2 there exists $\beta = \beta(a) > 1$ such that $m(\beta x) = \frac{\varepsilon}{3}$.

Therefore we obtain $\overline{a}(\beta x) - m(\beta x) \ge \overline{a}(x) - m(x) - m(\beta x) \ge \overline{m}(\overline{a}) - \delta - \frac{\varepsilon}{3}$. Thus we have

$$\gamma \sup_{m(x) \geq \frac{\epsilon}{3}} \{\overline{a}(x) - m(x)\} \geq \gamma \left(\overline{m}(\overline{a}) - \frac{\varepsilon}{3}\right) \geq \gamma \left(\overline{m}(\overline{a}) - \frac{\overline{m}(\overline{a})}{3}\right) = \frac{2}{3} \gamma \overline{m}(\overline{a}),$$

and hence $\overline{m}\left(\frac{\gamma}{2}\overline{a}\right) \ge \frac{2}{3}\gamma \overline{m}(\overline{a})$ for every \overline{a} such that $\overline{m}(\overline{a}) \ge \varepsilon$. Q.E.D.

Theorem 2.2. If a modular m is semi-lower bounded, then \overline{m} is semi-upper bounded.

Proof. If for every $\varepsilon > 0$ there exist $\gamma > \alpha > 1$ such that $m(x) \ge \varepsilon$ implies $m(\alpha x) \ge \gamma m(x)$, then we have by definition

$$\begin{split} \overline{m}\left(\frac{\gamma}{\alpha}\overline{a}\right) &= \sup_{x \in R} \left\{ \frac{\gamma}{\alpha}\overline{a}(\alpha x) - m(\alpha x) \right\} \leq \gamma \sup_{m(x) \geq \epsilon} \left\{ \overline{a}(x) - m(x) \right\} + \sup_{m(x) < \epsilon} \left\{ \gamma \overline{a}(x) - m(\alpha x) \right\} \\ &\leq \gamma \overline{m}(\overline{a}) + \gamma \sup_{m(x) < \epsilon} \left\{ \overline{a}(x) \right\} \leq \gamma \overline{m}(\overline{a}) + \gamma \sup_{m(x) < \epsilon} \left\{ \overline{m}(\overline{a}) + m(x) \right\} \\ &\leq \gamma \overline{m}(\overline{a}) + \gamma(\overline{m}(\overline{a}) + \epsilon) = \gamma \{ 2 \overline{m}(\overline{a}) + \epsilon \}, \end{split}$$

since by definition $|\bar{a}(x)| \leq \overline{m}(\bar{a}) + m(x)$ for $\bar{a} \in \bar{R}^m$, $x \in R$. Thus we have $\overline{m}\left(\frac{\gamma}{\alpha}\bar{a}\right) \leq 3\gamma \overline{m}(\bar{a})$ for every \bar{a} such that $\overline{m}(\bar{a}) \geq \varepsilon$. Q.E.D. The "conjugate" of "uniformly finite" is "uniformly increasing", i.e. $\lim_{\xi \to \infty} \inf_{m(x) \ge 1} \frac{m(\xi x)}{\xi} = +\infty \qquad (cf. [5, \S48]).$

Theorem 2.3. If a modular m is semi-lower bounded, then m is uniformly increasing.

Proof. By assumption there exist $1 < \alpha < \gamma$ such that $m(x) \ge 1$ implies $m(\alpha^{\nu}x) \ge \gamma^{\nu}m(x)$ ($\nu = 1, 2, \cdots$).

Therefore we obtain $\frac{1}{\alpha^{\nu}}m(\alpha^{\nu}x) \ge \left(\frac{\gamma}{\alpha}\right)^{\nu}m(x)$ ($\nu = 1, 2, \cdots$) for every x such that $m(x) \ge 1$, and consequently m is uniformly increasing. Q.E.D.

Since the "conjugate" of "finitely monotone" is "finitely flat", i.e. for every $\gamma > 0$ there exists $\varepsilon = \varepsilon(\gamma)$ such that

$$x = \bigoplus \sum_{i=1}^{n} x_i, ||x|| \ge 1, ||x_i|| \le \varepsilon \ (i = 1, 2, \dots, n)$$

implies $n \ge \frac{\gamma}{\varepsilon} ||x||$ (cf. [9, §1]), we have immediately by Corollary 1 of Theorem 1.1, Theorem 2.1 and Lemma 1 the following

Theorem 2.4. Suppose that R has no atomic element. If the modular norm $||| \cdot |||$ by m is finitely flat, then m is semi-lower bounded.

