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Introduction

Let $R$ be a universally continuous semi-ordered linear space1). A
functional $m$ on $R$ is called a modular, if it satisfies the following
modular conditions:
(1) $ 0\leqq m(a)\leqq\infty$ for all $a\in R$ ;
(2) if $m(\xi a)=0$ for all $\xi\geqq 0$ , then $a=0$ ;

(3) for any $a\in R$ there exists $\alpha>0$ such that $ m(\alpha a)<\infty$ ;
(4) for every $a\in R$ , $m(\xi a)$ is a convex function of $\xi$ ;
(5) $|a|\leqq|b|$ implies $m(a)\leqq m(b)$ ;
(6) $a_{\cap}b=0$ implies $m(a+b)=m(a)+m(b)$ ;
(7) $0\leqq a_{\lambda}\uparrow_{\lambda\in A}a$ implies $supm(a_{\lambda})=m(a)\lambda\in A$

When a modular $m$ is defined on $R,$ $R$ is called a modulared semi-
ordered linear spaee with the modular $m$ and is denoted by $(R, m),$

$i\grave{f}$

necessary. We can define two kinds of norms on $R$ by the formulas:

1) We use mainly notation and terminology of [12], [13].
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(8) II $a||=\inf_{\epsilon>0}\frac{1+m(\xi a)}{\xi}$ ,

(9) $|||a|||=\inf_{m(\xi a)\leqq 1}\frac{1}{|\xi|}$ .

The former norm is called the first one by $m$ and the latter the second
(or sometimes modular-) one by $m$ . Among the important problems in
the theory of modulared semi-ordered linear spaces are to investigate
relations between properties of a modular and those of its norms and to
investigate order-structure of the space. In this paper we shall turn our
attention mainly to convexity and evenness (for the definitions, see below).

In Chapter I.we sh.all concern ourselves with the question whether
(uniform) convexity of the norm implies (uniform)“ convexity of the modular.
We can give satisfactory answers in the case $R$ is non-atomic (Theorems
2.1, 2.2 and 3.4). In connection with convexity we shall treat also evenness.
Recently H. W. Milnes [10] investigated similar problems in the case of
Orlicz spaces2). Since Orlicz spaces are special concrete examples of
modulared semi-ordered linear spaces, our results in Chapter I are con-
sidered as an extension of H. W. Milnes’ ones to modulared semi-ordered
linear spaces, and are more complete, because he did not treat the second
norm and evenness.

In Chapter II we shall investigate conditions under which a given
modular can be converted to a convenient one (for example, strictly convex,
uniformly convex etc.) and give some necessary and sufficient conditions
in terms of topological or order structure of the space. Our standpoint is
similar to that of M. M. Day [8], and we shall solve completely questions
raised by him, so far as modulared semi-ordered linear spaces are con-
sidered. , In fact, we shall give topological conditions under which the
modular norm is equivalent to a strictly convex (even, uniformly convex etc.)
one (Theorems 6.4, 6.6 and $\cdot$ 7.4). Among the $important\star$ results is that if
a modulared semi-ordered. linear space is reflexive as a Banach space, then
its modular norm is equivalent to a uniformly convex one (Theorem 7.4).

In connection with the above result, a coniecture arises that a semi-
ordered linear space with a uniformly convex norm is modularable i.e.
its norm is equivalent to a modular norm by some modular. In Appendix,
we shall give a negative answer to this conjecture.

In the remainder of this Introduction, we shall state definitions and
results used later from the theory of modulared semi-ordered linear spaces

2) For Orlicz spaces, see [17].
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developed by H. Nakano in $[12, 13]$ .
$\tilde{R}$ and $\overline{R}$ denote the totality of all linear functionals and that of all

universally continuous linear functionals on $R$ respectively, which are
bounded under the norm. On $\tilde{R}$ the associated modular $\tilde{m}$ of $m$ is de-
fined by the formula:
(10) $\tilde{m}(\tilde{a})=\sup_{\dot{x}\in R}\{\tilde{a}(x)-m(x)\}$ for $\tilde{a}\in\tilde{R}$ .

$\tilde{m}$ satisfies all the modular conditions (see [12; \S 38]), and
‘

(11) $\tilde{a}(a)\leqq m(a)+\tilde{m}(\tilde{a})$ for all $a\in R,\tilde{a}\epsilon\tilde{R}$ .
When we consider the associated modular only on $\overline{R}$, we call it the con-
jugate modular of $m$ and denote it by $\overline{m}$. In this paper projectors $[p]$

and projection operators $[N]$ are frequently used (for the definition see
$[$12; \S \S $5\sim 6]$

In this paper we always assume semi-regularity of $R$, i.e. for any
$0\neq a\in R$ there exists $\overline{a}\in\overline{R}$ such that $\overline{a}(a)\neq 0$ . By semi-regularity the
following formulas are valid (see [11], [12; \S 39-40] and [13; \S 83])
(12) $m(a)=u\frac{s}{x}\in\frac{p}{R}\{\overline{x}(a)-\overline{m}(\overline{x})\}$ for all $a\in R$ ;

(13) 11 $a||=\sup_{\overline{m}(\overline{x})\leqq 1}|\overline{x}(a)|$ for all $a\in R’$ .
Two norms satisfy always (see [12; \S 40])
(14) 111 $a|||\leqq||a||\leqq 2|||a$ III for all $a\in^{t}R\backslash $ ,

hence they are equivalent. The first norm and the second one by the con-
jugate modular $\overline{m}$ are denoted by $||-||$ and $|||-|,|$ [ respectively. Then we have
(15) $||\overline{a}||=\sup_{|||x|||\leqq 1}1\overline{a}(x)|$ , $|||\overline{a}|||=\sup_{||x|\ovalbox{\tt\small REJECT}}|\overline{a}(x)|$ for all $\overline{a}\in\overline{R}$ .

An element $a\in R$ is said to be finite, if $ m(\xi a)<\infty$ for all $\xi\geqq 0$ . A
modular $m$ is said to be almost finite or finite, according as the totality
of all finite elements constitutes a complete semi-normal manifold of $R$

or is identical with $R$ itself. An element $a\in R$ is said to be domestic, if
$ m(\gamma a)<\infty$ for some $\gamma>1$ . An element $a\in R$ is said to be simple, if
$m([p]a)=0$ implies $[p]a=0\backslash $ . If all elements of $R$ are simple, $m$ is said
to be simple. $m$ is said to be increasing or monotone, according as
$\sup_{\text{\’{e}}>}\frac{m(\xi a)}{\xi}=\infty$ or $\inf_{\text{\’{e}}>0}\frac{m(\xi a)}{\xi}=0$ for all $0\neq a\in R$ . $m$ is said to be continu-

ous, if for any $a\in R$ with
$m(a)=\infty spm(x)=m(x^{\frac{u}{)}}<\infty|x|\leq|a|\infty.$

$m$ is said to be

infinitely increasing, if for every $0\neq a\in R$,
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$\sup_{\epsilon>0}\frac{m(\xi a)}{\xi}=\infty$ or $\sup_{\epsilon>0}\{\xi\gamma-m(\xi a)\}=\infty$ where $\gamma=\sup_{\epsilon>0}\frac{m(\xi a)}{\xi}$ .
As relations between these properties, we know (see [12; \S \S 42-46],

[13; \S 84]).

Theorem A.
(A) Almost finiteness and increasingness are conjugate 3).

(A) Simplicity and monotony are conjugate, and further if $m$ is mono-
tone, the associated modular $\tilde{m}$ is simple.

(A) Continuity and infinite increasingness are conjugate.
The properties defined above are concerned with individual convex

functions $m(\xi x)$ . When we require some uniformity, we use the follow-
ing modular functions:
(16) $\omega(\xi|a)=m(\frac{\xi a}{|||a|||})$ for $0\neq a\in R$ .
Then $m$ is said to be uniformly finite or uniformly simple, according as

$\sup_{x\neq}\omega(\xi|x)<\infty$ or $\inf_{x\neq 0}\omega(\xi|x)>0$ for all $\xi>0$ .
$m$ is said to be uniformly increasing or uniformly monotone, according

as sup $inf\underline{\omega(\xi|x)}=\infty$ or inf $sup\underline{\omega(\xi|x)}=0$ .
$\epsilon>0x\neq 0$ $\xi$ $\xi>0x\neq 0$ $\xi$

$m$ is said to be upper bounded, if there exists $\gamma>0$ such that
$m(2a)\leqq\gamma m(a)$ for all $a\in R$ ,

and to be lower bounded, if there exist $\alpha>\beta>1$ such that
$m(\beta a)\geqq\alpha m(a)$ for all $a\in R$ .

$m$ is said to be bounded, if it is upper bounded and lower bounded at
the same time. Upper boundedness implies uniform simplicity and uni-
form finiteness, similarly lower boundedness implies uniform increasingness
and uniform monotony (see [12; \S 49]). As relations between these uniform
properties, we known (see [12; \S 49] and [13; \S \S 84-85]):

Theorem B.
(B) Uniform finiteness and uniform increasingness are assoeiated3).

(B) Uniform simplicity and uniform monotony are associated.
(B) Upper boundedness and lower boundedness are associated.

3) General properties $P$ and $Q$ are said to be conjugate or associatecl, according as
“ $R$ possesses $P$ is equivalent to “ $\overline{R}$ possesses $Q$

’ or to “ $\tilde{R}$ does $Q’$ .
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When $R$ is semi-regular, by (12) we can imbed $R$ into $R=$ preserving
the order structure and the modular structure. If there is no confusion,

elements of $R$ , considered in $R=$, are denoted by the same symbols.
Let $S$ be a universally continuous semi-ordered linear space. $S\ni a>0$

is called an atom, if $a\geqq b\geqq 0$ implies $b=\alpha a$ for some $\alpha\geqq 0$ . If the totality
$D$ fo all atoms constitutes a complete manifold, then $S$ is said to be atomic.
If $S$ contains no atom, then it is called non-atomic. We call $S_{a}(\equiv[D]S)$

the atomic part and $S_{c}(\equiv S_{d}^{\perp})$ the non-atomic part of $S$ respectively.
When we call $(S, ||.||)$ a normed semi-ordered linear space, the norm

is assumed to satisfy the condition:
$(\star)$ $|a|\leqq|b|$ implies 11 $a||\leqq||b||$ .
$(S, ||.||)$ is said to be monotone complete, if for any $0\leqq a_{\lambda}\uparrow_{\lambda\in\Lambda}$ with
$\sup_{\lambda\in}||a_{\lambda}||<\infty$ there exists $S\ni a=\bigcup_{\lambda\in\Lambda}a_{1}$ . A norm is said to be continuous,

if $a_{\nu}\downarrow_{\nu=1}^{\infty}0$ implies $\lim_{\nu\rightarrow\infty}|$ } $a_{\nu}||=0$ . Concerning a normed semi-ordered linear

space we know (see [12; gg 30-31]):

Theorem C.
(C) The conjugate spaee $(\overline{S}, ||-||)$ and the associated space ( $\tilde{S}$, li $\sim$ il) are

always monotone complete.

(C) $\dot{A}$ norm on $S$ is continuous, if and only if $\overline{S}=\tilde{S}$ .
(C) If $S$ is complete under both two norms, then they are equivalent.

Chapter I. Convexity and Evenness of the Norms

\S 1. Some preliminary lemmas

Throughout this Chapter $R$ denotes a modulared semi-ordered linear
space with a modular $m$ . Since $m(\xi a)$ is a convex function of $\xi\geqq 0$ , it is
natural to define strict convexity as follows: $m$ is said to be strictly
convex, if

(s) $a\neq 0$ $\alpha\geqq\beta\geqq 0$ $ m(\alpha a)<\infty$ , $m(\frac{\alpha+\beta}{2}a)=\frac{m(\alpha a)+m(\beta a)}{2}$

implies $\alpha=\beta$ .
We can easily prove that (s) is equivalent to

$(s^{\prime})$ $ m(a)<\infty$ $ m(b)<\infty$ $m(\frac{a+b}{2})=\frac{m(a)+m(b)}{2}$ implies $a=b$ .

From the definition, strict convexity implies simplicity.
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Before defining a conjugate type of strict convexity, we introduce
the following notations:

(17) $\pi_{-}(a)=\left\{\begin{array}{ll}\lim_{\epsilon\{0}\frac{m(a)-m((1-\epsilon)a)}{\epsilon} & if m(a)<\infty,\\\infty & if m(a)=\infty,\end{array}\right.$

$\pi_{+}(a)=\left\{\begin{array}{ll}\lim_{\text{{\it \’{e}}}*0}\frac{m((1+\epsilon)a)-m(a)}{\epsilon} & if m(a)<\infty,\\\infty & if m(a)=\infty.\end{array}\right.$

These limits exist because of convexity of $m(\xi a)$ . Now $m$ is said to be
even, if it is monotone and satisfies the following conditions:

(e) $\{_{\pi_{-}(a)<}^{\pi_{+}(a)<}\infty\infty$ $impliesimplies$

$\pi_{+}([|p]a)<\infty$ for some $0\neq[p]\leqq[a]$ .
$\pi_{+}(a)=\pi_{-}(a)$ ;

In order to obtain the conjugate type, the following formulas play
an important r\^ole:

(18) $m(a)+\overline{m}(\overline{a})=\overline{a}(a)$ implies $m([p]a)+\overline{m}([p]\overline{a})=\overline{a}([p]a)$

for all $p\in R$ ;

(19) $m(\frac{a+b}{2})=\frac{m(a)+m(b)}{2}$ $implies_{\vee}$

$m(\frac{[p]a+[p]b}{2})=\frac{m([p]a)+m([p]b)}{2}$ for all $p\in R$ .
These are immediate consequences of (4), (6) and (11).

H. Nakano [12; Theorem 39.1]. proved that for any domestic $0\leqq a\in R$

there exists $\overline{a}\in\overline{R}$ such that
$n\iota(a)+\overline{m}(\overline{a})=\overline{a}(a)$ .

and $\overline{a}([p]a)=\pi_{+}([p]a)$ for all $p\in R$ .
We use the following generalized form:

Lemma 1.1. For any $ 0\leqq a\in R\pi_{-}(a)<\infty$ there exists $\overline{a}\in\overline{R}$ such that
$\overline{a}([p]\{\iota)=\pi_{-}([p]a)$ for all $p\in R$

and
$m(a)+\overline{?n}(\overline{a})=\overline{a}(a)$ .

