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§ 1. Introduction

Let R be a modulared semi-ordered linear space with a modular mP.
We define the two norms on R by the formulas:

() o]} =ing 2F2ER
’ _ 1
(b) | lelii= inf -

The norms Hx”y and |||« ||| are called the first norm and the second norm
by m respectively.

R denotes the totality of all linear functionals which are bounded
under the norm ||/«]||. The associated modular 7% of m is defined on R by

the formula: ‘
(¢) (%) = sup {Z(x) —m(x)} for all HeR.
. TER .

The functional 7 satisfies all the modular conditions (cf. [2, §38]).
We know (cf. [3, §§80-83])

(d) m(a)= sup {Z(a) — #(ZT)} . for all acR,
zER ' .

and . |

(e) | {|= sup | #a) | for all acR.

m(x) =<1
The first and second norms satisfy always _ :
(f) '. el =izl =2||=|l - for all z¢R,
and a fortiori, they are equivalent (cf. [3, §83]). The first and second

norms by the associated modular #% on R are denoted by [|Z|] and []]%]||
respectlvely Then we know ([3, §83]), .

1) We use definitions, notation and terminology of [2,3].



Monotony and Flatness of the Norms by Modulars 97

(g)  ll@ll= sup |a(@)] and [l|@]i|= sup |&@)| for all ack.

One of the important' problems in the theory of modulared semi-
ordered linear spaces is to characterize the properties of the norms by
those of the modulars. In this paper we shall give such characterizations

for (uniform) monotony and (uniform) flatness® of the norms.

§2. Preliminaries

A norm ||z]| on a semi-ordered linear space S is said to be monotones’,
if a~b=0, ||al|=1, [|b||=e>0 implies

(h) | | ||a—l—b]|gl—|—5 for some 6=4(e, a, b)>0,
and is said to be flat, if a~b=0, ||a||=]|b||=1 implies
(i) ; qim Lletebll=1 g

e>0 )

A norm is said to be uniformly monotone, if in (h) 6 depends only on e,
and is said to be uniformly flat, if in (i) the convergence is uniform with
respect to both a and b. ~

A modular m is said to be sitmple, if

(i) m(a)=0 implies a=0,

and is said to be uniformly simple, if ‘ :

(k) ‘ -”irﬁf m(&x) >0 ‘ for all £>0.

llz]|[=1

m is said to be monotone®, if

(1) | \ lim %) o for all zeR,
‘ >0 5

and ‘is said to be uniformly monotone, if

(m) ~ AT A

We use frequently the following properties of modulars:
(n) m(éx) is a convex function of £=0,

(n") ﬂg(’i is‘a;n increasing function of £=0,

(o) a~b=0 implies m(a+b)=m(a)+m(),

2) For the definitions, see §2. i
'3) We may define monotony as follows: 0=a<b implies ||a || <]|[b]].
4) Do not confuse with the monotony of a norm.
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(p) 0<ame,,d implies supm(az)-m(a)

In the remamder of this section we state some known facts used
later.

Lemma A ([2, §31]). A morm on a semi-ordered linear space is
uniformly monotone, if and only if its associated norm is uniformly
Aat. A |

Lemma B ([3, §85]). A modular is uniformly simple, if and only
if its associated modular is uniformly monotone. ~

Lemma C ([3, §84]). A modular is monotome, if and only zf its
-associated modular ts simple.

Lemma D ([4]). If the norm by a simple, monotone completes’
modular is continuous,” the modular is unzformly stmple.
Lemma E ([3, §79]). If for fixed acR, a=0, =0
at < B+m(éa) for all £=0,
.then there exists GeR such that aa)=a and W@ =p. If in addition
B= selg {a&— »m(&a)}, then m(@)=4;.

§ 3. Monetony

In the sequel R denotes a modulared semi-ordered linear space the
dimension of which is greater than 2. )

In this section, we give conditions for the norms by modulars to be
(uniformly) monotone. We begin Wlth some elementary but important
lemmas concerning the norms by modulars.