Remark 2.1. If a modular m is uniformly increasing, then the modular norm is finitely flat. The converse of this is valid, if we suppose that R has no atomic element (cf. [9]).

A norm $\|\cdot\|$ on R is said to be "flat", if for any $a \neq 0$, $a \frown b = 0$ we have

$$\lim_{\varepsilon\to 0} \frac{||a+\varepsilon b||-||a||}{\varepsilon} = 0.$$

The "conjugate" of "uniformly simple" is "uniformly monotone", i.e. $\lim_{\xi \to 0} \frac{1}{\xi} \sup_{m(x) \leq 1} m(\xi x) = 0 \text{ (cf. } [5, \S 48]).$

Theorem 2.5. If the first norm $||\cdot||$ by m is flat and the first norm $||\overline{\cdot}||$ by conjugate modular \overline{m} of m is continuous, then m is uniformly monotone, and m is semi-lower bounded when R has no atomic element.

Proof. Using Banach's theorem (cf. [6, §44]) and reflexivity of the norm $|| \cdot ||$, we can prove that flatness of $|| \cdot ||$ implies monotony of $||| \cdot |||$. Thus we have \overline{m} is simple by (ii) in proof of Corollary 2 of Theorem 1.1. Since $||\overline{a}||$ is continuous by assumption and \overline{m} is monotone complete, we obtain \overline{m} is uniformly simple ([11, Theorem 2.1]). Thus m is uniformly monotone.

On the other hand, if m is uniformly monotone then m is uniformly increasing when R has no atomic element ([10, Theorem 1.3]). By Theorem 2.4 and Remark 2.1 the proof is completed. Q.E.D.

A manifold K of R is said to be "equi-continuous", if for any $\overline{a}_{\nu}\downarrow_{\nu=1}^{\infty} 0$, $\overline{a}_{\nu}\in \overline{R}^{m}$ and $\varepsilon > 0$ there exists ν_{0} for which we have $\overline{a}_{\nu_{0}}(x) \leq \varepsilon$ for all $x \in K$.

Theorem 2.6. If a modular m is semi-lower bounded, then a manifold $K = \{x: m(x) \leq 1, x \in R\}$ is equi-continuous. The converse of this is true, if we suppose that R has no atomic element.

Proof. If m is semi-lower bounded, m is uniformly increasing by Theorem 2.3. Then we have \overline{m} is uniformly finite, and hence the conjugate norm of the modular norm by m is continuous by Remark 1.1. Therefore we obtain for any $\varepsilon > 0$ and $\overline{R}^m \ni \overline{a}_{\nu} \downarrow_{\nu=1}^{\infty} 0$ there exists ν_0 such that $\overline{a}_{\nu_0}(x) \leq \varepsilon$ for all $x \in K$ ([5, Theorem 31.12]). That is, K is equi-continuous. Conversely we suppose that R has no atomic element and the manifold $K = \{x : m(x) \leq 1\}$ is equi-continuous. Since we have obviously by definition $\{x : ||| x ||| \leq 1\} = \{x : m(x) \leq 1\}$, the first norm by \overline{m} is continuous ([5, Theorem 31.12]). Thus we obtain \overline{m} is monotone complete and finite, because \overline{R}^m is non-atomic by assumption. Thus we have \overline{m} is semi-upper bounded by Theorem 1.1, therefore we obtain by Theorem 2.1 and Lemma 1 m is semi-lower bounded. Q.E.D.

A manifold K of R is said to be "weakly bounded", if $\sup_{x\in \mathcal{K}} |\,\overline{a}(x)\,| < +\infty \quad \text{for all } \overline{a} \in \overline{R}^m.$

Theorem 2.7. If a modular m is semi-lower bounded, then every weakly bounded manifold is equi-continuous. The converse of this is truth, if we suppose that R has no atomic element.

Proof. If *m* is semi-lower bounded, the conjugate norm of a norm by *m* is continuous. Consequently every manifold *K* for which $\sup_{x \in K} ||x|| < +\infty$ is equi-continuous ([5, Theorem 33.10]). Therefore we have $\sup_{x \in K} |\overline{a}(x)| \leq \sup_{x \in K} ||\overline{a}|| \cdot ||x||$ for all $\overline{a} \in \overline{R}^m$, and hence *K* is weakly bounded by definition.