Proof. Under the assumption $\pi_{-}(a)<\infty$ , by (6) we can see without
difficulty that
(20) $\pi_{-}([p]a)+\pi_{-}([q]a)=|\pi_{-}([p]a+[q]a)$ for $p,$ $q$ $p_{\cap}q=0$ .
Put $\overline{a}([p]a)\equiv\pi_{-}([p]a)$ for all $p\in R$ .
Then by (4) we have $m([p]a)-m(\xi[p]a)\leqq(1-\xi)\overline{a}([p]a)$ for all $\xi$ ,
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consequently $\xi\overline{a}([p]a)-m(\xi[p]a)\leqq\overline{a}([p]a)-m([p]a)\leqq\overline{a}(a)-m(a)$ .
Hence extending $\overline{a}$ for so-called step-elements, we define

$\overline{a}(\sum_{\nu=1}^{\kappa}\xi_{\nu}[p_{\nu}]a\backslash )\equiv\sum_{\nu=1}^{\kappa}\xi_{\nu}\overline{a}([p_{\nu}]a)$ for $\xi_{\nu}\geqq 0p_{\nu\cap}p_{\mu}=0(\nu, \mu=1,2, \cdots, \kappa)$ .
$\iota$

Then by (6) and (20) we have
$\overline{a}(x)-m(x)\leqq\overline{a}(a)-m(a)$ for all step-element $x$ .

For any $0\leqq b\in[a]R$ there exist step-elements $\{x_{\lambda}\}_{\lambda\in\Lambda}$ such that $0\leqq x_{\lambda}\uparrow_{\lambda\in\Lambda}b$ .
Extend $\overline{\overline{a}}$ for $b$ by

$\overline{a}(b)\equiv\sup_{\lambda}\overline{a}(x_{\lambda})$

(this is possible, because by (3) $ m(\alpha x_{\lambda})\leqq m(\alpha b)<\infty$ and
$\alpha\overline{a}(x_{\lambda})\leqq m(\alpha x_{\lambda})+\overline{a}(a)-m(a)$ for some $\alpha>0$).

Now extend $\overline{a}$ over all $R$ by the formula:
$\overline{a}(x)\equiv\overline{a}([a]x^{+})-\overline{a}([a]x^{-})$ for all $x\in R$ .

Then by (7) and (20) we have $\overline{a}\in\overline{R}$ and
$\overline{a}(x)-m(x)\leqq\overline{a}(a)-m(a)$ for all $x\in R$ ,

consequently from the definition (10)
$\overline{m}(\overline{a})=\overline{a}(a)-m(a)$ . Q.E.D.

Lemma 1.2. In order that $m$ be even, it is necessary and sufficient
that for any $ 0\leqq a\in R\pi_{-}(a)<\infty$ there exists uniquely $\overline{a}\in\overline{R}$ such that
$(\triangle)$ $m(a)+\overline{m}(\overline{a})=\overline{a}(a)$ .

Proof. Necessity. For $a$ and $\overline{a}$ satisfying together $(\triangle)$ and for any
$\epsilon>0a\backslash $nd $x\in R$ , from (11) we obtain

$\overline{a}(a\pm\epsilon x)\leqq m(a\pm\epsilon x)+\overline{m}(\overline{a})=\overline{a}(a)-m(a)+m(a\pm\epsilon x)$ ,

, hence
$\frac{m(a)-m(a-\epsilon x)}{\epsilon}\leqq\overline{a}(x)\leqq\frac{m(a+\epsilon x)-7n(a)}{\epsilon}$ .

Finally we obtain from the definition (17)

(21) $\pi_{-}([p]a)\leqq\overline{a}([p]a)\leqq\pi_{+}([p]a)$ for all $p\in R$ .
Now if $a$ is domestic, by (e)

$\pi_{-}([p]a)=\overline{a}([p]a)=\pi_{+}([p]a)$ for all $p\in R$ .
Monotony of $m$ implies $\overline{a}(x)=0$ for all $x\in(I-[a])R$ .
Since $\overline{a}$ is universally continuous, it is uniquely determined, when $a$ is
domestic. If $a$ is not domestic, from the definition (e) and $\pi_{-}(a)<\infty$

there exist $\{a_{\lambda}\}_{\lambda\in\Lambda}\subseteqq R$ such that $[a_{\lambda}]\uparrow\lambda\in\Lambda[a]$ $\pi_{+}([a_{\lambda}]a)<\infty$ $(\lambda\in\Lambda)$ .
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Then by (18) $a_{\lambda}$ and $\overline{a}[a_{\lambda}]$ together satisfy $(\Delta)(\kappa\in\Lambda)$ , henoe by the above
method, $\overline{a}([a_{\lambda}]+(I-[a_{\lambda}]))(\lambda\in\Lambda)$ are determined uniquely, consequently
so $\overline{a}$ is.

Sufficiency. By Lemma 1.1 and the result of H. Nakano stated above,
we have $\pi_{+}(a)=\pi_{-}(a)$ for all domestic $a\in R$ .
If $\pi_{-}(a)<\infty$ , from the assumption there exists uniquely $\overline{a}\in\overline{R}$ such that

$m(a)+\overline{m}(\overline{a})=\overline{a}(a)$ .
If $\pi_{+}([p]a)=\infty$ for all $0\neq[p]\leqq[a]$ ,

$\overline{m}(2\overline{a})=\sup_{x\in R}\{2\overline{a}(x)-m(x)\}$

$=\sup_{x\in R}\{\overline{a}([a]x)+(\overline{a}([a]x)-m(x))\}=2\overline{a}(a)-m(a)$

because $ m(x)<\infty$ implies $[a]x\leqq|a|$ . This contradicts uniqueness of $\overline{a}$ .
The proof of monotony is easy. Q.E.D.

Now we shall state a relation between strict convexity and evenness.
Lemma 1.3. Strict convexity and evenness are conjugate.
Proof. Let $m$ be strictly convex. If for $ 0\leqq\overline{a}\in\overline{R}\pi_{-}(\overline{a})<\infty$ there

exist $a_{1}=,$
$a_{2}=\in R^{=}$ such that $\overline{m}(\overline{a})+m=(a_{1}=)=\overline{\overline{a}}_{1}(\overline{a})$ , and $\overline{m}(\overline{a})+\overline{\overline{m}}(\overline{\overline{a}}_{2})=\overline{\overline{a}}_{2}(\overline{a})$ ,

then there exist $\{p_{\lambda}\}_{\lambda\in\Lambda}\subseteqq R$ such that
$[p_{\lambda}]_{\lambda\in A}\uparrow I$ and $[p_{\lambda}]a_{\nu}=\in R$ $(\nu=1,2;\lambda\in\Lambda)$ ,

because $R$ is a complete semi-normal manifold of $R=$ (cf. Introduction).
Then by (11), (18) and (19) we have

$m(\frac{[p_{\lambda}]\overline{\overline{a}}_{1}+[p_{\lambda}]\overline{\overline{a}}_{2}}{2})=\frac{m([p_{\lambda}]\overline{\overline{a}}_{1})+m([p_{\lambda}]a_{2}=)}{2}$ $(\lambda\in\Lambda)$ ,

so by $(s^{\prime})$ $[p_{\lambda}]\overline{\overline{a}}_{1}=[p_{\lambda}]\overline{\overline{a}}_{2}(\lambda\in\Lambda)$ , consequently $\overline{\overline{a}}_{1}=\overline{\overline{a}}_{2}$ . Thus $\overline{m}$ is even by
Lemma 1.2.

Now suppose that $m$ is even. If for some $\alpha\geqq\beta\geqq 0$ $0\leqq\overline{a}\in\overline{R,}$

$\overline{m}(\alpha\overline{a})<\infty$ and $\overline{m}(\frac{\alpha+\beta}{2}\overline{a})=\frac{\overline{m}(\alpha\overline{a})+\overline{m}(\beta\overline{a})}{2}$ ,

then for $=a\in\overline{\overline{R}}$ satisfying $(\Delta)$ together with $\frac{\alpha+\beta}{2}\overline{a}$ we have by (11) and

(4) $\overline{m}(\alpha\overline{a})+\overline{\overline{m}}(\overline{\overline{a}})=\overline{\overline{a}}(\alpha\overline{a})$ and $\overline{m}(\beta\overline{a})+\overline{\overline{m}}(\overline{\overline{a}})=\overline{\overline{a}}(\beta\overline{a})$ .
As above, there exist $\{p_{\lambda}\}_{\lambda}\subseteqq R$ such that

$[p_{\lambda}]\uparrow_{\lambda\in\Lambda}I$ and $[p_{\lambda}]a=\in R$ $(\lambda\in\Lambda)$ ,
hence by (18) and Lemma 1.2 we have a $[p_{\lambda}]a==\beta[p_{\lambda}]a=(\lambda\in\Lambda)$ con8equent1y
$\alpha\overline{a}=\beta\overline{a}$ . Thus $\overline{\prime m}$ is strictly convex by definition. Q.E.D.

Corresponding to strict convexity and evenness of a modular, those of
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norms are defined (cf. [9; Chap VII]). Let $(S, ||.|\{)$ be a normed linear
space4). A norm $||.||$ on $S$ is said to be strictly convex, if
(S) 11 $a||=||b||=1$ , $||a+b||=2$ implies $a=b$ .
It is easy to see that (S) is equivalent to
(S’) 11 $a+b||=||a||+||b||$ , $a\neq 0$ implies $b=\xi a$ for some $\xi$ .
A norm is said to be even, if for any $a,$ $b\in S$ $||a||=||b||=1$

(E) $\lim_{\xi\rightarrow 0}\frac{||a+\xi b||-||a||}{\xi}$ exists.

S. Mazur (see [9; p. 112]) proved that (E) is equivalent to

(E’) $\left\{\begin{array}{ll}for any & a\in S ||a||=1 there exists uniquely \tilde{a}\in S\\such tha & \tilde{a}(a)=||\tilde{a}||=1.\end{array}\right.$

The following is known (see [9]):

Lemma 1.4. Let $(S, ||.||)$ be a normed linear space. If the associated
norm $||\sim||$ on $\tilde{S}$ is strictly convex (resp. even), then the original norm
on $S$ is even (resp. strictly convex).

We conclude this section with some results on non-atomic spaces.
Lemma 1.5. Let $S$ be a non-atomic semi-ordered linear space and

$\varphi$ be a functional defined on $S$ satisfying the following conditions:
(i) $ 0\leqq\varphi(a)\leqq\infty$ for all $a\in S$ ;
(ii) I $a|\leqq|b|$ implies $\varphi(a)\leqq\varphi(b)$ ;

(iii) $[p_{\lambda}]\uparrow_{\lambda\in\Lambda}$ or $[p_{\lambda}]\downarrow_{\lambda\in A}[p]$ $\varphi(a)<\infty$ implies $\lim_{\lambda}\varphi([p_{\lambda}]a)=\varphi([p]a)$ .
Then for any $a_{1},$ $a_{2}\in S$ satisfying 1 $a_{1}|\leqq|a_{2}|$ $\varphi(a_{2})<\infty$ there exist
$b,$ $c\in S$ such that $b+c=a_{1}+a_{2}$ , $|b-c|=|a_{2}-a_{1}|$ and $\varphi(b)=\varphi(c)$ .
If further $\varphi$ satisfies the additional condition:
(iv) $x_{\cap}y=0$ implies $\varphi(x+y)=\varphi(x)+\varphi(y)$ ,

then we can add to the conelusion

$\varphi(b)=\varphi(c)=\frac{\varphi(a_{1})+\varphi(a_{2})}{2}$ .
Proof. Putting

$\psi([p])=\varphi([p]a_{2}+([a_{2}]-[p])a_{1})$ for all $p\in R$

and using (iii), by so-called exhaustion method we can find $p_{0}\in R$

such that $\psi([p_{0}])=\psi([a_{2}]-[p_{0}])$

4) Not necessarily semi-ordered.
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i.e. $\varphi([p_{0}]a_{2}+([a_{2}]-[p_{0}])a_{1})=\varphi(([a_{2}]-[p_{0}])a_{2}+[p_{0}]a_{1})$ .
If we put $b=[p_{0}]a_{2}+([a_{2}]-[p_{0}])a_{1}$ and $c=([a_{2}]-[p_{0}])a_{2}+[p_{0}]a_{1}$ ,
$b,$ $c$ satisfy the required conditions. Q.E.D.

Lemma 1.6. Let $(R, m)$ be non-atomic. Then
(i) The $r?\iota odular$ norm is continuous, if and only if $m$ is finite.
(ii) Under the additional condition that $(R, m)$ is monotone complete,

the modular norm is continuous, if and only if $m$ is uniformly
finite.

For the proof, see [1].

\S 2. Strict convexity and evenness of the norms5)

In this section we shall give necessary and sufficient conditions for
that the norms by a modular are strictly convex or even. We begin
with a comment on the first norm.

Lemma 2.1. If a modular $m$ is infinitely increasing, for any
$0\neq a\in R$ there exists $\xi_{0}>0$ such that $||\xi_{0}a||=1+m(\xi_{0}a)$ .

Proof. If $\sup_{\epsilon>0}\frac{m(\xi a)}{\xi}=||a||$ , we have by (8) $\sup_{\xi>}\{\xi\{|a||-m(\xi a)\}\leqq 1$ ,

contradicting infinite increasingness. Hence by [2; Lemma 3.2] $\xi_{0}$ , satis-
fying the required condition, exists. Q.E.D.

We shall use frequently the following version bf (10), proved in [2],

(22) $a\in R$ $\overline{a}\in\overline{R}$ $m(a)=1$ $1+\overline{m}(\overline{a})=\overline{a}(a)$ implies $||\overline{a}||=\overline{a}(a)$ .
Theorem 2.1. If $m$ is strictly convex and infinitely incre\‘asing,

the first norm is strictly convex. If $R$ is non-atomic, the converse is
also true.

Proof. Let $m$ be strictly convex and infinitely increasing. For any
$a,$ $b\in R$ such that 11 $a||=||b||=1$ $||a+b||=2$ by Lemma 2.1 there exist
$\xi,$ $\eta>0$ such that $\xi=1+m(\xi a)$ and $\eta=1+m(\eta b)$ , hence we have by
(4) and (8)

$\frac{\xi+\eta}{2}=\frac{m(\xi a)+m(\eta b)}{2}+1\geqq m(\frac{\xi a+\eta b}{2})+1\geqq\Vert\frac{\xi a+\eta b}{2}\Vert$ .