Lemma 3.1.. (1) If m(a)<|ljalll, then |[||a]]|<1. (2) For acR,
m(a)<|l[a[l|=1, if and only if m(a)<l and m(fa)=+oco for all £>1.
B) If ma)<|l|alll=1 and a=a,+a, a,~a,=0, then Hajll=1 or
[l @2 ]l}=1. |

Proof. (1) and (2) are direct consequences of the definition (b).

(3) If [lja;|l]]<1 (¢=1,2), then by (b) :
m(Ea;) <1 (¢=1,2) for some &,>1,

hence by (0) m(&,a) =m(&,a;)+m(Egay) < + oo,
This is a contradiction, because of (2). Q.E.D.

5) A modular is said to be monotone complete, if sup m(a)<+oo, 0=a,lics implies
existence of U @:. A norm |- H is said to be contlnuous, 1f aul°°o implies hm [las|]=0.
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Lemma 3.2. (1) For any acR, sup ﬂ(gi"l =||a]], or &|lal|=14+m(5a)
£>0

for some &>0. (2) If acR @<k, |||@|l|=1 and @@)=1+m(a), then
llall=a(a). |
Proof.. (1) By the definition (a) and (n’), we have

sup m(a) =l all

€>0 &
If ' ‘ sup
. £>0

ﬁ%‘l>nau,

by the contmulty of the convex real functlon m({-‘a), there exists £,>0
such that

alj= 1)

&o
(2) Since
. ~ a
B A k),
a(a) a(a) _
by the definition (a) we have lla]|=<@(a). On the other hand, by (g)
a@=lleli-fil@lll=llell. Q.E.D.

Lemma 3.3. If m(éa)=¢l||al| for all £=0, then the ﬁrst norm is
of L'-type on [a]R®, t.e.

| e+yil=llzli+llyll Sfor all 0§w,y€[a]R-
Proof. From Lemma 3.2 it follows

sup ED. = |ja |

Since by (n’) for any peR,

| [ple]j+]@— [zo]all
< sup M(S[p]a) +sup ™EQ=[PDa)

£>0 £>0 &

=Segg————m(§ L=llall

we have

6) For acR, [a] denotes the projection operator deﬁned by [alx= Ul(oc/\v [a]) for all
x=0. ' ' ' ‘ ' '
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I [p]aHZSI;DM;BM - for all peR.
§>0 & X .

From this, we can conclude that for any orthogonal system {p,};.; and
for any real numbers {a,}:_;,

‘ m(&Zm[ﬁOJd)
»Ep»]aH=SUD — ’
) £>0 I3 :
consequently ]a“z > Jall.
It follows that |#|~|y|=0, x,yc[a]R implies [|z+y||=|z||+]||¥]|, and
in turn this is sufficient for the assertion. - Q.E.D.

As is well-known (cf. -[2, §42]), there exists the decomposition of R:
R=R,DR,, where R, (i=1,2) are mutually orthogonal normal manifolds
such that m is simple on R, and semi-singular” on R, - /

Theorem 3.1. In order that the first morm be monotone, it 18 neces-
sary and sufficient that one of the following conditions is satisfied:
(1) R,={0} i.e. m is simple, '

(2) m@)=<||z|| for all xR,
(8) O0<dim (R;)<+ o and ||z||<m(z)+1 for all x with (1—[w])R2:x:{0}

Proof. Necessity. Suppose that R,=={0}. Let 0<beR,, m(b)=0 and
a~b=0. If 1+m@)=|la|l,

lle+b||=1+m{a+b)= 1+m(a)——lla!l
contradlctlng monotony of the first norm. Thus by Lemma 3.2
m(a) < || || <m(a)+1.
If furthermore dim (R,)=+ oo, for any xc¢R there exists a famlly of

projectors [p;]:e+ such that [p,]t.c,[2] and (1—[p,]) R, ={0}.
From the above and (p) we obtain

m(x)=sup m([p;]%) = sup || [p.]e||=|| .
Sufficiency. Let a~b=0, b6>0. If |

sup M:“ a,+b ”

