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Introduction

Let R be a universally continuous semi-ordered linear space®.
functional m on R is called a modular, if | it satisfies the following

modular conditions:

(1)
(2)
(3)
(4)
(5)

(6)

(7)

0<m(a)<co  for all acR;
if m(éa)=0 for all £>=0, then a=0;
for any ac¢R there exists a>0 such that m(aa)< o ;

for every acR, m(fa) is a comvex function of &;

la|<jb] implies m(a)=m(b);
a~b=0 implies m(a+b)=m(a)+m(b);
0=<a,}c.0 implies sup m(a,)=m(a).
. AW .

When a modular m is defined on R, R is called a modulared semi-
ordered linear space with the modular m and is denoted by (R, m), if

necessary. We can define two kinds of norms on R by the formulas:

1) We use mainly notation and terminology of [12], [13].
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(8) |a]j=inf 1EEQ)

£>0 &
(9) © lialil=inf_——.
3 meemy=t | € |

The former norm is called the first one by m and the Iatter the second
(or sometimes modular-) one by m. Among the important problems in
the . theory of modulared semi-ordered linear spaces are to investigate
relations between properties of a modular and those of its norms and to
investigate order-structure of the space. In this paper we shall turn our
attention mainly to convexity and evenness (for the definitions, see below).

In Chapter I we shall concern ourselves with the question whether
(uniform) convexity of the norm implies (uniform) convexity of the modular.
We can give satisfactory answers in the case R is non-atomic (Theorems
2.1, 2.2 and 3.4). In connection with convexity we shall treat also evenness.
Recently H. W. Mflnes [10] investigated similar problems in the case of
Orlicz spaces®. Since Orlicz spaces are special concrete examples of
modulared semi-ordered linear spaces, our results in Chapter I are con-
sidered as an extension of H.W. Milnes’ ones to modulared semi-ordered
linear spaces, and are more complete, because he did not treat the second
norm and evenness. .

In Chapter II we shall investigate conditions under which a given
modular can be converted to a convenient one (for example, strictly convex,
uniformly convex etec.) and give some necessary and sufficient conditions
in terms of topological or order structure of the space. Our standpoint is
similar to that of M. M. Day [8], and we shall solve completely questions
raised by him, so far as modulared semi-ordered linear spaces are con-
sidered. - In fact, we shall give topological conditions under which the
modular norm is equivalent to a strictly convex (even, uniformly convex ete.)
one (Theorems 6.4, 6.6 and-7.4). Among the important results is that if
a modulared semi-ordered linear space is reflexive as a Banach space, then
its modular norm is equivalent to a uniformly convex one (Theorem 7.4).

In connection with the above result, a conjecture arises that a semi-
ordered linear space with a uniformly convex norm is modularable i.e.
its norm is equivalent to a modular norm by some modular. In Appendix,
we shall give a negative answer to this conjecture.

In the remainder of this Introduction, we shall state definitions and
results used later from the theory of modulared semi-ordered linear spaces

2) For Orhcz spaces, see [17]
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developed by H. Nakano in [12, 13].

R and R denote the totali'ty of all linear functionals and that of all
universally continuous linear functionals on R respectively, which are
bounded under the norm. On R the associated modular # of m is de-
fined by the formula: ' '

(10) , (@)= sup {a(x) —m(x)} for @ck.

mm satlsﬁes all the modular conditions (see [12; §38]), and
(11) : a(a)=m(a)+a(@  for all acR, @eck.

When we- consider the associated modular only on R, we call it the con-
jugate modular of m and denote it by . In this paper projectors [p]
and projection operators [N] are frequently used (for the definition see
[12; §§ 5~6] .

In this paper we always assume semi-regularity of R, iLe. for any

OﬂFaeR there exists @€ R such that @(a)=+0. By semi-regularity the
following formulas are valid (see [11], [12; §89-40] and [13; §83])

(12) m(a)=sup {&(a)—m(x)} for all acR;
(13) , llal|= sup |Z(a)| ~ for all acR.
WE=1

Two norms satisfy always (see [12; §407]) |

(19) lall=llall=2(all for all ackR,
hence they are equivalent. The first norm and the second one by the con-
jugate modular 7 are denoted by ||~ || and [|| - ||| respectively. Then we have
15) - llall= sup |a@)|, [l|all]= sup |a()] for all @eR.