Since 11 $a||=||b||=\Vert\frac{a+b}{2}\Vert=1$ implies $||\xi a+\eta b||=\xi+\eta$ , we obtain

5) In this section, non-atomicity is not essential. We can obtain necessary and
sufficient conditions for strict convexity and eveness, without assumption of non-atomicity,
in somewhat complicated forms cf. [2].
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$m(\frac{\xi a+\eta b}{2})=\frac{m(\xi a)+m(\eta b)}{2}$ ,

consequently by $(s^{\prime})$ $\xi a=\eta b$ i.e. $a=b$ . Thus the first norm is strictly

convex by definition.
Now conversely, let $R$ be non-atomic and the first norm be strictly

convex. We shall prove first that $m$ is infinitely increasing. Otherwise,
there exist $0\neq a\in R$ such that

$\sup_{\epsilon>}\frac{m(\xi a)}{\xi}=\gamma_{1}<\infty$ and. $\sup_{\epsilon>}\{\xi\gamma_{1}-m(\xi a)\}=\gamma_{2}<\infty$ .

Using non-atomicity of $R$ , we may assume that $\gamma_{2}\leqq 1$ . Then by the
definition (8) we have

1I $[p]a||=\sup_{\epsilon>0}\frac{m(\xi[p]a)}{\xi}$ for all $p\in R$ .

consequently by [ $2|$ Lemma 3.8] the first norm is of $L^{1}$-type on $[a]R$,
a fortiori is not strictly convex. Next we shall prove strict convexity.

Suppose that for $a\in R$ $\alpha\geqq\beta\geq 0$ , $\frac{\alpha+\beta}{2}$ $a$ is domestic and

$ m(\frac{\alpha+\beta}{2}a)=\frac{m(\alpha a)+m(\beta a)}{2}<\infty$ .

Then there exists $\overline{a}\in\overline{R}$ satisfying $(\Delta)$ together with $\frac{\alpha+\beta}{2}$ It follows

that $m(\alpha a)+\overline{m}(\overline{a})=\overline{a}(\alpha a)$ and $m(\beta a)+\overline{m}(\overline{a})=\overline{a}(\beta a)$ .
We may assume that $[\overline{a}]^{R}\leqq[a]$ and $\overline{m}(\overline{a})<1$ , because of $non- atomicity\backslash $

of $R$ and (18). Since the conjugate modular is continuous by Theorem A

and $R$ is a complete semi-normal manifold of $\overline{\overline{R}}$, we can find $b\in(I-[a])R$

$\overline{b}\in(1-[a])\overline{R}$ satisfying together $(\Delta)$ and $\overline{m}(\overline{a}+\overline{b})=1$ . Then we have
$m(\alpha a+b)+\overline{m}(\overline{a}+\overline{b})=(\overline{a}+\overline{b})(\alpha a+b)$

and $m(\beta a+b)+\overline{m}(\overline{a}+\overline{b})=(\overline{a}+\overline{b})(\beta a+b)$

from this by (22) we obtain
II $\alpha a+b||+||\beta a+b$ II
$=(\overline{a}+\overline{b})(\alpha a+b+\beta b+b)$

$\leqq||(\alpha a+b)+(\beta a+b)||$ .
Finally $(S^{\prime})$ tells us $\alpha a=\beta a$ . Thus $m$ is strictly convex. Q.E.D.

Theorem 2.2. If $m$ is striotly convex and
$(*)$ $\inf_{\neq 0}\omega(1|x)=1$ ,
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the second norm is strictly convex. If $R$ is non-atomic, the converse is
also true.

Poof. Let $m$ be strictly convex and $\inf_{x\neq(1}\omega(1|x)=1$ .
The latter assumption shows that ” $|||x|||=1$ is equivalent to ” $m(x)=1$ ”.

If $a,$ $b\in R$ $|||a|||=|||b|||=1$ Ill $a+b|||=2$ , then $m(a)=m(b)=m(\frac{\alpha+b}{2})=1$ ,

hence by $(s^{\prime})a=b$ . Thus the second norm is strictly convex. Now con-
versely, let $R$ be non-atomic and the second norm be strictly coIlvex.
Since the norm is monotone, by [2; Theorem 3.3] we obtain $\inf_{x\neq 0}\omega(1|x)=1$ .
Next suppose that for $0\neq a\in R$ $\alpha\geqq\beta\geqq 0$

$ m(\frac{\alpha+\beta}{2}a)=\frac{m(\alpha a)+(\beta a)}{2}<\infty$ .

From (19) we may assume that $[a]<I$ $m(\alpha a)\leqq 1$ , because $R$ is non-
atomic. By Lemma 1.5 there exist $b,$ $c\in R$ such that

$b+c=(\alpha+\beta)a$ , $|b-c|=(\alpha-\beta)|a|$

and $m(b)=m(c)=\frac{m(\alpha a)+m(\beta a)}{2}$

Since there exists $d\in(I-[a])R$ such that $m(b)+m(d)=1$ , we have

$m(\frac{b+d+c+d}{2})=m(\frac{\alpha+\beta}{2}a)+m(d)$

$=\frac{m(\alpha a)+m(\beta a)}{2}+m(d)=m(b)+m(d)=1$ ,

or equivalently by $(*)$ $|||b+d|||=|||c+d|||=\Vert|\frac{b+c}{2}+d\Vert|=1$ ,

then by (S) we can conclude $b=c$ , i.e. $\alpha a=\beta a$ . Thus $m$ is strictly
convex. Q.E.D.

Remark 2.1. Since we proved in [5] that $(*)$ implies continuity
of the norm, we can state ” when $R$ is non-atomic, the second norm is
strictly convex, if and only if $m$ is normal in the sense of H Nakano”.

Next we shall consider evenness.
Remark 2.2. (see [3]) Evenness of a norm implies its continuity.

Theorem 2.3. If $m$ is even, finite and infinitely increasing, then
the first norm is even. If $R$ is non-atomic, the converse is also true.

Proof. Let $m$ be even, finite and infinitely increasing. For any

6) i.e. $0\leqq a<b$ implies $\Vert|a\Vert|<\Vert|b\Vert|$ .
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$a\in R$ $\overline{a}\in\overline{R}$ satisfying 11 $a||=|||\overline{a}|||=\overline{a}(a)=1$ by Lemma 2.1 there exists
$\xi>0$ such that $ m(\xi a)+1=\xi$ , i.e. $m(\xi a)+\overline{m}(\overline{a})=\xi\overline{a}(a)$ . Then by Lemma
1.2 $\overline{a}$ is uniquely determined for $a$ . Thus (E’) is satisfied, because
finiteness implies $\overline{R}=\tilde{R}$ by Theorem C. Now conversely let $R$ be non-
atomic and the first norm be even. $m$ is infinitely increasing, as shown
in the proof of Theorem 2.1. $m$ is finite by Lemma 1.6 and Remark 2.2.
Finally suppose that for $a\in R0<[a]<I$ there exist $\overline{a}_{1},\overline{a}_{2}\in\overline{R}$ such that

$m(a)+\overline{m}(\overline{a}_{\nu})=\overline{a}_{\nu}(a)$ $(\nu=1,2)$ .
Using (18), we may assume $|\overline{a}_{1}|\leqq|\overline{a}_{2}|$ . As in the proof of Theorem 2.1
we can find $d\in(I-[a])R$ $\overline{d}\in(I-[a])\overline{R}$ such that $\overline{d}_{\cap}|\overline{a}_{2}|=0$ ,

$m(d)+\overline{m}(\overline{d})=\overline{d}(d)$ and $\frac{\overline{m}(\overline{a}_{1})+\overline{m}(\overline{a}_{2})}{2}+\overline{7n}(\overline{d})=1$ .

By Lemma 1.5 there exist $\overline{b},$ $\overline{c}\in R$ such that $\overline{b}+\overline{c}=\overline{a}_{1}+\overline{a}_{2}$ ,

$|\overline{b}-\overline{c}|=|\overline{a}_{2}-\overline{a}_{1}|$ and $\overline{m}(\overline{b})=\overline{m}(\overline{c})=\frac{\overline{m}(\overline{a}_{1})+\overline{m}(\overline{a}_{2})}{2}$ ,

hence we have $m(a+d)+\overline{m}(\overline{b}+\overline{d})=(\overline{b}+\overline{d})(a+d)$

and $m(a+d)+\overline{m}(\overline{c}+\overline{d})=(\overline{c}+\overline{d})(a+d)$ .
From this by (22) we obtain

Il $a+d||=(\overline{b}+\overline{d})(a+d)=(\overline{c}+\overline{d})(a+d)$ .
Finally by (E) we can conclude $\overline{b}=\overline{c}$ , i.e. $\overline{a}_{1}=\overline{a}_{2}$ . Thus $m$ is even
by Lemma 1.2. Q.E.D.

Theorem 2.4. If $m$ is finite and even, the second norm is even.
If $R$ is non-atomic, the converse is also true.

Proof. Let $m$ be finite and even. Then $\overline{R}=\tilde{R}$ by Theorem $C$ , and
the coniugate modular $\overline{m}$ is strictly convex and increasing by Lemma 1.3
and Theorem A. Thus by Theorem 2.1 the first norm by $\overline{m}$ is strictly
convex, consequently by (15) and Lemma 1.4 the second norm by $m$ is
even. Now conversely let $R$ be non-atomic and the second norm be even.
Finiteness of $m$ follows from Remark 2.2. For $a\in R$ $\overline{a}\in\overline{R}$ satisfying
$m(a)=1$ $1+\overline{m}(\overline{a})=\overline{a}(a)$ , it follow from (22) $||\overline{a}||=\overline{a}(a)$ . (E) show that

$\frac{\overline{a}}{|[\overline{a}||}$ is uniquely determined for $a$ . We can prove further that $\overline{a}$ itself

is uniquely determined. From this, through easy arguments we can
conclude that $m$ is even. Q.E.D.
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\S 3. Uniform convexity and uniform evenness of the norms

In this section we shall treat uniform convexity and uniform evenness
of the norms by a modular. As uniformization of convexity H. Nakano
[12] defined that a modular $m$ is said to be uniformly convex, if for
any $\gamma,$

$\epsilon>0$. there exists $\delta=\delta(\gamma, \epsilon)>0$ such that

(uc) $\left\{\begin{array}{ll}\gamma\geqq\alpha>\beta\geqq 0 & \alpha-\beta\geqq\epsilon implies\\\frac{\omega(\alpha|a)+\omega(\beta|a)}{2}\geqq\omega( & |aI+\delta for all a\neq 0.\end{array}\right.$

It is easy to see that uniform convexity implies uniform simplicity. A
modular $m$ is said to be uniformty even, if for any $\gamma,$

$\epsilon>0$ there exists
$\delta=\delta(\gamma, \epsilon)>0$ such that

(ue) $\left\{\begin{array}{ll}\gamma\geqq\alpha\geqq\int\beta|, & \alpha-\beta\leqq\delta implies\\\frac{\omega(\alpha|a)+\omega(\beta|a)}{2}\leqq\omega( & |a)+(\alpha-\beta)\epsilon for aIl a\neq 0.\end{array}\right.$

Uniform evenness implies uniform finiteness and uniform monotony.
As a relation between uniform convexity and uniform evenness, H.

Nakano [12; \S 51] proved:

Lemma 3.1. If $m$ is uniformly convex and uniformly increasing,
the associated modular is uniformly even. If $m$ is uniformly even and
uniformly increasing, then the associated modular is uniformly convex.

Corresponding to these definitions, a norm $||.||$ on a normed linear
space $S$ is said to be uniformly convex, if for any $\epsilon>0$ there exists
$\delta=\delta(\epsilon)>0$ such that

(UC) $||a||=||b||=1$ $||a-b||\geqq\epsilon$ implies $||a+b||\leqq 2-\delta$ .
A norm is said to be un’iformly even, if for any $\epsilon>0$ there exists
$\delta=\delta(\epsilon)>0$ such that

$(UE)$ $\{$

$||a||=||b||=1$ $ 0\leqq\xi\leqq\delta$ implies
$||a+\xi b||+||a-\xi b||\leqq 2+\xi\epsilon$ .

Lemma 3.2. ([13; \S 77]) Uniform convexity and uniform evenness
of norms are associated.

H. Nakano [13; gg 87-88] derived uniform convexity of the norms
from that of $m$ .

Theorem 3.1. (1) If $m$ is uniformly convex and uniformly in-
creasing, the first norm is uniformly convex.
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(2) If $m$ is uniformly convex and $unifo\gamma mly$ finite, the second norm
is uniformly convex.

Now we shall prove the converse in the case $R$ is non-atomic. The
following remark is useful.

Remark 3.1. If $R$ is non-atomic and the norm is uniformly convex,
the associated norm together with it is continuous, hence by Lemma $1.6\backslash $

Theorem $B$ and Theorem $Cm$ is uniformly finite and uniformly in-
creasing.

Theorem 3.2. Let $R$ be non-atomic. If the first norm is uniformly
convex, then $m$ is uniformly convex.

Proof. First fix $\gamma$

$\epsilon>0$ . For any $0\leqq a\in R$ $m(a)=1$ and for any
$\alpha,$

$\beta\geqq 0$ $\gamma\geqq\alpha\geqq\beta$ $\alpha-\beta\geqq\epsilon$ by Lemma 2.1 there exists $\overline{a}\in\overline{R}$ such that

$[\overline{a}]^{R}\leqq[a]<I$ and $m(\frac{\alpha+\beta}{2}a)+\overline{m}(\overline{a})=\overline{a}(\frac{\alpha+\beta}{2}a)$ .
If $\overline{m}(\overline{a})\geqq 1$ , by non-atomicity of $R$ we can find $p\in R$ such that
$\overline{m}([p]\overline{a})=1$ . If $\overline{m}(\overline{a})<1$ there exist $d\in(1-[a])R$ $\overline{d}\in(I-[a])\overline{R}$ such

that $\overline{m}(\overline{a}+\overline{d})=1$ and $m(d)+\overline{m}(\overline{d})=d^{-}(d)$ .
Put $\overline{x}=[p]\overline{a}$ , $x_{1}=\alpha[p]a$ $x_{2}=\beta[p]a$ in the former case,
or $\overline{x}=\overline{a}+\overline{d}$ , $x_{1}=\alpha a+d$ $x_{2}=\beta a+d$ in the latter case.
By Lemma 1.5 there exists $b,$ $c\in R$ such that

$b+c=x_{1}+x_{2}$ , $|b-c|=|x_{2}-x_{1}|\geqq(\alpha-\beta)[p]|a|$

and 11 $b||=$ Il $c||$ ,

because the first norm is continuous. From the definition of $p$ and by

(22) we obtain $\frac{\alpha+\beta}{2}||[p]a||=\overline{a}(\frac{\alpha+\beta}{2}[p]a)\geqq\pi_{-}([p]\overline{a})\geqq 1$ , consequenly

$||[p]a||\geqq 1/\gamma$ and 11 $b||=||c||\geqq\frac{1}{2\gamma}$ .