, >0
(in particular if (2) holds), by Lemma 3.3 we obtain
Ha+bll—llaI|+HbII>HaH

7) R is sald to be semi- smgular, if for any 0O<acR there exists 0<beR such that
b=a, m(b)=0. '
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If m(&(a+b))+1=¢,y||a+b]|| for some & >0, then the condition (1) implies
1+m(§,a) + m(§qb) =|la+bl|,
&o )
and the condition (3) implies :
(1—[a])R.={0} or (1—[b])R.={0},

namely acR, or beR,. In case acR, li/”;—(gﬂ)>||a|| by (8), and if
0

beR,, m(£,0)>0. Thus the first norm is monotone. Q.E.D.
Now let the first norm be uniformly monotone. Then, considering R

with the second-associated modular m® and using (d) and Lemma A, we

may assume that R is monotone complete. If (1) in Theorem 3.1 occurs,

la ]l <

by Lemma D m is uniformly simple. If (3) occurs, let [R,]=/[a,, @z -, @,]
where a,>0 (¢=1,2,---, n) be mutually orthogonal discrete elements with
m(a;)=0. Put. ' '

a= min _sup {¢: m(éa) 0}.

T=1,2,000,

For any r>0 and acR, |[all=1 Wlth a~a,=0 (for some %)

n(2e)

7 & &
=——-—————1+7§(§a’) for all 0<é&=<y.
Since uniform monotony of the first norm implies
izml.n n x,gl,fgo w+——a for some 6>0,
llxll 1
we obtain A :
E(1+0)—m(ta)=<1 . for all 0=<<¢=<j.

On the other hand, as in case (1), m is uniformly simple on R,.
Thus we have proved the “necessity” part of the following theorem.
Theorem 3.2. In order that the first norm be uniformly monotone,
it is mecessary and sufficient that ome of the following conditions is
satisfied:
(1) m is uniformly simple,
(2) m(x)<|| z || Sfor all z¢R,

8) R and 7 denote the associated space of R and the associated modular of # respec-
tively.
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(8) 0< dim (R)) <+ o0 and m is uniformly simple on R, and for any
7>0 there exists 6>0 such that sup {E(l—|—5) m(&'x)}<1 Jor all x with

fzll=1, 1—[x])R,=={0}. .

Proof of sufficiency. The proof for (1) is a slight modification of

[2, Theorem 48.8]. If (2) holds, by Lemma 3.8 the first norm is of

L'-type, a fortiori uniformly monotone. Now suppose that (3) holds. Let

la]l=1, ||b||=¢>0, a~b=0. As in the proof of Theorem 3.1 we may
restrict ourselves to the case that aeR,; (or beR,) and

la+b||= 1—|—m(§0a) + WG for some sogi .

&o &o 2

Since m is uniformly simple on R,, there exists ¢'>0 such that
‘ “inf  m(x)=0">0.

. ]lx”=——‘) ’ wele]
( )
2 /

1
2

If beR,, [|atb]j=1FmE0) | mEb) -y 27

=124, because of (n’).
&o &o .

If aeR; and r<§, where 7= sup ———
:wﬂmxm

2b
ml —_
<I Ile)
2
because of (f) and (n’). Finally, if acR, and §,=7, then by (3)
‘ na+bn>l_t’;l(&_“)>1+5

1]

:ua+bn21+1ﬂﬁlzl+ iz 1+lis = 1+5,

Thus the first norm is uniformly monotone. - - Q.E.D.

Remark 3.1. I f R is mon-atomic®, in Theorems 3.1-2 the conditions
(8) drsappear.

Remark 3.2.  The conditions (2) and (8) in Theorem 3.1 can be
written in terms of modulars as follows:

(2) ém(x)=<m(fxr)+1 ,fo'r: all xeR and £=0,
(3') 0<dim(R)<+o and supﬁfi)<m(x)+1 for all © with
£>0 .

(1—[=])R: #{0}.

9) This means that for any 0<aeR there exist b,ce R such that b+c<a, bmc 0,
>0, ¢>0.
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Now we shall consider the second norm.

Theorem 3.3. In order that the second morm be momnotone, it is
necessary and sufficient that the following two conditions are satisfied:
(1) m 1is stmple,

(2) “llx]|l|=1" is equivalent to “m(x)=1".