An element acR is said to be finite, if m(éa)< oo for all £=0. A
modular m is said to be almost finite or finite, according as the totality
of all finite elements constitutes a complete semi-normal manifold of R
or is identical with R itself. An element acR is said to be domestic, if
m(ra) <o for some y>1. An element acR is said to be simple, if
m([p]a)=0 implies [p]la=0. If all elements of R are simple, m is said
to be simple. m is said to be 'mcreaszng or monotone, accordmg as
sup @— co or inf m—(’ff"l~0 for all 0==acR. m is said to be continu-
&>0 §>0
ous, if for any a¢R with m(a)=oc sup m(x)=oc. m is said to be

|z <o)
m{p)< oo

infinitely increasing, if for every 0=-acR,
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sup m:.oo or sup{&y—m(éa)l=c where rzsup—@(—ga—).
>0 & : : £>0 : £>0
As relations between these properties, we know (see [12; §§ 42—46]
[13; §84])."
Theorem A.
(A, Almost finiteness and zfnc'reaszngfness are. conjugate®.

(A,;) Simplicity and monotony are congugate and further if m is mond—
tone, the associated modular i is simple.

(A,) Continuity and infinite increasingness are conjugate.

The properties defined above are concerned with t¢ndividual convex
functions m(éx). When we require some uniformity, we use the follow-
ing modular functions: '

(16) w(Ela)=M< il ) for - OﬂgaeR..

Then, m is said to be uniformly finite or uniformly simple, according as

sg%) o(f|x)< o or ng w(&|x)>0 for all E>D.

m is said to be uniformly increasing or uniformly monotone, according

as sup inf ©El?) — o or inf sup wEl?) _
: §>0 x%0 & £>0 %0 &

m is said to be wupper bounded if there exists y>0 such that

m(2a) =< ym(a) for all acR,
and to be lower bounded, if there exist a>p8>1 such that
"m(Ba) = am(a) , for all qcR.

m is said to be bounded, if it is upper bounded and lower bounded at
the same time. Upper boundedness implies uniform simplicity and uni-
 form finiteness, similarly lower boundedness implies uniform increasingness
and uniform monotony (see [12; §49]). As relatlons between these uniform
properties, we known (see [12; §49] and [13; §884-85]):

Theorem B.
(B,) Uniform finiteness and uniform incredsingness are assoctated®.
(B,) Uniform simplicity and uniform monotony are associated.
(B;) Upper boundedness and lower boundedness are associated.

3) General properties P and Q are said to ‘be conjugate or associated, according as

““ R possesses P’ is equivalent to ‘‘ R possesses Q’’ or to ““R does Q.
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When R is semi-regular, by (12) we can imbed R into R preserving
the order structure and the modular structure. If there is no confusion,
elements of R, considered in ﬁ, are denoted by the same symbols.

Let S be a universally continuous semi-ordered linear space. S3a>0
is called an atom, if a=b=>0 implies b=aa for some a=0. If the totality
D fo all atoms constitutes a complete manifold, then S is said to be atomic.
If S contains no atom, then it is called non-atomic. We call S,(=[D]S)
the atomic part and S,(=S;") the non-atomic part of S respectively.

When we ecall (S, ||. |]) 2 normed semi-ordered linear Space, the norm
is assumed to satisfy the condltlon
(%) la] <|b|  implies lfel] = [io]].
(S, ]].1]) is said to be monotone complete, if for any 0=a;t:c. with

sup HaxH<oo there exists Ssa= Ja,;. A norm is said to be continuous,
) i€ 4

if a,J5..0 implies =0. Concerning a normed semi-ordered linear

space we know (see [12; §§30-31]):
Theorem C.

(C) The conjugate space (S,||=|]) and the associated space (S |~ are
. always monotone complete.

(C,) A morm on S is continuous, if and only if S= S.
‘(C3) If S is complete under both two morms, then they are equwalent

Chapter I. Convexity and Evenness of the Norms

§ 1. Some preliminary lemmas .