On the other hand, by Remark 3.1 and Theorem $B\overline{m}$ is uniformly finite,
hence there exists a constant $\rho>0$ such that

$\overline{\pi}_{+}(\overline{y})\leqq\rho$ for all $\overline{y}\in R$ $\overline{m}(\overline{y})\leqq 1$ .
Since the first norm is uniformly convex by assumption, there exists $\delta>0$

such that $ 2\rho\geqq||x||=||y||\geqq 1/2\gamma$
$||x-y||\geqq\frac{\epsilon}{\gamma}$

implies $||x+y||\leqq 2(||x||-\delta)$ (cf. [13: \S 76]).
If $\overline{x}(b)+\delta\geqq m(b)+\overline{m}(\overline{x})\equiv m(b)+1$ and $\overline{x}(c)+\delta\geqq m(c)+\overline{m}(\overline{x})\equiv m(c)+1$ ,
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it follows from (8) and (15)

il $b+c||+2\delta\geqq||b||+||c||=2||b||$
contradicting the above, because 11 $b-c||\geqq(\alpha-\beta)$ II $[p]a||\geqq\frac{\epsilon}{\gamma}$

and $\Vert\frac{b+c}{2}\Vert\leqq\overline{\pi}_{+}(\overline{x})\leqq\rho$ .

Thus we have, say, $\overline{x}(b)+\delta\leqq m(b)+1$ . On the other hand, by (11) we know
$\overline{x}(c)\leqq m(c)+\overline{m}(\overline{x})=m(c)+1$ ,

hence
$\overline{x}(\frac{b+c}{2})+\frac{\delta}{2}\leqq\frac{m(b)+m(c)}{2}+1$ .

Since from the definition we. have

$m(\frac{b+c}{2})+\overline{m}(\overline{x})=\overline{x}(\frac{b+c}{2})$

we can conclude
$m(\frac{b+c}{2})+\frac{\delta}{2}\leqq\frac{m(b)+m(c)}{2}$ .

From this by (4) and (6) we can deduce

$m(\frac{\alpha+\beta}{\dot{2}}a)+\frac{\delta}{2}\leqq\frac{m(\alpha a)+m(\beta a)}{2}$ .

Thus $m$ is uniformly convex, because for any $0<x\in R|||x|||=1$ there exist
$0<x_{\nu}\in R$ such that 111 $x_{\nu}|||=1[x_{\nu}]<I(\nu=1,2, \cdots)$ and $\lim_{\nu\infty}m(\xi x_{\nu})=m(\xi x)$

for all $\xi\geqq 0$ . Q.E.D.

Theorem 3.3. Let $R$ be non-atomic. If the second norm is uni-
formly convex, then $m$ is uniformly convex.

Proof. For any $\gamma>1>\epsilon>0$ and for aixy $0\leqq a\in R$ $m(a)=1$ there

exists $p\in R$ such that $[p]<I$ and $\frac{1}{2\gamma}\leqq|||[p]a$ Ill $\leqq\frac{1}{\gamma}$ . Since the second

norm is uniformly convex by assumption, there exists $\delta>0$ such that
$|||x|||=|||y|||=1$ , $|||x-y|||\geqq\epsilon/2\gamma$

implies 111 $x+y|||\leqq 2(1-\delta)$ .
For any $\alpha,$

$\beta\geqq 0$ $\gamma\geqq\alpha\geqq\beta$ , $\alpha-\beta\geq\epsilon$ , by Lemma 1.5 there exist $b,$ $c\in R$

such that $b+c=(\alpha+\beta)[p]a$ I $b-c|=(\alpha-\beta)[p]a$
and $m(b)=m(c)=\frac{m(\alpha[p]a)+m(\beta[p]a)}{2}$
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Choose $d\in(1-[p])R$ such that $m(b)+m(d)=1$ , then we have

ill $b+d$ llI $=|||c+d|||=1$

and Hl $(b+d)-(c+d)|||=|||b-c|||=(\alpha-\beta)$ II1 $[p]a|||\geqq\frac{\epsilon}{2\gamma}$ ,

hence we have
$m(\frac{\alpha+\beta}{2}[p]a)+m(d)\leq\Vert|\frac{(b+d)+(c+d)}{2}\Vert|$

$\leqq 1-\delta=\frac{m(a[p]a)+m(\beta[p]a)}{2}+m(d)-\delta$ ,

consequently $m(\frac{\alpha+\beta}{2}[p]a)+\delta\leqq\frac{m(\alpha[p]a)+m(\beta[p]a)}{2}$ .

Finally by (6) and (11) we can conclude

$m(\frac{\alpha+\beta}{2}a)+\delta\leqq\frac{m(\alpha a)+m(\beta a)}{2}$ ,

thus $m$ is $u\grave{n}iformly$ convex. Q.E.D.

Combining the above two theorems, we obtain a quite simple relation.
Theorem 3.4. Let $R$ be non-atomic. Then the following conditions

are mutually equivalent:
(1) $m$ is uniformly convex.
(2) The first norm is uniformly convex.
(3) The second norm is uniformly convex.

Proof. If $m$ is uniformly convex, it is uniformly simple, hence by
Lemma 1.6 uniformly finite. Then Theorem 3.1 is applicable, and the
second norm is uniformly convex, i.e. (1) $\rightarrow(3)$ . If the second norm is
uniformly convex, by Remark 3.1 and Theorem 3.3 $m$ is uniformly convex
and uniformly increasing, consequently by Theorem 3.1 the first norm is
uniformly convex, i.e. (3) $\rightarrow(1)\rightarrow(2)$ . (2) $\rightarrow(1)$ follows from Theorem 3.2.

Q.E.D.

Theorem 3.5. Let $R$ be non-atomic. Then the following conditions
are mutually equivalent:
(1) $m$ is uniformly even.
(2) The first norm is uniformly even.
(3) The second norm is uniformly even.

The assertion follows from (15), Lemma 3.1, Lemma 3.2 and Theorem
3.4.
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Chapter II. Equivalent Modulars

\S 4. Some topological properties

When Banach spaces are considered, usually reflexivity and weak
completeness are discussed. But when we consider semi-ordered Banach
space, further continuity of norms comes into question. In this section
we shall investigate these properties in relation to concrete spaces and
order-structures of the space. Throughout this section $(S, ||.||)$ denotes a
semi-ordered Banach space.

$l_{\infty}(\Lambda)$ denotes the Banach space, consisting of all bounded real function
on A with the norm: II $a||=\sup_{\lambda\in\Lambda}|\xi_{\lambda}$ I for $a=(\xi_{\lambda})$ , and $l_{1}(\Lambda)$ denotes the

Banach space, consisting of all real functions on $\Lambda$ such that $\sum_{\lambda}|\xi_{\lambda}|<\infty$ ,

with the norm: Ii $a||=\sum_{\lambda\in\Lambda}|\xi_{\lambda}|$ for $a=(\xi_{\lambda})$ . When $\Lambda$ is a set of countable

points, we write simply $l_{\infty}$ and $l_{1}$ . $c_{0}$ denotes the closed linear subspace
of $l_{\infty}$ , consisting of all null sequences.

$S$, considered as a semi-ordered linear space, is said to be uniformfy
continuous, if for any $a_{\nu}\downarrow_{\nu\approx 1}^{\infty}0$ there exists $a_{0}\in S$ and $\{\epsilon_{\nu}\}_{\nu=1}^{\infty}$ such that
$\epsilon_{\nu}\downarrow_{\nu=1}^{\infty}0$ $a_{\nu}\leqq\epsilon_{\nu}a_{0}(\nu=1,2, \cdots)$ . A subset $A$ of $S$ is said to be C-bounded, if
$\{a_{\nu}\}_{v=1}^{\infty}\subseteqq A$ $\sum_{\nu=1}^{\infty}\alpha_{v}<\infty^{7)}$ implies $\sum_{\nu=1}^{\infty}\alpha_{\nu}a_{\nu}<+\infty^{8)}$ . $S$ is said to be K-bounded,

if every C-bounded subset $\{a_{\lambda}\}_{\lambda\in\Lambda}$ such that $0\leqq a_{\lambda}\uparrow_{\lambda\in A}$ is bounded, i.e.
$a_{\lambda}\leqq a_{0}$ for some $a_{0}(\lambda\in\Lambda)$ . It is known (see [12; \S 30] and [16]) that.
when $(S, ||.||)$ is complete, C-boundness is equivalent to boundedness under
the norm, and K-boundedness is equivalent to monotone completeness. $S$

is said to be contractile, if for any orthogonal system of positive elements
$\{a_{\lambda}\}_{\lambda\in\Lambda}$ , where $\Lambda$ is a set of uncountable indices, there exist $\{\alpha_{\nu}\}_{\nu\Rightarrow 1}^{\infty}$ and
$\{a_{\lambda_{\nu}}\}_{\nu=1}^{\infty}\subseteqq\{a_{\lambda}\}_{\lambda\in\Lambda}$ such that $\sum_{\nu=1}^{\infty}\alpha_{\nu}=\infty$ and $\sum_{\nu=1}^{\infty}\alpha_{\nu}a_{\lambda_{\nu}}<+\infty$ . $S$ is said to

be strictly contractile, if for any C-bounded orthogonal sequence of posi-

tive elements $\{a_{\nu}\}_{\nu=1}^{\infty}$ there exist $\{\alpha_{\nu}\}_{\nu=1}^{\infty}$ such that $\sum_{\nu=J}^{\infty}\alpha_{\nu}=\infty$ and $\sum_{\mu=J}^{\infty}\alpha_{\nu}a_{\nu}$

$<+\infty$ . We call a subspace $V$ of a Banach space $S$ a direct factor, if
there exists a bounded linear projection from $S$ onto $V$.

Theorem 4.1. The following conditions are mutually equivalent:

7) $\alpha,$
$\beta$ denote positive real numbers, and $a,$

$b$ positive elements of $S$ .
8) $\sum_{\nu=1}^{\infty}a_{\nu}<+\infty$ means that $\{\sum_{\nu=1}^{\iota}a_{\nu}\}_{\kappa=1}^{\infty}$ is (order).bounded.
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(1.1) The norm on $S$ is continuous.
(1.2) $S$ is uniformly continuous.
(1.3) $(S, ||.||)$ does not contain any subspace isomorphic to $l_{\infty}$ .

Proof. $(1.1)\Leftrightarrow(1.2)$ is proved in [12; \S 30]. For $(1.3)\rightarrow(1.1)$ , see [3].
Finally if $(S, ||.||)$ contains a subspace $M$ isomorphic to $l_{\infty}$, denote by $V$

the closed subspace of $M$ corresponding to $c_{0}$ under the isomorphic mapping.
A. Sobszyk [15] showed that for any closed separable subspace $U$ such
that $V\subseteqq U\subseteqq M,$ $V$ is a direct factor of $U$ but $U$ is never that of $M$.
Since $M$ is a direct factor of $S$ (see [9; p. 94]), any separable closed sub-
space of $S$ containing $V$ can not be a direct factor of $S$. Hence $(1.1)\rightarrow$

(1.3) is a consequence of the following lemma.
Lemma 4.1. If the norm on $S$ is continuous, for any $\{a_{\nu}\}_{\nu=1}^{\infty}\subseteq S$

there exists a separable closed subspace $V\supseteqq\{a_{\nu}\}_{\nu=1}^{\infty}$ , which is a direct
factor of $S$.

Proof. We may assume that there exists $0\leqq\overline{a}_{0}\in\overline{S}$ with $[\overline{a}_{0}]^{R}=I$.
Let $V$ be the least order-closed (a fortiori closed) linear lattice manifold
containing $\{a_{\nu}\}_{\nu=1}^{\infty}$ , then by continuity of the norm $V$ is separable.
We may assume that $[V]=I$. Let $\hat{U}$ be the least order-closed linear
manifold of $\overline{S}$ containing all $[p]\overline{a}_{0}$ . $(p\in V)$ . Then for any $\overline{a}\in\hat{U}$ there
exists $a\in V$ with $[\overline{a}]^{R}=[a]$ , hence the mapping $\hat{U}\ni\overline{a}\rightarrow\overline{a}^{\prime}\in\overline{V}$ defined by

$\overline{a}^{\prime}(x)=\overline{a}(x)$ for all $x\in V$

is one-to-one. On the other hand, by HahnBanach’s theorem (see [9; \S 3])
and Theorem $C$ for any $0\leqq\overline{b}^{\prime}\in\overline{V}$ there exists $0\leqq\hat{b}\in\overline{S}$ such that

$\hat{b}(x)=\overline{b}^{\prime}(x)$ for all $x\in V$.
Put $\overline{b}_{0}=$

$\cup\wedge\overline{x}$ then we can prove $\overline{b}_{0}^{\prime}=\overline{b}^{\prime}$ . Thus we have proved that
$0\ovalbox{\tt\small REJECT} ae\underline{\underline{<}}b\overline{x}\in\hat{U}$

$\hat{U}$ is order-isomorphic to the coniugate space $\overline{V}$ of $V$ under the mapping
indicated. Since $(\hat{U}, ||-||)$ and (V, $||.||_{*}$ ) are both Bach spaces, where
Il $\overline{x}^{\prime}||_{*}=\sup_{x\in V,||x||\leqq 1}|\overline{x}^{\prime}(x)|$ for $\overline{x}^{\prime}\in\overline{V}$, by Theorem $C$ there exists $\alpha>0$ such

that II $\overline{a}||\leqq\alpha||\overline{a}^{\prime}||_{*}$ for all $\overline{a}\in\hat{U}$ .
We can define a mapping $T$ from $S$ to $\overline{\overline{V}}$ by

Ta $(\overline{x}^{\prime})=\overline{x}(a)$ for $a\in S,\overline{x}\in\hat{U}$,
then we have $||Ta||_{*}\leqq\backslash \alpha||a||$ for all $a\in S$, where $||\cdot||_{*}$ is the norm on $\overline{\overline{V.}}$

Since $V$ is a complete semi-normal manifold of $\overline{\overline{V_{f}}}$ we have from the
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definition of $T$ , $Ta\in V$ for all $a\in S$ satisfying 1 $a|\leqq x$ for some $x\in V$.
Since for any $0\leqq a\in S$ there exist $0\leqq a_{\nu}\uparrow_{\nu\Rightarrow 1}^{\infty}a$ such that $a_{\nu}\leqq x_{\nu}$ for some
$x_{\nu}\in V(\nu=1,2, \cdots)$ , we have

$||$ Ta.–Ta $||_{*}\leqq\alpha||a-a_{\nu}||$ $(\nu=1,2, \cdots)$ .
Since the norm on $S$ is continuous, $\lim_{\nu+\infty}||a_{\nu}-a||=0$ . Simce $V$ is closed,

we can conclude $Ta\in V$. Thus $T$ is a bounded linear projection from $S$

onto the separable subspace $V$. Q.E.D.