Proof. Necessity. (1) If m(a)=0, we may assume that [a]<I. Let
a~b=0 and |||b]}|=1, then by (o) and Lemma 3.1 we have
| 1={jloll|=|l| e +b]l|=m(a+b)=m(b)=1. o
Thus ‘monotony of the second norm implies a=0. (2) If for some a>0,
m(a)<|||e]|||=1, by Lemma 3.1 we may assume that [a]<I. Since there
exists b>0 such that a ~b=0, m(a+b)=1, we have *

1=lllefll=llla+blll=1,
contradicting monotony of the second norm.

Sufficiency. If 0<b, a~b=0 and |||a|||=1, then by (1) and (2)

| | 1=||{a |{|=m(a)<m(a+Db), -
hence |||a+b]||>1=|||a ||| by the definition (b). QE.D.

Theorem 3.4. In order that thé second nmorm be uniformly mono-
tone, it s mecessary and suﬁcwnt that the following two conditions are
satisfied:

(1) m 18 simple,
(2) sup inf m(sx)=1.

0<e<t, = lj=1
Proof of sufficiency is a slight modification of [2, Theorem 48.9].
Necessity. We prove firstly that for any 0<pcR
(%) sup  inf m(éx)=1.
. c<LeE<L1, m;m:o
Otherwise there exists a sequence of posmve elements {a,}°.,CR, and ¢>0

such that a, ~p=0, 1>l|la,y|||_21——1—, m(ay)§1——e (v=12,---). Then

chosing 0< m(ap)<e, we have by (o) .

' m(x, +ap)=mx,)+m(ap)=1 (=12, --),
hence by Lemma 3.1
| sup |||z, +ap |l =1.

On the other hand, uniform monotony of the norm implies that
W, +ap izl 2. ||| +6 (¢*=1,2,---) for some 6>0,
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consequently ’
‘sup|llo,+apll|=sup |||z, ||+ =145,

contradicting the above. Thus we have proved (*).i _ ,
Now choose peR, 0<[p]<1. From (*) it follows that for any 0<&<1

there exists 7>1 such that m(x)=¢ implies ||| [p]x |l|§—717 and N A= |||
g%, hence by (o) m(rx):m(jf[p]x‘)—l—m(r(i- [p])x)<2. Since by Theorem

3 m(—ﬁl—”—>=1 for all a <=0, using (n) we obtain that, if ]Hx”]g%,
a /

r—1=(r—1)m< o )é(r—*)m(xwr(——l————l)'rn(m)

HEA] lEall IEAl
==y 2 =)
| | 2—&  _
hence mx]“gm_p<l.
This means that [[|«[||=pe implies m(x)=¢. Since 0<&<1 is arbitrary,
we obtain (2). -Q.E.D.

Corollary. If the second mnorm is (uniformly) monotone, then the
Jirst _norm is also (uniformly) monotone.

- Remark 3.3. If R is non-atomic, (2)!° in Theorem 3.3 may be re-
placed by finiteness of the modular, and in Theorem 3.4 (1) and (2)
together may be replaced by uniform simplicity of the modular by
Lemma D.

Remark 3.4. The condition (2) in Therem 3.3 can be written in
terms of modulars as follows:

(2) s'1$1p {m(&x): m(éw)< 4 o0}=1 for all x==0.

§4. Flatness

From the definition (i), to prove flatness, sometimes we may restrict
ourselves to the two-dimensional subspace spanned by two (fixed) orthogonal
elements. _ -

Using Hahn-Banach’s theorem (cf. [3, §44]) we can prove:

10) We know that (2) in Theorem 3.3 implies the continuity of the norm. The argu-
ment in [1] shows that in a non-atomic space continuity of the norm is equivalent to
finiteness of the modular. -
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Lemma 4.1. Let S be a normed semi-ordered linear space. In order
that for (fixzed) acS, ||al|l=1

lim latebll=1_ 4 for all beS, a~b=0,

e>0 &

it is mecessary and sufficient that for any acS with a(a)=||alj=1,
ab)=0 Jor all beS, a~b=0.
A Lemma 4.2. A norm on a semi-ordered linear space S 1is flat (or
monotone), 1f the associated norm on S is monotone (or flat resp.).
Theorem 4.1. In order that the first norm be flat, it is necessary
and sufficient that the following two conditions are satisfied:
(1) m is monotone,
(2) sup e—mEa)})=1  for all a with ||a||=1.
Proof. Necessity. We may assume that R is two-dimensional. Since