Throughout this Chapter R denotes a modulared semi-ordered linear
‘space with a modular m. Since m(¢a) is a convex function of £=0, it is
natural to define strict convexity as follows m is said to be strictly
convex, if -

(s) a=x0 ag,B;O‘ m(aa)<< oo, m(“;_ﬁ CL):m(aa)—;—m(,Ba)

implies L a=4#.
We can easily prove that (s) is equivalent to

(s) 'm(a)<oo’ m(b) < o m(a_zl_b>= m(a)—zl—m(b) implies )a:b.

From the definition, strict convexity implies simplicity.
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Before defining a conjugate type of strict convex1ty, we 1ntroduce
the following notations:

@am | , B n_(a):{lifgl m(a)'—ms((l_e)a) | it mla)< oo,
o Cif m(a)= oo,
oo . if m(a)=oo.

These limits exist because of convexity of m(fa). Now m is said to be
even, if it is monotone and satisfies the following conditions:
{ w.(a)< oo  implies r.(@)=r_(a);

e _

(e) - n_(a)<co  implies =z ([pla)< for some 0=[p]=<[a].
In order to obtain the conjugate type, the following formulas play

an important role: ' | _ .

(18)  m(a)+m(@)=a(a) - implies m([pla)+m([pla)=a([p]a)

for all peR;
(19) ' m( a—2}-b ): m(a)—zf—m(b) implies
m( [pla+[p]b ): m([pla)+m([p]b) for all pG.R..
2 ' 2

These are immediate consequénces of (4), (6) and (11).
H. Nakano [12; Theorem 39.1] proved that for any domestic 0<acR

there exists @eR such that
, , ma)+m(@)=a(a) .
and _ a([pla)==.([p]a) for all peR.
We use the following generalized form: “ _
Lemma 1.1. For any 0<acR n_(a)<< oo there emsts adecR such that
a([pla)=r_([p]a) . Jor all peR
and : .
m(a)+m(a)=a(a).
Proof. Under the assumption z_(a)<oo, by (6) we can see without
difficulty that \
(20) - rm_([pla)+=_([g]a)==_([p]a+[g]a)  for p»,q p~q=0.
Put | a([pla)=r_([p]a) for all peR.
Then by (4) we have m([pla)—m(E[pla)<(1—&)a([pla) for all &
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consequently . &a([p]a)—m(¢[pla)<a([pla)—m([pla)<a(a)—m(a).
Hence extending a for so-called step-elements, we define

a(3 . [p.]a)=36([p.Ja) for £.20 p.~p=0 (s =12+ #).
Then by (6) and (20) we have

a(x)—m(r)<a(a)— m(a) for all step-element x.
For any 0<be[a]R there exist step-elements {x,},c, such that 0<x1T25 10.
Extend @ for b by

a(b) = sup a(x,)
(this is possiblé, because by (3) m(ax,)<m(ab)< o and
ad(z;)=m(ax;)+a(a)—m(a) for some a>0).
Now extend @ over all R by the formula:

a(x)=a([e]z*)—a([a]x) for all zeR.
Then by (7) and (20) we have @< R and
L ' 'd(oc)——m(x)<&(a)——m(a)_ for all xe¢R,
onsequently from the definition (10)
@) =a(a)—m(a). Q.E.D.

Lemma 1.2. In order that m be even, it is necessary and sufficient
that for any OAgaeR m_(a)< oo there exists uriiquely acR such that
(&)  m(@)+m@)=a(a). ,

Proof. Necessity. For a and @ satisfying together (A) and for any
¢e>0 and ze¢R, from (11) we obtain

a(axcex)=m(a=xex)+m(@)=a(a)—m(a)+m(azxex),
hence ' ’
' m(a)—m(a—ex)

Finally we obtain from the definition (17)

<) < m(a—i-—ex)—m(a) .

(21) z-([ple)=a([pla)=r.([r]a) for all peR.
Now if a is domestic, by (e)

z_([pla)=a([pla)=r.([pla) for all peR.
Monotony of m implies a(x) =0 - for all xze(I—[a])R.

Since @ is universally continuous, it is uniquely determined, when a is
domestic. If a is not domestic, from the definition (e) and =_(a)< oo
there exist {a;},c, & R such that [a.]tecsle] =.([ada)<oo (2€4).