Theorem 4.2. The following conditions are mutually equivalent:

(2.1) $(S, ||.||)$ is weakly complete.9)

(2.2) $S$ is uniformly continuous and K-bounded.
(2.3) $(S, ||.||)$ does not contain any subspace isomorphic to $c_{0}$ .

Proof. $(2.1)\rightarrow(2.3)$ , for $c_{0}$ is not weakly complete. $(2.3)\rightarrow(2.2)$ If
($S,$ $||$ . Il) contains no subspace isomorphic to $c_{0}$ , the norm is continuous and
$S$ is monotone complete, henoe $S$ is uniformly continuous and K-bounded.
$(2.2)\rightarrow(2.1)$ If $S$ is uniformly continuous and K-bounded by [12; Theorem
32.7] it is order-reflexive. Then by [12; Theorem 27.5] ($S;||$ . Il) is weakly

complete, because $\tilde{S}=\overline{S}$ by Theorem C. Q.E.D.

Before considering reflexivity, we shall treat continuity of the associ-
ated norm for the later use.

Lemma 4.2. If the associated space $\tilde{S}$ is uniformly continuous, $S$

is strictly contractile. Conversely if $S$ is strictly contractile, the con-
jugate space $\overline{S}$ is uniformly continuous.

Proof. Let $\tilde{S}$ be uniformly continuous and $\{a_{\nu}\}_{\nu=1}^{\infty}$ be a C-bounded
orthogonal sequence of positive elements of $S$ . For any $0\leqq\tilde{a}\in\tilde{S}$ we have
$\lim_{+\infty}\tilde{a}(a_{\nu})=0$ , because otherwise $\lim_{\nu\rightarrow\infty}||[a_{\nu}]\tilde{a}$ il $\neq 0$ contradicting continuity

of the associated norm. Devide the set of all natural number into a
countable subsets $\{I.\}_{\nu=1}^{\infty}$ , each consisting of countable elements. From
the above and by a theorem on separation of convex sets (see [9; \S 6])
there exist $\kappa_{\nu}\in I_{\kappa}$ $(\nu=1,2, \cdots, \rho_{\iota}, \kappa=1,2, \cdots)$

and $0\leqq\alpha_{\nu,*}$ $(^{\prime}\nu=1,2, \cdots, \rho_{\iota} ; \kappa=1,2, \cdots)$

such that $\sum_{\nu\approx 1}^{\rho_{\kappa}}\alpha_{\nu,\kappa}=1$ and $\Vert\sum_{\nu=1}^{\rho_{\kappa}}\alpha_{\nu,\kappa}a_{\kappa_{\nu}}\Vert\leqq\frac{1}{2^{l}}$ (rc $=1,2,$ $\cdots$ ).

Arranging $\{\kappa_{\nu}\}_{\nu,*}$ in a line, we have $\sum_{\nu,\kappa}\alpha_{\nu},.=\infty$

$\sum_{\iota\approx 1}^{\infty}\sum_{\nu=1}^{\rho_{\kappa}}\alpha_{\nu,\kappa}a_{\kappa_{\nu}}<+\infty$ ,

9) Sequentially complete under the weak topology.
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because $\sum_{\kappa=1}^{\infty}\Vert\sum_{\nu=1}^{\rho_{\kappa}}\alpha_{\nu,\kappa}a_{\kappa_{\nu}}\Vert\leqq 1$ . Thus $S$ is strictly contractile. Conversely let
$S$ be strictly contractile. If the conjugate space $\overline{S}$ is not uniformly con-
tinuous, by Theorem 4.1 there exist $0<\overline{a}\in\overline{S}$ and orthogonal $\{p_{\nu}\}_{\nu\Rightarrow 1}^{\infty}$ such
that $\inf_{\nu=1,2}\ldots||[p_{\nu}]\overline{a}||>\epsilon>0$ for some $\epsilon$ .
Further there exist $\{a_{\nu}\}_{\nu=1}^{\infty}$ such that

$[p_{\nu}]a_{\nu}=a_{\nu}$ , $||a_{\nu}||=1$ , $\overline{a}(a_{\nu})>\epsilon$ $(\nu=1,2, \cdots)$ .
Since $\{a_{\nu}\}_{\nu=1}^{\infty}$ is C-bounded, by assumption there exist $\{\alpha_{\nu}\}_{\nu=1}^{\infty}$ such that

$\sum_{\nu=l}^{\infty}\alpha_{\nu}=\infty$ and $\sum_{\nu=1}^{\infty}\alpha_{\nu}a_{\nu}<+\infty$ . Then we have

$\frac{\kappa\epsilon}{2}\leqq\sum_{\nu=1}^{\infty}\alpha_{\nu}\overline{a}(a_{\nu})\leqq\overline{a}(\sum_{\nu=1}^{\infty}\alpha_{\nu}a_{\nu})<\infty$ $(\kappa=1,2, \cdots)$ .
Clearly this is a contradiction. Q.E.D.

A semi-ordered linear space $S$ is said to be superuniversally con-
tinuous, if $a_{\lambda\cap}a_{\mu}=0(\lambda\neq\mu)$ , $a_{i}\leqq a$ implies $a_{\lambda}=0$ except for countable
indices. Then quite similarly as in Lemma 4.2 we can prove:

Lemma 4.3. If the associated space $\tilde{S}$ is superuniversally con-
tinuous, $S$ is contractile. Conversely if $S$ is contractile, the conjugate
space $\overline{S}$ is superuniversally continuous.

Reinark 4.1. If $\overline{S}=\tilde{S}$, namely the norm on $S$ is continuous, strict
contractility (resp. contractility) is a nec\‘essary and sufficient condition
for the uniform continuity (resp. superuniversal continuity) of the as-
sociated space.

Remark 4.2. As is shown in [4], if $S$ is a modulared semi-ordered
linear space, uniform continuity (resp. superuniversal continuity) of
the conjugate space $\overline{S}$ implies that of the associated space $\tilde{S}$.

Theorem 4.3. The following conditions are mutually equivalent.
(3.1) $(S, ||.||)$ is reflexive (as a Banach space).
(3.2) $S$ is K-bounded, uniformly continuous and strictly contractile.
(3.3) $(S, ||.||)$ does not contain any subspace isomorphic to $c_{0}$ or to $l_{1}$ .

Proof. $(3.1)\rightarrow(3.3)$ , for neither $c_{0}$ nor $l_{1}$ is reflexive. $(3.3)\rightarrow(3.2)$

If $(S;||.||)$ does not contain any subspace isomorphic to $c_{0}$ nor to $l_{1}$ , then
by Theorem 4.2 $S$ is K-bounded and uniformly continuous. If $S$ is not
strictly contractile, there exists a orthogonal sequence of positive elements
$\{a_{\nu}\}_{v=}^{\infty}l$ of $S$ such that $\alpha_{\nu}>0\sum_{\nu=l}^{\infty}\alpha_{\nu}a_{\nu}<+\infty$ implies $\sum_{\nu=1}^{\infty}\alpha_{\nu}<\infty$ . This means
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that the subspace generated by $\{a_{\nu}\}_{\nu=1}^{\infty}$ is isomorphic to $l_{1}$ , this contradict
the assumption. $(3.2)\rightarrow(3.1)$ If $S$ is K-bounded, uniformly continuous
and strictly contractile, by Theorem 4.2 and Lemma 4,2 ($S;||$ . Il) is weakly

complete and the associated space is uniformly continuous, because $\overline{S}=\tilde{S}$.
Then as is well-known, ($S;||$ . Il) is reflexive. Q.E.D.

\S 5. Methods of construction of new modulars

Two modulars $m_{1},$ $m_{2}$ on a semi-ordered linear space is said to be
equivalent, if their modular norms are equivalent. In this section $R$ denotes
a modulared semi-ordered linear space with a modular $m$ . The most simple
principles of construction of equivalent modulars are the following:
(i) If $m_{1}$ is another modular on $R$ whose modular norm is weaker
than that by $m$ , then the functional $m+m_{1}$ is an equivalent modular.
(ii) If $\overline{m}^{1}$ is a modular on $\overline{R}$, equivalent to the conjugate modular $\overline{m}$

of $m$ , the coniugate modular $m_{1}$ of $m^{\neg 1}$ , considered on $R$ , is a modular on
$R$ equivalent to $m$ .

H. Nakano [12; Chap. IX] discovered an intrinsic method of con-
struction of a modular. In the remainder of this section, we shall re-
formulate some of his results in a convenient form.

Let $\overline{m}^{1}$ be a modular on $\overline{R}$ equivalent to the conjugate modular $\overline{m}$.
Then there exists an operator $T$ from the domain

$F=\{x;x\geqq 0m(x)<\infty\}$ to $\overline{F}=\{\overline{x};\overline{R}\ni\overline{x}\geqq 0\overline{m}^{1}(\overline{x})<\infty\}$ such that
$\overline{m}^{1}([p]Ta)^{10)}\leqq m([p]a)$ for all $p\in R$ $a\in F$

and ” $\overline{m}^{1}([p]\overline{x})\leqq m([p]a)$ for all $p\in R$ ’ implies $\overline{x}\leqq Ta$ . In fact, we
can define $T$ by the formula:
(23) $Ta=U$ {hi; $\overline{m}^{1}([p]\overline{x})\leqq m([p]a)$ for all $p\in R$}.
If $\overline{m}^{1}$ is continuous, we have further
$(\dot{2}4)$ $\overline{m}^{1}([p]Ta)=m([p]a)$ for all $p\in R$ $a\in F$.
For, if $\overline{m}^{1}([p_{0}]Ta)<m([p_{0}]a)$ for some $0\neq[p_{0}]\leqq[a]$ , there exists
$0<\overline{a}\in\overline{R}$ such that $[p_{0}]\overline{a}=\overline{a}$ and $\overline{m}^{1}([p_{0}]Ta+\overline{a})<\infty$ because of continuity
of $\overline{?n}^{1}$ . Suitably modifying $\overline{a}$, we may assume that

$’\overline{\sim n}^{1}([p]Ta+[p]\overline{a})\leqq m([p]a)$ for all $[p]\leqq[p_{0}]$ ,

Then $\cdot$ from the definition $0.fT$ we have $[p_{0}](Ta+\overline{a})\leqq Ta$ , contradicting
$\overline{a}>0$ .

10) We use $[p]\overline{x}$ insteated of $\overline{x}[p]$ .
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Lemma 5.1. If $m$ is continuous and $\overline{m}^{1}$ is a modular on $\overline{R}$ equi-
valent to the conjugate modular $\overline{m}$ , then there exists a modular $m_{*}$ on
$R$ which is equivalent to $m$ and satisfies

$ m_{*}(a)=\int_{0}lT\xi a(a)d\xi$ for all $a\in F$,

where $T$ is defined by (23).

Proof. Without loss of generality we may assume that $(R, m)$ is
monotone complete. We define first a functional $m_{1}$ on $F$ by

$ m_{1}(a)=\int_{0}JT\xi a(a)d\xi$ for all $a\in F$.

Since $T\xi a(a)$ is an increasing function of $1\geqq\xi\geqq 0$ , $m_{1}(\xi a)$ is a convex
function of $1\geqq\xi\geqq 0$ for every $a\in F$, hence for any $a,$ $b\in F$ and $0\leqq\alpha\leqq 1$

$m_{1}(\alpha a+(1-\alpha)b)\leqq\alpha m_{1}(a)+(1-\alpha)m_{1}(b)$ .
From the integration theory, $0\leqq a_{\lambda}\uparrow_{\lambda\in\Lambda}a\in F$ implies $\sup_{\lambda\in}m_{1}(a_{\lambda})=m_{1}(a)$ .
If $a,$ $b\in F$ $a_{\cap}b=0$ , then

$T\xi(a+b)(a+b)=T\xi a(a)+T\xi b(b)$ for $0\leqq\xi\leqq 1$ ,

consequently $m_{1}(a+b)=m_{1}(a)+m_{1}(b)$ .
Define a functional $\overline{m}^{*}$ on $\overline{R}$ by the formula:

(25) $\overline{m}^{*}(\overline{a})=\sup_{x\in F}\{|\overline{a}|(x)-m_{1}(x)\}$ for $\overline{a}\in\overline{R}$,

then we shall show that $\overline{m}^{*}$ satisfies all the modular conditions. The
conditions except (3) are easily tested (see [12; \S 38]). Generally we can
prove (see. [12; \S 58]): $T\frac{1}{2}a(\frac{1}{2}a)\leqq m_{1}(a)$

and Ta$(b)+Tb(a)\leqq Ta(a)+Tb(b)$ for $a,$ $b\in F$ .
For any $0\leqq\overline{a}\in\overline{R}$ there exists $\alpha>0$ such that $\overline{m}^{1}(\alpha\overline{a})<\infty$ . By continuity
of $m$ , using (24) we can find $a\in F$ such that

$\overline{m}^{1}(\alpha[p]\overline{a})=m([p]a)$ for all $\dot{p}\in R$ ,

hence by the definition (23) we have $\alpha\overline{a}\leqq Ta$ , hence it follows that
$\alpha\overline{a}(\frac{1}{2}x)\leqq Ta(24x)\leqq\{Ta(a)+T\frac{1}{2}x(2Lx)\}$

$\leqq Ta(a)+m_{1}(x)$ for all $x\in F$,

consequently $\overline{m}^{*}(\frac{\alpha}{2}\overline{a})=\sup_{x\in F}\{\frac{\alpha}{2}\overline{a}(x)-m_{1}(x)\}\leqq Ta(a)<\infty$ .