R is reflexive, by Lemma 4.2 the second norm |[||Z]||] by the associated
modular is monotone. Hence, by Theorem 3.3 the associated modular #

on R is simple and “#i(@)=1” is equivalent to “|||&@[||=1”. By Lemma C
m is monotone. For any acR, [a]<]I, ||Ja||=1 by Hahn-Banach’s theorem
there exists @cR such that @(a)=|||@|||=1, @=&[a]. Since R is two-

dimensional, by the definition (c) we obtain
= (@) =sup {§ —m(Sa)}.
If [a]=I, H[aHl—l and sup {g——m(ga)}<1 then we have

sup 74 =ja .

E>0
hence by Lemma 3.3 the first norm on R is of L'-type and is not flat. Thus
(2) holds. The proof of sufficiency proceeds along the same idea. Q.E.D.

Theorem 4.2. In order that the first norm be uniformly flat, it is
necessary and sufficient that the following two conditions are satisfied:

(1) m is monotone,
(2) sup inf sup {En—m(Sa)}=1.

0<n<1 fjajl=1 .
Proof. Necessity. It is sufficient to prove (2). - The second norm
[llZ1]] by the associated modular on R is uniformly monotone by Lemma
A, therefore by Theorem 3.4 |
(%) sup inf #(£x)=1.

0<e<t [ fll=1
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Since for any acR, |le]|=1 and for 1>7>0 by Hahn-Banach’s theorem there

exists De R such that |||8]j|=8(e)=1, we have &y— m(Ea)<&— m(Ea)<m(B)<1

for all £=0. Hence by Lemma E there exists acR such that ||]a|[]>a(a) 1,
m(va)—SUD {&n—m(Sa)}.

Thus the condition (#) implies

sup inf sup {&n— m(Sa)}>1
0<7<1 fjali=1 &>0

The converse inequality is trivial.
Su{ﬁmency. It is not difficult to see that the second associated modular
m on R also satisfies '

sup inf sup {577—7n(590)}>1
0<r<1 Ifm]j=1 >0

For any @cR, |||@]||=1 by Hahn-Banach’s theorem there exists <R such

that ||a@||=a(@)=1. Since for any &, 9>0, m@na)=£En— m(Ea) by (c), we
obtain from the above

sup inf #(7@)=sup inf sup {&7— m(Sa)} 1.

071 (lalll=1 <7 <1 Ilall 1 78>0 .
Since the associated modular #% on R is simple by Lemma C, Theorem 3.4
tells us that the second norm on E is uniformly monotone, consequently
the first norm on R is uniformly flat by Lemma A. Q.E.D.

Remark 4.1. If R 18 non-atomic, in Theorem 4.2 (1) and (2) together
may be replaced by the single condition that m is umfowmly monotone
because of the similar reason as in Remark 3.3,

Remark 4.2. The condition (2) wn Theorem 4.1 can be 'written‘in
terms of modulars as follows: \

(2") ' sup inf Em(na) —ymiga)+¢ =1 for all d eR.

§=20 27>0 i

Now we turn our attention to the second norm.

Lemma 4.3. Let a,beR, lllali=1 and a~b=0.

| 1—m(a) _
(1)’If A Os<gr<>1l e =r<+ oo,
there exwists deR such that dla)=||al| and @b)=inf ﬂ%:—li
. £>0

0<E< 1—-¢ T e>0 L&
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Proof. (1) First we i'emark m(a)=1. By Lemma E there exists
0<d,cR such that a(a)=r=1+m(a,) and @, a]=4a,.