66 : T. Andb

Then by (18) a; and @[a,] together satisfy (A) (x¢4), hence by the above
method, @([a,]+(I—[a,])) (1c4) are determined uniquely, consequently
So @ is. .

Sufficiency. By Lemma 1.1 and the result of H. Nakano stated above,
we have z.(a) = n_(a) for all domestic acR.
If z_(a)< o, from the S:Ssumption there exists uniquely dcR such that

m(a)+m(@)=da(a).
If z.([pla)=co for all 0==[p]=[a],
m(24d) = sup {2a(x) — m(x)}

=sup {a([a]x)+(a([a]w) m(x))}=2a(a) —m(a)

because m(x)< oo implies [a]lx=|a|. This contradicts uniqueness of @.
The proof of monotony is easy. : Q.E.D.
Now we shall state a relation between strict convexity and evenness.

Lemama 1.3. Strict convexity and evenness are conjugate.

Proof. Let m be strictly convex. If for 0<ac¢R rz_(&)< o there
exist @, @R such that m(@)+m(@,)=a,(@), and (q)+M(T,)=a:(a),
then there exist {p;};es &R such that |

[Pa]:esM  and [p,Ja.eR (v=1,2; 2¢4),
because R is a complete semi-normal manifold of E (cf. Introductlon)
Then by (11), (18) and (19) we have . :

( [p.]a,+[p,]a, )_ m([p.]a,)+m([p,]a.) (A€ ),
2 2
so by (s') [p.]a,=[p.]a, (26/1) consequently al—az . Thus i is even by
Lemma 1.2. . :
Now suppose that m is even. If for some a=3>0 0<acR, |
m(a@)< oo  and m<“+'8 a)z m(aa)+m(Sa)
2 2 ’

then for @eR satisfying (A) together with a+ﬁ a we have by (11) and
(4) m(aa)+m(a)=a(aa) and m(,@a)+m(a)=a(,8a) .
As above, there exist {p,}, &R such that

[p:1tiesd  and [p.JacR - (2ed),
hence by (18) and Lemma 1.2 we have a[p,]Ja=p8[p,]a (1cA) consequently .
aa=pLa. Thus m is strictly convex by definition.  Q.E.D.

Corresponding to strict convexity and evenness of a modular, those of
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norms are defined (ef. [9; Chap VII]). Let (S,][|.]|) be a normed linear

space”. A norm ||.|] on S is said to be strictly convex, if

(S) Nle]l=]bli=1, [le+b]|=2 implies a=b.

It is easy to see that (S) is equivalent to .

(S") [la+bll|=]la]]+]|b]l, @0  implies b=E&a for some ¢&.

A norm is said to be even, if for any a,becS |[|la||=||b]]=1

(E) leig} ”a‘l‘ébg_”q'“ - gxists.

S. Mazur (see [9; p. 1127]) proved that (E) is equivalent to

() 4 {for any aecS ”a”zly there exists u@iquely deS
such that d(a)=||a]|=1.

The following is known (see [9]): _
Lemma 1.4. Let (S, ||.]]) be a normed linear space. If the associated

norm ||~|| on S is strictly convex (resp. even), then the original morm
on S is even (resp. strictly convex).
‘We conclude this section with some results on non-atomic spaces.
Lemma 1.5. Let S be a mon-atomic semi-ordered linear space and
¢ be a functional defined on S satisfying the following conditions:

(i) 0=<¢(a)< oo for all aeS;

(ii) REIES implies o(@)=Z¢(b) ;

(iii)  [Pdhics or [PdVacalp] @l@)<oo implies lim ¢([p;]a)=¢([p]a).
Then for any a,, a,€S satisfying |a1|§]a2| o(ay)< oo  there exist

b, ceS such that b+c=a,+a, |b—c|=|a,—a;| and ¢ob)=¢(c).
If further ¢ satisfies the additional condition :
(iv) . v ~y=0  wmplies  @(@+y)=¢@)+¢(¥),

’

then we can add to the conclusion

o(b) = ¢(c) = o(a)+e¢(@s)
._ . 5

Proof. Putting

Y([r])=¢([pla;+([a.]—[pDa,) for all peR
and using (iii), by so-called exhaustion method we can find p,cR

such that Y([pol)="Y([a:]—[p])