Since for any $0\leqq x\in R$ there exists $\beta>0$ such that $ m(\beta x)<\infty$ , from the
above consideration we can conclude that $(\overline{R},\overline{m}^{*})$ is monotone complete,
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hence by Theorem $C\overline{m}^{*}$ is equivalent to $\overline{m}$ . Define $m_{*}$ on $R$ a8 the
conjugate modular of $\overline{m}^{*}$ . We can prove as in [12; \S 39] that

$m_{*}(a)=m_{1}(a)|$ for all $a\in F$. Q.E.D.

We conclude this section with an example of change of a modular.
Therem 5.1. Every modular is equivalent to one whieh is con-

tinuous and infinitely increasing at the same time. If the $0\gamma iginal$

modular is strictly convex (or even), the obtained one can be also.
The proof is not difficult and is left to the readers.

\S 6. Strict convexity

In gg 6-7 let $(R, m)$ be eomplete under the modular norm. Our aim
in this section iv to investigate conditions under which we can introduce
a new modular on $R$ that is equivalent to the original and possesses
some prescribed properties (for example, strict convexity, uniform con-
vexity, etc.). We wish to express these conditions in connection with
topological and order structures of $R$ . Our investigation was motivated
by the question: “ what kinds of properties are invariant under an iso-
morphism11) between two modulared semi-ordered linear spaces ?” Since,
as is shown in Chapter I, convexity and evenness of a modular are in
close connection with those of their norms, our results give answers for
the question: under what conditions the modular norm is equivalent to a
strictly convex (uniformly convex, etc.) norm. Problems of this type
were treated in the theory of Banach spaces by M. M. Day [8]. Supported
by some of his results, we shall give almost complete answers, so far as
modulared semi-ordered linear spaces are considered.

In the sequel, (M.), $(0.)$ , (T.) pand (N.) denote respectively a condition
related to the modular structure of $R$ , to the order one, to the topological
one and to the type of norms.

We begin with almost finiteness, though it has no direct connection
with strict convexity and evenness. Consider the atomic part $R_{a}$ of $R$ .
In $R_{d}$ there exists a system of atoms $\{d_{\lambda}\}_{\lambda\in\Lambda}$ such that

$\bigcup_{\lambda\in\Lambda}[d_{\lambda}]=[R_{a}]$ , $d_{\lambda\cap}d_{\mu}=0$ $(\lambda\neq\mu)$ $|||d_{\lambda}|||=1$ $(\lambda, \mu\in\Lambda)$ .
We call $\{d_{\lambda}\}_{\lambda\in A}$ the complete system of atoms (with respect to $m$). Let
$\{\overline{d}_{\lambda}\}_{\lambda\in\Lambda}$ be the complete system of atoms of $\overline{R}$ with respect to the con-
iugate modular $\overline{m}$ . If we put

11) Isomorphic as Banach spaces.
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$\varphi_{\lambda}(\xi)=\{(\xi-\overline{\eta\gamma\iota}(\overline{d}_{\lambda}))^{2}+\overline{m}(\xi\overline{d}_{\lambda})$

for $ 1<\xi$ ,

$\overline{m}(\xi\overline{d}_{\lambda})$ for $0\leqq\xi\leqq 1$ ,

each $\varphi_{\lambda}(\xi)$ is. a convex function of $\xi\geqq 0$ . Defining a new functional $\overline{m}_{a}$

on $\overline{R}_{a}$ by
$\overline{m}_{a}(\overline{a})=\sum_{\lambda\in A}\varphi_{\lambda}(\xi_{\lambda})$ where $\xi_{\lambda}\overline{d}_{\lambda}=[d_{\lambda}^{-}]|\overline{a}|$ $(\lambda\in\Lambda)$ ,

we obtain a modular satisfying

$\overline{m}_{d}(\overline{a})\geqq\overline{m_{I}}(\overline{a})$ for all $\overline{a}\in\overline{R}_{d}$ and $\overline{m}_{a}(\overline{a})=\overline{m}(\overline{a})$ for $\overline{a}\in\overline{R}_{d}\overline{m}(\overline{a})\leqq 1$ .
Thus $\overline{\gamma n}_{a}$ is a modular on $\overline{R}_{a}$ , equivalent to $’\overline{jn}$ . From the definition (26)-

(27) we can see without difficulty that $\overline{m}$ is increasing. Hence by Theo-
rem A the conjugate modular of $\overline{m}_{d}$ (considered on $R_{f}()$ is almost finite
and equivalent to $m$ . Thus any modular is always equivalent to an
almost finite one on the atomic part.

On the other hand, there exists the decomposition of the non-atomic
part $R_{c}$ : $R_{c}=R_{c,1}\oplus R_{c,2}$ such that $m$ is almost finite on $R_{c,1}$ and infinite
on $R_{c,2}$ (see [12; \S 44]). Since we may assume by Theorem 5.1 continuity

of $m$ , by [12, Theorem 44.16] there exists $0<a_{0}\in R_{c,2}$ such that for any
$x\in R$ there exists $\alpha>0$ satisfying $[a_{0}]|x|\leqq\alpha a_{0}$ .

Theorem 6.1. The following conditions are mutually equivalent:

$(M_{af})$ $m$ is equivalent to an almost finite modular.
$(O_{af})$ For any non-atomic $0<a\in R$ there exists $b\in[a]R$ such that

$(b-\nu a)^{+}\neq 0$ $(\nu=1,2, \cdots)$ .
Proof. $(O_{af})\rightarrow(M_{af})$ is proved above. If for some non-atomic

$0<a\in R$ and for any $x\in[a]R$ there exists $\alpha>0$ such that 1 $x|\leqq\alpha a$ , any

non-trivial semi-normal manifold of $[a]R$ is not uniformly continuous as
itself, hence by Theorem 4.1 on any semi-normal manifold of $[a]R$ the
modular norm is not continuous. This means that $R$ does not admit any
equivalent modular which is almost finite, i.e. $(M_{af})\rightarrow(O_{af})$ . Q.E.D.

Theorem 6.2. The following conditions are mutually equivalent:

$(M_{i})$ $m$ is equivalent to an increasing modular.
$(O_{i})$ For any non-atomic $0<a\in R$ there exist $\{\alpha_{\nu}\}_{\nu=1}^{\infty}$ and $\{a_{\nu}\}_{\nu\Leftarrow J}^{\infty}\subseteqq[a]R$

such that $\sum_{\nu=l}\alpha_{\nu}=\infty$ and $\sum_{\nu\Leftarrow 1}\alpha_{\nu}\beta_{\nu}a_{\nu}<+\infty$ for all C-bounded set

of the form $\{\beta_{\nu}a_{\nu}\}_{\nu=1}^{\infty}$ .
Proof. If $m$ is not equivalent to any increasing modular, by Theorem

A the conjugate modular $\overline{m}$ is not -equivalent to any almost finite modular.
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Then by Theorem 6.1 there exists a non-atomic $0<\overline{a}\in\overline{R}$ such that for
any $\overline{x}\in[\overline{a}]\overline{R}$ there exists $\alpha>0$ with $|\overline{x}|\leqq\alpha\overline{a}$ . Then clearly the norm
defined on $[\overline{a}]^{R}R$ by

(29) $||x||_{*}=\overline{a}(|x|)$ for $x\in[\overline{a}]^{R}R$

is equivalent to the modular norm by $m$ . Let $\{a_{\nu}\}_{v=1}^{\infty}\subseteq[\overline{a}]R$ ,
$\sum_{\nu=1}^{\infty}\alpha_{\nu}=+\infty$ , 111 $a_{\nu}|||=1$ and $a_{\nu}\geqq 0$ $(\nu=1,2, \cdots)$ ,

then we have $\Vert\sum_{\nu=1}^{\kappa}\alpha_{\nu}a_{\nu}\Vert_{*}=\sum_{\nu=1}^{\kappa}\alpha_{\nu}||a_{\nu}||_{*}-\rightarrow\infty\kappa\rightarrow\infty$

hence $\{\sum_{\nu=1}^{\kappa}\alpha_{\mu}a_{\nu}\}_{\iota\Rightarrow J}^{\infty}$ is not order-bounded. This shows $(O_{i})\rightarrow(M_{i})$ .
If $m$ is equivalent to an increasing modular, we can find $\{a_{\nu}\}_{\nu=1}^{\infty}\subseteq R$

such that $\sum_{\nu=1}^{\infty}a_{\nu}<+\infty$ and $\sum_{\nu=1}^{\infty}||a_{\nu}||=+\infty$ .
because, otherwise, putting

$a\wedge(a)=\sup\sum_{\nu=1}^{\infty}||x_{\nu}||$ for $0\leqq a\in R$

where supremum is formed over all the family $\{x_{\nu}\}_{\nu=J}^{\kappa}$ such that
$x_{\nu\cap}x_{\mu}=0$ $(\nu\neq\mu)$ , $\sum_{\nu=1}^{\kappa}x_{\nu}\leqq a$ .

$\hat{a}(.)$ is finite valued and can be extended as a universally continuous
linear functional over $R$ . It is not difficult to see that for any $\overline{x}\in\overline{R}$

there exists $\alpha>0$ with $|\overline{x}|\leq\alpha\hat{a}$ , contradicting the assumption by Theorem
6.1. Putting $\alpha_{\nu}=||a_{\nu}$ li $(\nu=1,2, \cdots)$ we have $\sum_{\nu-1}^{\infty}\alpha_{\nu}=\infty$ and $\sum_{\nu=1}^{\infty}\alpha_{\nu}\beta_{\nu}a_{\nu}<+\infty$

for all C-bounded set of the form $\{\beta_{\nu}a_{\nu}\}_{\nu\approx l}^{\infty}$ i.e. $(M_{i})\rightarrow(O_{i})$ . Q.E.D.
We could not find any topological invariance for almost finiteness.
Theorem 6.3. The following conditions are mutually equivalent:

$(M_{f})$ $m$ is equivalent to a finite modular.
$(O_{f})$ $R$ is uniformly continuous.
$(T_{f})$ ($R,$ $|||$ . III) does not contain any subspace isomorphic to $l_{\infty}$ .

Proof. $(O_{f})\Leftrightarrow(T_{f})$ follows from Theorem 4.1. $(M_{f})\rightarrow(O_{f})$ is clear.
If the modular norm is continuous, by Lemma 1.6 $m$ is finite on the
non-atomic part $R_{c}$ and is equivalent to an almost finite modular on the
atomic part by Theorem 6.1. Since the finite manifold i.e. the totality
of all finite elements, is closed under the norm, the almost finite modular
obtained above is finite, because under continuity of the norm a closed
complete semi-normal manifold coincides with the whole space, i.e. $(O_{f})\rightarrow$

$(M_{f})$ . Q.E.D.
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Now let us take up strict convexity and evenness. Let $m$ be simple.

By Theorem 5.1 we may assume that $m$ is further continuous and in-

finitely increasing. $\cdot$ By Theorem A the conjugate modular $\overline{m}$ on $\overline{R}$ is
continuous. The operator $T$ , defined by (23) for $\overline{7n}^{1}=\overline{m}$ , satisfies

$\overline{m}([p]Ta)=m([p]a)$ for all $p\in R,$ $a\in F$,

and is one-to-one from $F=\{x;0\leqq x\in Rm(x)<\infty\}$ to $\overline{F}=\{\overline{x};0\leqq\overline{x}\in\overline{R}$

$\overline{m}(\overline{x})<\infty\}$ , because $x,$ $y\in Fx\neq y$ implies $m([p]x)\neq([p]y)$ for some $p$ by

virtue of simplicity of $m$ , hence $T\xi a(a)$ is a strictly increasing function
of $1\geqq\xi\geqq 0$ , consequently $m_{*}$ defined by

$ m_{*}(a)=\int^{1}T\xi a(a)\xi$ for $a\in F$

is strictly convex on $F$. By Lemma 5.1 we can extend $m_{*}$ over $R$ as an
equivalent modular. We shall show strict convexity of $m_{*}$ on $R$ . If $\alpha a$

is a domestic element (with respect to $m_{*}$ ), we can prove that there
exists $0\neq[p_{0}]\leqq[a]$ such that $\alpha[p_{0}]a\in F$ in fact, for $\epsilon>0$ satisfying
$ m_{*}((1+\epsilon)\alpha a)<\infty$ , put $e=_{x\in F,x}Ux\leqq(1+6)\alpha a$ If $[((1+\epsilon)\alpha a-e)^{+}]e\equiv p\neq 0$ , then

for $0\leqq\overline{a}\in\overline{R}$ with $\overline{a}(p)>0$ by (25) we have
$\overline{7n}_{*}(\xi[p]\overline{a})\leqq\xi\overline{a}(p)$ for all $\xi\geqq 0$

(because, from the definition of $p,$ $x\in F$ implies $[p]x\leqq p$), hence

$m_{*}((1+\epsilon)\alpha[p]a)=up\{(1+\epsilon)\alpha\overline{x}([p]a)-\overline{m}_{*}(\overline{x})\}\frac{s}{x}\in\overline{R}$

$\geqq(1+\epsilon)\alpha\xi\overline{a}([p]a)-\overline{m}_{*}(\xi[p]\overline{a})$

$\geqq\xi\overline{a}([p]((1+\epsilon)\alpha a-e))>0$ for all $\xi>0$ ,

clearly this is a contradiction, thus we have proved $e=(1+\epsilon)\alpha a$ , consequently
$0<\alpha[p_{0}]a\in F$ for some $p_{0}\in R$ .

If
$\alpha\geqq\beta\geqq 0$ and $m_{*}(\frac{\alpha+\beta}{2})=\frac{m_{*}(\alpha a)+m_{*}(\beta a)}{2},\backslash $

then by (19) we have

$m_{*(\frac{\alpha+\beta}{2}}[p_{0}]a)=\frac{m_{*}(\alpha[p_{0}]a)+m_{*}(\beta[p_{0}]a)}{2}$ .

Strict convexity of $m_{*}$ on $F$ implies $\alpha[p_{0}]a=\beta[p_{0}]a$ i.e. $\alpha=\beta$ . Thus
we have proved that every simple modular is equivalent to a strictly

convex one.
Theorem 6.4. Let $(R, m)$ be monotone complete. The following

$\rho onditions$ are mutually equivalent:
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$(M_{s})$ $m$ is. equivalent to a simple $mod\psi lar$ .
$(M_{c})$ $m$ is equivalent to a strictly convex modular.
$(O_{c})$ $R$ is superuniversally continuous.
$(T_{c})$ ($R,$ $|||$ . III) does not contain any subpace isomorphic to $l_{\infty}(\Lambda)$ , where

$\Lambda$ is a set of uncountable indiees.
$(N_{c})$ The modular norm is equivalent to a strictly convex norm 12).