Conversely we suppose that R has no atomic element. Since the norm $||| \cdot |||$ is reflexive (cf. [3]), if a manifold K is weakly bounded, then K is norm bounded, i.e. $\sup_{x \in K} |||x||| < +\infty$ ([5, Theorem 32.6]), and equi-continuous by assumption. Then the first norm by the conjugate modular \overline{m} of m is continuous ([5, Theorem 33.10]. Thus we have obviously our conclusion by the method applied to Theorem 2.6. Q.E.D.

M. Sasaki

Theorem 2.7. Suppose that R has no atomic element. Each of the following conditions implies m is semi-lower bounded

(1) $\inf_{0 \neq x \in \mathbb{R}} \frac{1}{\gamma} m\left(\frac{\gamma}{|||x|||}x\right) \ge 1 + \delta \quad \text{for some } \gamma, \delta > 0,$ (2) $\sup_{0 \neq x \in \mathbb{R}} m\left(\frac{x}{|||x|||}\right) < 1.$

$$(2) \qquad \qquad \sup_{0 \neq x \in R} m\left(\frac{x}{||x||}\right) < 1$$

Proof. (1) For every
$$\overline{a} \in \mathbb{R}^m$$
 with $|| \overline{a} || = 1$, we have
 $(1+\delta)\overline{a}(\xi a) - m(\xi a) \leq \xi(1+\delta) - \xi(1+\delta) = 0$

for every $a \in R$, ||| a ||| = 1 and $\xi \ge \gamma$. Thus we have $\overline{m}((1+\delta)\overline{a}) = \sup_{\||x\|| \le \gamma} \{(1+\delta)\overline{a}(x) - m(x)\} \le \gamma(1+\delta)$. Suppose that $\overline{R}^m \ni \overline{a}_{\nu} \downarrow_{\nu=1}^{\infty} 0$ and $\inf_{\nu \ge 1} || \overline{a}_{\nu} || = \alpha > 0$, then there exist $\varepsilon_0 > 0$, ν_0 such that $\left\| \frac{\overline{a}_{\nu}}{2} \right\| \le 1+\delta$ for every $\nu \ge \nu_0$.

Since we have
$$1 + \overline{m} \left(\frac{\overline{a}_{\nu}}{\alpha - \varepsilon_0} \right) \ge \left\| \frac{\overline{a}_{\nu}}{\alpha - \varepsilon_0} \right\| \ge \frac{\alpha}{\alpha - \varepsilon_0}$$
 for every $\nu \ge \nu_0$.

we obtain $1 + \lim_{\nu \to \infty} \overline{m} \Big(\frac{\overline{a}_{\nu}}{\alpha - \varepsilon_0} \Big) \ge \frac{\alpha}{\alpha - \varepsilon_0} > 1.$

Since

$$\lim_{\nu\to\infty} \overline{m}\left(\frac{\bar{a}_{\nu}}{\alpha-\varepsilon_0}\right) = 0, \text{ this is a contradiction.}$$

Therefore $||\bar{\alpha}||$ is continuous. Thus we have our conclusion by the method applied to Theorem 2.6.

The proof for the condition (2) is similar. Q.E.D.

§3. Let R be a modulared semi-ordered linear space with a semi-simple modular m. In this section, we express the properties of a semi-upper and semi-lower bounded modulars.

If a modular m is semi-upper and semi-lower bounded, then m is said to be "semi-bounded".

Lemma 3.1. Suppose that R has no atomic element. If the norms by a modular m have the property:

 $\inf_{\substack{0\neq x\in \mathbb{R}}} \frac{||x||}{|||x|||} = \gamma, \text{ where } \gamma > 1 \text{ is a fixed constant, then } m \text{ is semi-bounded.}$

Proof. We have m is uniformly finite and uniformly increasing by the assumption (cf. [10, Theorem 1.1]). Therefore we obtain our conclu-

sion by Corollary 1 of Theorem 1.1 and Theorem 2.4. Q.E.D.

Lemma 3.2. If a modular m is semi-bounded, then the norms by m have the property:

$$\inf_{D \neq x \in R} \frac{||x||}{|||x|||} = \gamma \qquad for some \ \gamma > 1.$$

Proof. Since m is uniformly finite and uniformly increasing by Remark 1.2 and Theorem 2.3, we have our conclusion (cf. [10, Theorem 1.4]).