Put - _ .
() { infﬂg_x)_ for all 0<ze(1—[a])R,
- §>0 .
ao(x)  for all z¢[a]R,

and extend @ as a linear functional over all B. Then we have d(a)=
1+ m(@), because a((I—[a])x)—m(x)=<0 for all xe R implies #(d@(1—[a]))=0
by the definition (¢). Thus by Lemma 3.2 we have

| @||=a(a) and @@)=inf EY)
_ . , >0 &
(2) Suppose that GeR, d@(a)=|[@||=1 and a@(®)=0. If &d(a)=5||a||=1

~+ i (§,@) for some £,>0, then by (¢) we have m(a)=1 and
m(d)—m(&a)<$0(1—é‘)€i(a) for all 1=£>0,

consequently - sup 1—m(fa) =&a(a)< + oo,
‘ o<e<t 1—¢
contradicting the assumption. Thus by Lemma 3.2 we have
(E@) __ )~
Sup - =llal,

hence by Lemma 3.3
1=||a||=||ale] || +]|a@—[a]) ||> |l @[] ||=1,

because led—T{a]) ||= [ﬁ g)b')“ >0

This is a contradiction. By Lemma 4.1 we obtain

lim ateb|l=1_ Q.E.D.

e>0 S

As is well-known, there exists the decomposition of R:
R R3®R4’

where R; (1=3,4) are mutually orthogonal normal mamfold such that m
is monotone on R; and is ascending'” on R,

Now suppose that the second norm on R is flat and R, é\:{O} If aeR
and (I—T[a])R,={0}, there exists >0 such that

a~b=0 and inf _m(&b). >0
£>0 &

11) R is said to be ascending, if for any 0<acR there exists 0<beR such that b==a and
nf —’@(—ESQ—>O

£§>0
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If furthermore ||| a||]|=1 and

sup _1__”1(_59’_)_< ~+ oo ,
0<E<I 1-¢ .

then by Lemma 4.3 there exists @¢R such that

da)=||&@||=1 and a(b)=int m(gb) >0,
: §>0

contradicting ﬂa{:ness of the second norm by Lemma 4.1. Thus we have
proved that :

1'—’”’L(Eg)_= -+ oo,

su
0<eI<)1 1—-¢

consequently by virtue of convexity of the real function m(éx), (1—[«])R,
+1{0} m(x)<+ oo implies m(x)<1. If R, is infinite-dimensional, for any
xeR, m(x)< + oo, there exists a family of projectors [p,].c, such that
[p:]teq[2] and (1—[p,])R,= {0}, consequently by (p)

m(ac):sxgg m([p.]x)=<1. N
Thus we have proved the “neceséity” part of fhe following theorem.

Theorem 4.3. In order that the second morm be flat, it is mecessary
and sufflcient that one of the following conditions is satisfied:

(1) R,={0} t.e. m is monotone,
(2) sup m(x)=1,

m(x)<+oo .
(8) O0<dim(R)<+c and sup 2="™CE%) — Lo for all x with-
0<e<1 1-¢ ’
(1—[z])R,=={0}.

Proof of sufficiency. Let a~b=0 and [||a]||=]]|b]l|]=1. Suppose (1)
to be valid. Then for any 0<e<1 by Lemma 3.1 we have ||ja+¢b|||=<1

or ||Ja+s¢b|||=m(a+eb), consequently lim llle+eb]l|—1 < inf mAEb) ),

e>0 & §>0 E

If (2) is valid, it is easy to sée that the second norm is of L*™-type, i.e.’

lla~—b|l]|=Max {|[|a]|l, |[|®]]]} for all 0=a, beR, a fortiori uniformly flat.
Finally suppose (3) to be valid. If (1—[a])R,=-{0}, then by Lemma 4.3
lim lla+ebjll—1 =0. |
&0 ' &
If (1—[a])R,={0}, then be R, and as in case (1)
lim Hla+eb]l|—1 =0.

Q.E.D.

s >0 I3
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Now suppose that the second norm is uniformly flat. If (1) in Theorem
4.3 halds, m is uniformly monotone by Lemmas A, B and D. If (2)
halds, as above the second norm is of L™ type. Since the first norm

[|Z]] by the associated modular 7 on R is uniformly monotone, by Theorem
3.2, in case (3) for any y>2 there exists 1>0>0 such that

(%) sup sup {£(1+9)—Mm(ca)}<1.