Proof. $(M_{s})\Leftrightarrow(M_{c})$ is proved above. $(M_{c})\rightarrow(N_{c})$ follows from Theo-
rem 2.2, because we may assume that $m_{*}$ defined above is infinitely in-
creasing. M. M. Day [8] proved that $l_{\infty}(\Lambda)$ does not admit any equivalent
norm which is strictly convex, hence we obtain $(N_{c})\rightarrow(T_{c})$ . $(T_{c})\rightarrow(O_{c})$ is
clear. It remains only to prove $(O_{c})\rightarrow(M_{s})$ . Putting $e=\bigcup_{m(x)\approx 0}x(e$ exists by

virtue of monotone completeness), we are in the situation that $m$ is simple

on $(1-[e])R$ and there exist $\{\overline{a}_{\nu}\}_{\nu=1}^{\infty}\subseteqq\overline{R}$ such that $\bigcup_{\nu=l}^{\infty}[\overline{a}_{\nu}]^{R}\geqq[e]$ , because
$R$ is superuniversally continuous and semi-regular by assumption. Putting

$\overline{a}=\sum_{\nu=1}^{\infty}\frac{|\overline{a}_{\nu}|}{2^{\nu}|[\overline{a}_{\nu}||}$ and $m_{1}(a)=m(a)+\overline{a}(|a|)$ for $a\in R$ ,

we obtain a simple modular equivalent to $m$ . Q.E.D.
Remark 6.1. In Theorem 6.4 we can not replace monotone com-

pleteness by completeness.
In fact, generally we can prove that a semi-ordered Banach space

with a continuous norm admits an equivalent, strictly convex norm. If
Theorem 6.4 is true under completeness, a modulared semi-ordered linear
space with a continuous norm has the second conjugate space $\overline{\overline{R}}$ which is
superuniversally continuous. But this is not the case.

Theorem 6.5. The following conditions are mutually equivalent.
$(M_{m})$ $m$ is equivalent to a monotone modular.
$(M_{e})$ $m$ is equivalent to an even modular.
$(O_{m})$ $R$ is contractile.
$(T_{m})$ $(R, |||.|||)$ does not admit any direct factor isomorphic to $l_{1}(\Lambda)$ ,

where $\Lambda$ is any set of uncountable indices.
$(N_{m})$ The associated norm on $\tilde{R}$ is equivalent to a strictly convex one.

Proof. $(M_{m})\Leftrightarrow(M_{e})$ follows from Theorem 6.4 and Theorem A. If
$m$ is monotone, the associated modular $\tilde{m}$ on $\tilde{R}$ is simple by Theorem $A$ ,

12) In this section, equivalent norms need not satisfy the condition $(\star)$ .
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hence $(M_{m})\rightarrow(N_{m})$ follows from Theorem 6.4. $(N_{m})\rightarrow(O_{m})\rightarrow(M_{m})$ follows

from Lemma 4.3, Theorem 6.4 and Theorem A. If $\overline{R}$ is not super-

universally continuous, there exist $0_{\backslash }<\overline{a}\in\overline{R}$ and $\{a_{\lambda}\}_{\lambda\in\Lambda}\subseteq R(\Lambda$ being a
set of uncountable indices) such that

$a_{\lambda\cap}a_{\mu}=0$ $(\lambda\neq\mu)$ , $|||a_{\lambda}|||=1$ $(\lambda\in\Lambda)$

and $\inf_{\lambda\in\Lambda}\cdot\overline{a}(a_{\lambda})>0$ .

Putting $\alpha_{\lambda}=\overline{a}(a_{\lambda})$ , $\overline{b}_{\lambda}=[a_{\lambda}]\overline{a}$ $(\lambda\in_{-}4)$ ,

we define a linear operator $P$ by

$Pa=\sum_{\lambda\in A}\frac{\overline{b}_{\lambda}(a)}{\alpha_{\lambda}}a_{\lambda}$ for $a\in R$ .

Then clearly $P$ is a bounded linear projection from $R$ onto the subspace
$V$ generated by $\{a_{\lambda}\}_{\lambda\in A}$ . On the other hand, $V$ is isomorphic to $l_{1}(\Lambda)$ .
Thus we have proved $(T_{m})\rightarrow(O_{m})$ by virtue of Lemme 4.3 and Remark
4.2. Finally if ($R,$ $|||$ . Ill) contains a direct factor isomorphic to $l_{1}(\Lambda)$ ,

then $(\tilde{R}, ||\sim||)$ contains a subspace isomorphic to $l_{\infty}(\Lambda)$ , thus $(M_{m})\rightarrow(T_{m})$

follow from Theorem 6.4 and Theorem A. Q.E.D.
Remark 6.2. In Theorem 6.5 we can not replace $(T_{m})$ by

$(T_{e})$ $(R, |||.|||)$ does not contain any subspace isomorphic to $l_{1}(\Lambda)$ .
In fact, $l_{1}(\Lambda)$ is isometrically imbedded into $l_{\infty}(\Gamma)$ for some $\Gamma$ and $l_{\infty}(\Gamma)$

admits a monotone modular as a modulared semi-ordered linear space.
Remark 6.3. In Theorem 6.5 we can not replace $(N_{m})$ by

$(N_{e})$ The modular norm is equivalent to an even norm.
For evenness of the norm implies its continuity.

Finally we shall give conditions for evenness of the modular norm.
Theorem 6.6. The following conditions are mutually equivalent.

$(M_{f,m})$ $m$ is equivalent to a finite, monotone modular.
$(M_{f,e})$ $m$ is equivalent to a finite, even $ modula\gamma$ .
$(O_{f,m})$ $R$ is uniformly continuous and contractile.
$(T_{f,e})$ ($R$, Ill 111) does not contain any subspace isomorphic to $l_{\infty}$ or

to $l_{1}(\Lambda)$ , where $\Lambda$ is any set of uncountable indices.
$(N_{e})$ The modular norm’is equivalent to an even norm.

Proof. Using Theorem 6.3-6.5, we can prove: $(M_{f,e})\Leftrightarrow(M_{f,e})\Leftrightarrow(O_{f,m})$ .
$(T_{f,e})\rightarrow(O_{f,e})$ is clear from Theorems 6.4-5. M. M. Day [8] proved that $l_{1}(\Lambda)$

does not admit any even norm equivalent to the original one, hence we
obtain $(N_{e})\rightarrow(T_{f,e})$ . $(M_{f,e})\rightarrow(N_{e})$ follows from Theorem 2.3. Q.E.D.
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\S 7. Uniform convexity

For normed semi-ordered linear spaces, completeness and monotone
completeness are different properties. Some special aspect of a modulared
semi-ordered linear space which is monotone complete and has a continuous
modular norm was studied in [1], [14] and [16]. For example, S. Yamamuro
[16] proved

Lemma 7.1. If $(R, m)$ is monotone complete, $m$ is simple and the
modular norm is continuous, then $m$ is uniformly simple.

Now let $(R, m)$ be monotone complete and the modular norm be con-
tinuous. Since continuity of the modular norm implies superuniversal
continuity of $R$ , by Theorems 6.3-6.4 we may assume that $m$ is simple
and finite. Then by Lemma 7.1 $m$ is uniformly simple. There exist
$\gamma>0$ such that $m(x)\leqq\frac{1}{\gamma}$ implies 1H $x$ lli $\leqq\frac{1}{2}$ .
Define a new modular $m_{1}$ by $m_{1}=\gamma m$ , then we have:

$m_{1}(x)\leqq 1$ implies $ m_{1}(2x)\leqq\gamma$ .
Let $\{d_{\lambda}\}_{i\in A}$ be a complete system of atoms of $R$ (with respect to $m_{1}$ ).
Define real convex functions $\varphi_{\lambda}$ by

$\varphi_{\lambda}(\xi)=\left\{\begin{array}{ll}m_{1}(\xi d_{\lambda}) & for 0\leqq\grave{\xi}\leqq 1,\\1+(\xi-1)\pi_{1,+}(d_{\lambda}) & for 1\leqq\xi,\end{array}\right.$

and a functional. $m_{2}$ on $R$ by

$m_{2}(a)=m_{1}([R_{c}]a)+\sum_{\lambda\in\Lambda}\varphi_{\lambda}(\xi_{\lambda})$ where $\xi_{\lambda}d_{\lambda}=[d_{\lambda}]|a$ $[(\lambda\in\Lambda)$ ,

then $m_{2}$ is a modular equivalent to $m$ . Further we have
$m_{2}(2\xi d_{\lambda})\leqq\gamma_{1}m_{2}(\xi d_{\lambda})$ for some $\gamma_{1}>0$ and for all $\xi\geqq I$ .

On the other hand, by Lemma 1.6 $m_{2}$ is uniformly finite on $R_{c}$ . Combining
these, we can conclude uniform finiteness of $m_{2},$ $(see[1])$ in fact,

$m_{2}(a)\geqq 1$ implies $m_{2}(2a)\leqq\gamma_{2}m_{2}(a)$ for some constant $\gamma_{2}$’.
The subset

$U=$ {$x;m_{2}(2[p]x)\geqq 2\gamma_{2}m_{2}([p]x)$ for all $p\in R$}
is directed, i.e. $x,$ $y\in U$ implies $x^{\cup}y\in U$ and by the definition of $\gamma_{2}$

$x\in U$ implies $m_{2}(x)\leqq 1$ .
By monotone completeness of $(R, m_{2})$ , $th,ere$ exists $e=\bigcup_{x\in U}x$ and for
$e_{0}=2e$ $\omega_{2}(2\xi, e_{0}, \mathfrak{p})\leqq 3\gamma_{2}\omega_{2}(\xi, e_{0}, \mathfrak{p})$ for all $\xi\geqq 1,$ $\mathfrak{p}\in U_{[e]}$ ,
where $\downarrow$) is a point of the proper space of $R$ and
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$\omega_{2}(\xi, e_{0}, p)=$
$\lim\underline{m_{2}(\xi[p]e_{0})}$

$[p]- \mathfrak{p}m_{2}([p]e_{0})$

(for the detailed discussion, see [12]). Put, for $\mathfrak{p}\in U_{[e]}$ ,

$\omega_{*}(\xi, \mathfrak{p})=\{_{\omega_{2}(\xi,e_{0},\mathfrak{p})}\xi$

for $0\leqq\xi\leqq 1$ ,

for $\xi\geqq 1$ ,

then $\omega_{*}(\xi, \mathfrak{p})$ is a convex function of $\xi\geqq 0$ and a continuous one of $\mathfrak{p}$ and
satisfies the condition: $\omega(2\xi, \mathfrak{p})\leqq(2+3\gamma_{2})\omega_{*}(\xi, \mathfrak{p})$ for $\xi\geqq 0,$ $\mathfrak{p}\in U_{[e]}$ .
Now we define a new modular $m_{*}$ by

$m_{*}(a)=\int_{[e]}\omega_{*}((\frac{|a|}{e_{0}},$
$\mathfrak{p}),$ $\mathfrak{p})m(d\mathfrak{p}e_{0})+m_{2}((1-[e_{0}])a)$ .

Then we have $m_{2}(a)\leqq m_{*}(a)\leqq m_{2}(a)+m_{2}(e)$ for all $a\in R$ .
Since $R$ is monotone complete under both $m$ and $m_{*}$ , they are equivalent
by Theorem C. From the definition of $e_{0}$ we have

$m_{2}(2x)<2\gamma_{2}m_{2}(x)$ for all $x\in(1-[e_{0}]))R$,

hence $m_{*}(2a)\leqq(2+3\gamma_{2})m_{*}(a)$ for all $a\in R$ ,

that is, $m_{*}$ is upper bounded.
Combining this result with Theorem 4.2, we obtain
Theorem 7.1. The following conditions are mutually equivalent:

$(M_{us})$ $m$ is equivalent to a uniformly simple (or uniformly finite)
modular.

$(M.b)$ $m$ is equivalent to an upper bounded modular.
$(O_{us})$ $R$ is K-bounded and uniformly continuous.
$(T_{w})$ ( $R,$ $|||$ . III) is weakly complete.
$(T_{us})$ $(R, |||.|||)$ does not contain any subspace isomorphic to $c_{0}$ .

Wp could not succeed in characterizing $(M_{ub})$ by the type of norms.
Theorem 7.2. The following conditions are mutually equivalent.

$(M_{um})$ $m$ is equivalent to a uniformly monotone (or uniformly in-
creasing) modular.

$(M_{lb})$ $m$ is equivalent to a lower bounded modular.
$(O_{um})$ $R$ is strictly contractile.
$(T_{um})$ ( $R,$ $|||$ . ill) does not admit any direct factor $\dot{\tau}s$omorphic to $l_{I}$ .
The proof is similar to that of Theorem 6.5.

Remark 7.1. In Theorem 7.1 we can not replace $(T_{um})$ by
$(Ta_{m})$ ($R,$ $|||$ . Ill) does not contain any subspace isomorphic to $l_{1}$ .
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In this direction, corresponding to Theorem 6.6, we have

Theorem 7.3. The following conditions are mutually equivalent
$(M_{f,lf})$ $ n\iota$ is equivalent to a finite, lower bounded modular.
$(O_{f,um})$ $R$ is uniformly continuous and strictly contractile.
$(T_{f,um})$ ($R,$ $|||$ . Ill) does not contain any subspace isomorphic to $l_{1}$ .

Finally we shall consider uniform convexity and uniform evenness.
It is well-known that a uniformly convex (or uniformly even) Banach
space is reflexive (see [13; \S \S 76-77]). In case of modulared semi-ordered
linear space, if $m$ is uniformly convex (or uniformly even), $(R, |||.|||)$ is
reflexive.

Now let $(R, |||.|||)$ be reflexive. Then $by/T^{1}heorem4.3$ and Theorem
7.1 $m$ (resp. its conjugate modular m) is equivalent to an upper bounded
modular $m_{1}$ (resp. to $\overline{m}^{1}$ ). Since $m_{1}$ and $\overline{m}^{1}$ are both simple and finite,
by Lemma 5.1 there exists a one-to-one mapping $T$ from $R^{+}=\{x;x\geqq 0\}$

onto $\overline{R}^{+}=\{\overline{x};\overline{x}\geqq 0\}$ defined by the condition:
$\overline{m}^{1}([p]Ta)=m_{1}([p]a)$ for all $p\in R$ ,

and we can define a new modular $m_{*}$ on $R$ , equivalent to $m$ , by

$ m_{*}(a)=\int^{1}T\xi|a|(|a|)d\xi$ for $a\in R$ .