Q.E.D.

From these Lemmata, we obtain the following theorem

Theorem 3.1. Suppose that R has no atomic element. A modular is semi-bounded, if and only if the norms by the modular have the property:

$$\inf_{0 \neq x \in R} \frac{||x||}{|||x|||} = \gamma \qquad for some \ \gamma > 1.$$

In the case when a modular m on R is of unique spectra (cf. [5, $\S54$]), semi-boundedness of m implies boundedness⁹ of m. In fact we have

Theorem 3.2. If a modular m on R is of unique spectra¹⁰, then semi-boundedness of m is equivalent to boundedness of m.

Proof. If *m* is semi-bounded, then *m* is uniformly finite and uniformly increasing by Remark 1.2 and Theorem 2.3. Therefore *m* has the upper exponent¹⁰⁾ ρ_u and the lower exponent¹⁰⁾ ρ_i such that $1 \leq \rho_i \leq \rho_u < +\infty$ (cf. [5, Theorems 54.8, 54.10]). Thus *m* is bounded ([5, Theorems 54.4, 54.5]). Q.E.D.

A modular *m* of unique spectra is uniformly convex¹⁰ (or uniformly even¹⁰) if and only if $1 < \rho_l \leq \rho_u < +\infty$ for the upper exponent ρ_u and the lower exponent ρ_l (cf. [5, §50, §54]). Therefore we obtain also:

Theorem 3.3. A modular m of unique spectra is uniformly convex (or uniformly even), if and only if m is semi-bounded.

Theorem 3.4. Suppose that R has no atomic element. If a modular m is uniformly convex (or uniformly even), then m is semi-bounded.

Proof. Let m be uniformly convex. Then m is uniformly simple ([5, Theorem 50.1]). Since R is non-atomic by assumption, m and \overline{m} are uniformly finite ([10, Theorem 1.2]), and hence m and \overline{m} are semi-upper

⁹⁾ A modular m on R is said to be upper bounded, if there exist $\omega, \gamma > 1$, for which we have $m(\omega x) \leq \gamma m(x)$ for all $x \in R$; and m is said to be lower bounded. if there exist $\gamma > \omega > 1$ such that $m(\omega x) \geq \gamma m(x)$ for all $x \in R$; if a modular m is upper and lower bounded, then m is said to be bounded.

¹⁰⁾ For the definitions see [5].

bounded by Corollary 1 of Theorem 1.1. Thus m is semi-bounded.

Let m be uniformly even. Then m is uniformly finite and uniformly monotone ([5, Theorems 51.1, 51.2]), and hence m is semi-bounded by Corollary 1 of Theorem 1.1 and Theorem 2.4. Q.E.D.

(Mathematical Institute, Hokkaidô University)

References

- [1] I. AMEMIYA: A generalization of the theorem of Orlicz and Birnbaum, Jour. Fac. Sci. Hokkaidô. Univ. Ser. I, vol. 13, 60-64 (1956).
- [2] T. ANDÔ: On continuity of norms, Proc. Japan Acad. vol. 33, 429-434 (1957).
- [3] T. MORI, I. AMEMIYA and H. NAKANO: On the reflexivity of semi-continuous norms, Proc. Japan Acad. vol. 31, 684-685 (1955).
- [4] H. NAKANO: Stetige lineare Funktionale auf dem teilweisegeordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).
- [5] H. NAKANO: Modulared semi-ordered linear spaces, Tokyo (1950).
- [6] H. NAKANO: Topology and linear topological spaces, Tokyo (1951).
- [7] W. ORLICZ and Z. BIRNBAUM: Ueber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3, 1-67 (1931).
- [8] T. SHIMOGAKI: Note on Orlicz-Birnbaum-Amemiya's theorem, Proc. Japan Acad. vol. 33, 310-313 (1957).
- [9] T. SHIMOGAKI: On the norms by uniformly finite modulars, Proc. Japan Acad. vol. 33, 304-309 (1957).
- [10] T. SHIMOGAKI: On certain property of norms by modulars, Jour. Fac. Sci. Hokkaidô Univ. Ser. 1, 13, 201-213 (1957).
- [11] S. YAMAMURO: Monotone completeness of normed semi-ordered linear spaces, Paci. Jour. Math. vol. 7, 1715-1725 (1957).