0SEST 3=
A-[ZDLR, 10

If |[lelf|l=1, A—[a])R,2={0}, by Lemma E for any %>s>0 there exists

@c R such that [l@||=1 and m((1—e¢)a)+@(&oE) =&,(1—e)d(a) for some £,>0,
1—m((1—e¢)a) > 1+ (§0@) — Eo(1—¢) )

13 3

cdnsequently

and

1—m((1—e)a) > 0

Then, if 0 <&, =<7, by (x*) we have
L € , 1>

$)a) =R OEES

if £&,=>7, we have 1—_m((1_
15

Since y>2 and —;—>e>0 are arbitrary, we can conclude

sup inf
S U 16
Thus we have proved the “necessity” part of the following theorem.

Theorem 4.4. In order that the second norm be uniformly flat, it
18 mecessary and sufficient that one of the following conditions is
satisfied: '
(1) m 18 uniformly monotone,

(2) sup m(x)=<1,

m(x)<+o0
(3) 0<dim (R,) <+ 0 and m is uniformly monotone on R, and

sup inf 1—m(éx) _
0<E<t o fli=1 ——‘—") =+ oo.
A-[=DR0}  1—¢&

Proof of sufficiency. The proof for the case (1) was given in [2, §48].
If (2) holds, the second norm is of L*-type, a fortiori uniformly flat. Finally,
suppose (3) holds. It is sufficient to prove uniform monotony of the first
norm by the associoted modular on & by virtue of Lemma A. For this
purpose it is sufficient to prove (+*), because the associated modular 7 is

uniformly simple on [R;]R by Lemma B and (3). Considering R, we can easily
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prove that for any 7>0 there exists 0<7,<1 such that 1—m(3,%)=2y(1—7,)
for all ¢ R with I—[F])R, :\:{0} || Z []|=1.. By Hahn-Banach’s theorem
for any @eR with (I—[@])[R,] =0 ||&@||=1, there exists &c¢R such that
I—-[a])[RJI=FO, |||@]l|=a@)=1, consequently by the definition (c) we have
oé — M(EE) = (@) = 1—27(1— %)fmrﬂl$>0

Finally, we obtain

12¢(5+-2L(1—m) ) 7i(ca)

- =E@2—n)—nuéa) o for all 0<&<7y.
Putting 6=1—17, we obtain (xx). ' Q.E.D.
 Corollary. I f the first morm 1is (unzfo'rmly) flat, then the second
norm s also (uniformly) flat.

Remark 4.3. If R is mon-atomic, the conditions (8) wm Theorems
4.8—4 disappear.

§5. Some Cofnments on Uniformly Simple Modulars

As is seen in the foregoing sections, monotony of the norms is closely
connected with simplicity of the modular. On the other hand, Yamamuro’s
theorem (cf. Lemma D) shows that if a modular is simple and the norm
is continuous on the monotone completion'® of R, then it is uniformly
simple. In this section we shall give some conditions which (together
with simplicity) imply uniform simplicity.

Lemama 5.1. Fach of the following conditions implies the continuity
of the norm on the myonbtone completion R of R:

(A) ‘ 1r|1”f m(Ex)=e¢>0 Sfor some 0<&<1,
= lii=1

(B) - sup m(fx)=y<+4o for some £>1.

ll|l=1
Proof. First we shall show that (A) implies continuity of the norm
on R. Suppose that a,|>.:0 and inf|[[a,|||=a. If a>0, choose §>0 such
vzl

that

1> % >e¢.

a0
Since @ le and 1>inf|| % H':_ * =g,
ato v il atoll a+to

12) In this case the monotone completion coincide withs R.
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by (A) we have for some g

1>!H a,;‘“';m< a, >;5 ~ for all vZ=p.
| a-+o a-+o0

On the other hand, by (p) we have

lim m< a, ):0,

>0\ a40 |
Thus « must be equal to 0, i.e. the norm is continuous. Next we shall
show that (A) holds on the monotone completion R of R with a slightly
changed &. For any 0=acR, |||@|||=¢ (where &<¢& < 1), there exists

{a,}CR such that 0=a,},c,@, hence sup |||, |||=|||@|[|=&, consequently by
i€
(A) and (p) we have (&) = sup m(a;)=e.
1€ ‘ .
The proof for the condition (B) is similar. Q.E.D.
Lemma 5.2. In order that m satisfy the condition
(A) inf m(éx)=e>0 ~ for some 0<£<1,

Hal=1
1t 18 mecessry and sufficient that i satisfies the condition
(A*) sup (@) =¢& < 1.