First we shall show uniform convexity of $m_{*}$ . Let $\gamma,$ $\epsilon>0\gamma\geqq\alpha\geqq\beta\geqq 0$ ,
$\alpha-\beta\geqq\epsilon$ and $m_{*}(a)=1$ . By the definition of $m_{*}$ we have

$\frac{m_{*}(\alpha a)+m_{*}(\beta a)}{2}=m_{*}(\frac{\alpha+\beta}{2}a)+\frac{\alpha-\beta}{4}\int^{1}(\cdot Ta_{\xi}-Ta^{\text{\’{e}}})(a)d\xi$ ,

where
$a_{\xi}=(\frac{\alpha+\beta}{2}+\xi\frac{\alpha-\beta}{2})a$ and $ a^{\text{\’{e}}}=(\frac{\alpha+\beta}{2}-\xi\frac{\alpha-\beta}{2})\sim$ for $0\leqq\xi\leqq 1$ ,

Since $a_{\xi}\geqq a^{\xi}$ and $Ta_{\xi}\geqq Ta^{\xi}$ for $0\leqq\xi\leqq 1$ ,

$\frac{m_{*}(\alpha a)+m_{*}(\beta a)}{2}\geqq$

$\geqq m_{*}(\frac{\alpha+\beta}{2}a)+\frac{\alpha-\beta}{4}\int_{g}1(Ta_{\xi}-Ta^{\xi})(a)d\xi$ .

Since 111 $a_{\xi}-a^{\xi}|||_{*}=\frac{\xi(\alpha-\beta)}{2}\geqq\frac{\epsilon}{4}$ for $1\geqq\xi\geqq\frac{1}{2}$ ,

by uniform simplicity and uniform finiteness of $m_{1}$ there exist $\kappa,$ $\rho>0$

such that
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$ m_{1}(a_{\xi}-a^{\xi})\geqq\rho$ for $\Delta 2\leqq\xi\leqq 1$ ,
$\overline{m}^{1}(Ta^{\xi})\leqq\overline{m}^{1}(Ta_{\xi})=m_{1}(a_{\xi})\leqq\kappa$ for $0\leqq\xi\leqq 1$ ,

hence we have $|||Ta^{\xi}|||^{1}\leqq|||Ta_{\xi}|||^{1}\leqq\kappa+1$ for $0\leqq\xi\leqq 1$ .
By $\dot{u}$niform finiteness of $\overline{m}^{1}$ there exists $\mu>0$ such that $|||\overline{x}|||^{1}\leqq 2(\kappa+1)$

implies $\overline{m}^{1}(\overline{x})\leqq\mu$ . We shall prove that
$|||Ta_{\xi}$ – $Ta^{\xi}|||^{i}\geqq$ $\frac{\rho(\kappa+1)}{2\mu}$ for $\not\in\leqq\xi\leqq 1$ .

$SinceSuppose$
the contrary, i.e. for some $\iota 2\leqq\xi_{0}\leqq 1$ $|||Ta_{\xi_{0}}-Ta_{\xi_{0}}|||^{1}<\frac{\rho(\kappa+1)}{2\mu}$ .

$\Vert|Ta^{\xi_{0}}+\frac{2\mu}{\rho}(Ta_{\xi_{0}}-Ta^{\xi_{0}})\Vert|^{1}\leqq\kappa+1+\frac{2\mu}{\rho}\cdot\frac{\rho(\kappa+1)}{2\mu}=2(\kappa+1)$ ,

we have $\rho\leqq m_{1}(a_{\xi_{0}}-a^{\xi_{0}})$

$\leqq m_{1}(a_{\xi_{0}})-m_{1}(a^{\xi_{0}})=\overline{m}^{1}(Ta_{\xi_{0}})-\overline{m}^{1}(Ta^{\xi_{0}})$

$\leqq\frac{\rho}{2\mu}\overline{m}^{1}(Ta^{\xi_{0}}+\frac{2\mu}{\rho}(Ta_{\xi_{0}}-Ta^{\xi_{0}}))\leqq\frac{\rho}{2\mu}\cdot\mu=\frac{\rho}{2}$ ,

$(because$ $m(x)\leqq m(y)+\epsilon\cdot m(y+\frac{1}{\epsilon}(x-y))$
,

for all $x,$ $y$ $0<\epsilon<1)$

clearly this is a contradiction. On the other hand, it is known (see [12;
\S 60]) that $m_{*}^{\prime}(a)+\overline{m}_{*}(Ta)=Ta(a)$ for all $a\in R$

and $\overline{7n}_{*}(\overline{a})=\int_{0}1\overline{a}(T^{-1}\xi\overline{a})d\xi$ for all $0\leqq\overline{a}\in\overline{R}$,

hence $7-Jb*is$ uniformly simple by Lemma 7.1, consequently there exists
$\delta>0$ such that

$\overline{m}_{*}(Ta_{\xi}-Ta^{\xi})\geqq\delta$ for $\iota 2\leqq\xi\leqq 1$ .
Thus we obtain

$\delta\leqq\overline{m}_{*}(Ta_{\xi}-Ta^{\xi})\leqq(Ta_{\xi}-Ta^{\xi})(T^{- 1}(Ta_{\xi}-Ta^{\xi}))$

$\leqq(Ta_{\xi}-Ta^{\xi})(T^{-1}Ta^{\xi})\leqq\gamma(Ta_{\xi}-Ta^{\xi})(a)$ ,

hence $\underline{\delta}\leqq(Ta_{\xi}-Ta^{\xi})(a)$ for $\xi\leqq\xi\leqq 1$ .
$\gamma$

Finally we can conclude

$\frac{m_{*}(\alpha a)+m_{*}(\beta a)}{12}\geqq m_{*}(\frac{\alpha+\beta}{2}a)+\frac{(\alpha-\beta)\delta}{4\gamma}$ .
Thus $m_{*}$ is uniformly convex by definition. Similarly $\overline{m}_{*}$ is uniformly
convex. It is not difficult to see that both $m_{*}$ and $\overline{m}_{*}$ are upper bounded,
hence by Theorem $Bm$ is bounded. Finally by Lemma 3.1 $m$ is uniformly
even.



92 T. And\^o

Summarizing these results, we obtain.
Theorem 7.4. The following conditions are mutually equivalent.

$(M_{b})$ $m$ is equivalent to a bounded modular.
$(M_{uce})$ $m$ is equivalent to a uniformly convex, uniformly even moclu-

$lar$ .
$(O_{r})$ $R$ is K-bounded, uniformly continuous and strictly contractile.
$(T_{r})$ ($R,$ $|||$ . Ill) is reflexive.
$(T_{u’ m})$ $(R, |||.|||)$ does not contain any subspace isomorphic to $c_{0}$ or

to $l_{1}$ .
$(N_{uce})$ The modular norm is equivalent to a uniformly convex and

uniformly even one.
Remark 7.2. The condition $(N_{uce})$ is on $e$ of the characteristic pro-

perties of a reflexive modulared semi-ordered linear spaces.
In fact, M. M. Day [6] gave an example of a relexive semi-ordered

Banach space which does not admit any uniformly convex norm, equivalent
to the original one.

Appendix

A non’modularable $semi\cdot ordered$ Banach space with
a uniformly convex and uniformly even norm

From the consideration in Chapter II, it is natural to ask whether a
semi-ordered Banach space, with a uniformly convex and uniformly even
norm, is modularable, i.e. its norm is equivalent to a modular norm by some
modular. Recently T. Shimogaki [14] gave a negative answer to the
conjecture that a semi-ordered Banach space is modularable. The function
space used in his counter example has a continuous norm, but is not re-
flexive. We shall give an example of a semi-ordered Banach space, with
a uniformly convex and uniformly even norm, which is not modularable.

Lemma. If two finite modulars $m_{1},$ $m_{2}$ on a non-atomic semi-ordered
linear espace $R$ are equivalent, there exist $\alpha,$ $\beta>0$ such that

$R\ni a$ $m_{1}(a)\geqq 1$ implies $m_{1}(a)\leqq m_{2}(\alpha a)\leqq m_{1}(\alpha\beta a)$ .
Proof. (cf. [1]). Since $R$ is non-atomic and $m_{1}$ is finite, for any

$0\leqq a\in R$ $m_{1}(a)\geqq 1$ there exist $\{a_{\nu}\}_{\nu=1}^{\kappa}$ such that $a_{\nu\cap}a_{\mu}=0(\nu\neq\mu)$ ,

$\sum_{\nu=1}^{*}a_{\nu}=a$ $\frac{1}{2}\leqq m_{1}(a_{\nu})\leqq 1$ $(\nu=1,2, \cdots, \kappa)$ .
On the other hand, there exist $\alpha^{\prime},$ $\beta^{\prime}>0$ such that
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$\alpha^{\prime}$ II1 $x|||_{1}\leqq|||x|||_{2}\leqq\beta^{\prime}|||x|||_{1}$ for all $x\in R$ ,

because these two norms are equivalent by assumption. Since

II1 $a_{\nu}|||_{2}\geqq\alpha^{\prime}|||a_{\nu}|||_{1}\geqq\frac{\alpha^{\prime}}{2}$ $(\nu=1,2,\cdots, \kappa)$ ,

we have

$m_{2}(\frac{2a_{\nu}}{\alpha})\geqq 1$ $(\nu=1,2, \cdots, \kappa)$

hence

$m_{1}(a)=\sum_{\nu=1}^{\kappa}m_{1}(a_{\nu})\leqq\kappa\leqq\sum_{\nu=1}^{\kappa}m_{2}(\frac{2a_{\nu}}{\alpha})=m_{2}(\frac{2a}{\alpha^{\prime}})$ .

Similarly we have $m_{2}(\frac{2a}{\alpha})\leqq m_{1}(\frac{4\beta^{f}}{\alpha}a)$ . Q.E.D.

$L_{p}(1<p<\infty)$ is the totality of all $p$-integrale function $f$ on the unit
interval, i.e. $\int^{1}|f(t)|^{p}dt<\infty$ . It is a modulared semi-ordered linear space

with the modular

$m_{p}(f)=\int_{0}l|f(t)|^{p}dt$

and the modular norm

111 $f|||_{p}=(\int_{0}1|f(t)|^{p}dt)^{1/p}$

Let $L_{p}^{q}$ denote the totality of all measurable function $F$ on the unit
square such that
(fl)

$||F||=\{\int_{0}1(\int_{0}l|F(t, s)|^{p}dt)^{q/p}ds\}^{1/q}<\infty$ .
$L_{p}^{q}$ is a semi-ordered Banach space with the norm $(\#)$ . It is known that
the norm on $L_{p}^{q}$ is both uniformly convex and uniformly even (see [7]).

We shall show that Lg is not modularable, if $p\neq q$ . Suppose that
$L_{p}^{q}$ is modularable by a modular $m$ . .Then the linear operator $T_{1}$ from $L_{p}$

to $L_{p}^{q}$ and $T_{2}$ from $L_{q}$ to $L_{p}^{q}$ are defined by

$L_{p}\ni f\rightarrow(T_{1}f)(t, s)\equiv f(t)$ (for $0\leqq t,$ $s\leqq 1$),
and $L_{q}\ni g-\rightarrow(T_{2}g)(t, s)\equiv g(s)$ (for $0\leqq t,$ $s\leqq 1$).
We can prove easily that

$||T_{1}f||=|||f||1_{p}$ for all $f\in L_{p}$ and $||T_{2}g||=|||g|||_{q}$ for all $g\in L_{q}$ .
Further $\bigcap_{\nu=1}^{\infty}f_{\nu}=0$ in $L_{p}$ implies $\bigcap_{\nu=1}^{\infty}T_{1}f_{v}=0$ in $L_{p}^{q}$,



94 T. And\^o

and $\bigcap_{\nu=1}^{\infty}g_{\nu}=0$ in $L_{q}$ implies $\bigcap_{\nu=1}^{\infty}T_{2}g_{\nu}=0$ in $L_{p}^{q}$ .

Since $L_{p}^{q}$ is non-atomic and the norm on it is continuous, $m$ is finite by

Lemma 1.6. Putting

$m_{*}(f)=m(T_{1}f)$ for $f\in L_{p}$ and $m_{\sim}^{*}(g)=m(T_{2}g)$ for $g\in L_{q}$

we obtain a modular $m_{*}$ on $L_{p}$ (and $m^{*}$ on $L_{q}$) equivalent to $m_{p}$ (and to
$m_{q}$ respectively). By Lemma there exist $\alpha,$ $\beta>0$ such that

$m_{p}(f)\geqq 1$ implies $m_{p}(f)\leqq m_{*}(\alpha f)\leqq m_{p}(\alpha\beta f)$

and $m_{q}(g)\geqq 1$ implies $m_{q}(g)\leqq m^{*}(\alpha g)\leqq m_{q}(\alpha\beta g)$ .
Putting $f_{0}(t)=g_{0}(s)\equiv 1$ (for all $0\leqq t,$ $s\leqq 1$),

we have $T_{1}f_{0}=T_{2}g_{0}$ and $m_{p}(f_{0})=m_{q}(g_{0})=1$ ,

hence
$m_{p}(\xi f_{0})=\xi^{p}\leqq m_{*}(\alpha\xi f_{0})\leqq m_{p}(\alpha\beta\xi f_{0})=(\alpha\beta)^{p}\xi^{p}$

and $m_{q}(\xi g_{0})=\xi^{q}\leqq m^{*}(\alpha\xi g_{0})\leqq m_{q}(\alpha\beta\xi g_{0})=(\alpha\beta)^{q}\xi^{q}$

consequently $(\frac{1}{\alpha\beta})^{p}\leqq\xi^{p-q}\leqq(\alpha\beta)^{q}$ for all $\xi\geqq 1$ .

This inequality is possible, only when $p=q$ .

It remains a fundamental question ” under what conditions a semi-
ordered linear space is modularable”. We shall treat this problem in

another paper.
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Added in proof. After we had prepared this paper, we received @. Yamamuro’s
paper: On eonjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. vol. 90 (1959)

pp. 291-311. It has contact with ours in some extent, in particular, parts of Theorems
2.1-2 are $\dot{p}$roved and the assertion (22) is discussed from the another direction.