' f2]=1

In order that m satisfy the condition

(B) - ”SI‘lp m(éx)=y <+ oo for some & >1,
zl|=1
it 18 mecessary and sufficient that i satisfies the condition
(B*) inf M:§’>l for somevr>0.
Wem=1 7 ‘

Proof. Suppose that m on R satisfies (A).
Let @acR ||@||=1, then

0 for |fjzfl| =1,
a@)—m@=\17°¢ for 1z|lzlll=¢,
" < | for |llz][|=¢,.

consequently we have ,
(@) <max {1—e, &} < 1.
Thus the associated modular # satisfies (A*). |
Conversely suppose that m satisfies (A*). If dckR, ill&|||=1, then by

(g) there exists acR such that |ja||=1 and &(a)= 1—|2—5 .
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2¢&’

If 1>a>-%5_ , then we have
1+¢"’

a@i(@)—m(a) = “(H’fz')—%' >0,

consequently inf #(ad)=> a(1+52) —2 >0. Thus m satisfies (A).
il aTj=1

The proof of the rela.tlon between (B) and (B*) is similar. Q.E;'D.

Theorem 5.1. If m 1is simple, the following gondztzons are mutually
equivalent: '
(1) The first norm is uniformly monotone,
(2) m s uniformly simple,
(38) m satisfies (A),
(4) m satisfies (B). ;
Proof. (1)< (2) follows from Theorem 3.2 and Lemma D. (2)—(3)

is trivial. (3) or (4)—(2) follows from Lemma 5.1 and Lemma D. (2)—~>(4):
By (f) (2) implies

inf m(x) = inf m(—é—x) =¢>0.

fz]l=1 I[lell 1

Let jla]|=1. If 1+4m(ya)=7n for some 77>1 then »>1+4+m(a)=>14+¢
by the above, consequently
m((14-9)a) < m(na)+1 —llall=1
| 140 )
If such 7 does not exists, by Lemma 3.2 we have
m(Ea) _

1=[[a]|=sup

Thus in any case we have “silnpl m((1+5)x)<1+5 Q.E.D.

Using Lemmas A, B and Lemma 5.2 we obtain:

Theorem 5.2. If ‘m 18 monotone, the following conditions are
mutually equivalent:
(1) the second morm is uniformly flat,
(2) m is uniformly monotone,
(3) m satisfies (A*),
(4) m satisfies (B*).

Finally we shall state a remark for the result of T. Shimogaki [5].

Theorem 5.3. The following conditions are mutually equivalent:
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(1) int M2 oo q
ALl

(2) m satisfies (B) and (A*),
(3) m satisfies (B*) and (A). |
Proof. (1)—(2). (1) is equivalent to“sup m(yx) = 1. Hence this implies
z||=1

sup m(x) < 14 Thus (1) implies (2). (2)—>(1). Let <p(5)::”s1%p m(&x)
T . zlj=1

Hz =1
for all £=0. Then ¢(¢) is a convex function of £=0. (2) implies that
¢(1)<1 and ¢(&)<+ < for some &,>1. Convexity of ¢ _implies (=1
for some y>1. As above this is equivalent to (1).

The proof of the equivalence between (1) and (3) is similar. Q.E.D.

Tokyo College of Science, Tokyo,
Research Institute of Applied Electricity, Hokkaidd University,
Mathematical Institute, Hokkaidé University.

References

[1] I. AMEMIYA: A generalization of the theorem of Orlicz and Birnbaum; Jour. Fac.
Sci. Hokkaidd Univ. Ser. 1, Vol. 13, pp. 60-64 (1956).

[2] H. NAKANO: Modulared semi-ordered linear spaces; Maruzen, Tokyo (1950).

[8] H. NAKANO: Topology and linear topological spaces; Maruzen, Tokyo (1951).

[4] S. YAMAMURO: Monotone completeness of normed semi-ordered linear spaces;
Pacific Jour. Math. Vol. 7, pp. 1715-1725 (1957).

[6] T. SHIMOGAKI: On certain property of the norms by modulars; Jour. Fac. Seci.
Hokkaidé Univ. Ser. 1, Vol. 13, pp. 201-213 (1957).