4) Not necessarily semi-ordered.
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ie. o([po]as+([a:]—[po])a)=¢([a:]—[Do])as+[Do]as) . +

If we put b=[pJa.+([a.]—[p])a, and c=([a.]—[po])a:+[De]a,,
b, ¢ satisfy the required conditions. Q.E.D.
Lemma 1.6. Let (R, m) be non-atomic. Then .
(i) The miodular morm 1is continuous, if and only if m 1is finite.
(ii ) Under the additional condition that (R, m) is monotone complete,
the modular norm is continuous, if and only 1f m is uniformly
finite. ' ~

For the proof, see [1].4

§2. Strict convexity and evenness of the norms?®

In this section we shall give necessary and sufficient conditions for
that the norms by a modular are strictly convex or even. We begin
with a comment on the first norm. \

Lemma 2.1. If a modular m s infinitely increasing,‘ for dﬁy
0=acR: there exists £,>0 such that ||&a|l=1+m(E).

Proof. If sup _mw(gi):”a]l, we have by (8) sup {Sfllall——m(fa)‘}él,

contradicting infinite increasingness. Hence by [2; Lemma 8.27] &, satis-
fying the required condition, exists. Q.E.D.
We shall use frequently the following version of (10), proved in [2],
(22) aeR GeR m(a)=1 1+m@=d(a) implies ||&||=6(a).
Theorem 2.1. If m 1is strictly convexr and infinitely increasing,

the first morm 1is strictly convex. If R is mon-atomic, the converse 1is
also true. '

Proof. Let m be strictly convex and infinitely increasing. For any

a,be R such that [[a||=[|b]|=1 ||la+b||=2 by Lemma 2.1 there exist
& 7>0 such that ¢&¢=1+m(éa) and »=1-+m(y»b), hence we have by
(4) and (8) v

§+7 _ m(a)+m(yb) +1£m;< fa+nb >+12H fa+nb N

2 , 2 2 A 2
Since ”allz[le:H a,—;—b Hzl implies  ||éa+7b||=&6+7, we obtain
5) In this section, non-‘agomicity is not essential. We can obtain necessary and

sufficient conditions for strict convexity and eveness, without assumption of non-atomiecity,
in somewhat complicated forms cf. [2].
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m( ) mEDEmOb),
2 2
consequently by (s) &a =70 ie. a=b. Thus the first norm is strictly
convex by definition. :
Now conversely, let R be non-atomic and the first norm be strictly
convex. We shall prove first that m is infinitely increasing. Otherwise,
there exist 03-ac€R such that

sup m(£a) =7, <o and . Selilo) {Eri—ma)=r,<oo.

£>0 & :
Using non-atomicity of R, we may assume that 7,=<1. Then by the
definition (8) we have :

I Cplall= sup ﬂ@_@gﬂ—“)— for all peR.

consequently by [2; Lemma 8.83] the first norm is of L'-type on [a]R,
a fortiori is not strictly convex. Next we shall prove strict convexity.

Suppose that for acR a=p>0, a—;@ a is domestic and
m( a-+p a>: m(aa)+m(pa) ~ oo,
2 2

Then there exists @eR satisfying (A) together with a;—,@ . It follows

that m(aa)+m(@)=a(aa)  and m(Ba)+m(a)=a(fa).
We may assume that [@]"=[a] and m(@)<1, because of non-atomicity
of R and (18). Since the conjugate modular is continuous by Theorem A

and R is a complete semi-normal manifold of R, we can find be(I—[a])R
be(1—[a])R satisfying together (A) and m(@+b)=1. Then we have
m(aa—+b)+m(a+b)=(a+b)(aa+b)
and m(Ba—+b)+m(@-+b)=(a+b)(Ba-+b)
from this by (22) we obtain
[l aa+5]| + || fa+b]]
= (@+Db)(aa+b+Bb+Db)
= |l (aa+b)+(Pa+b)|].
Finally (S’) tells us aa=pa. Thus m is strictly convex. Q.E.D.
Theogem 2.2. If m is strictly convex and |
(*) iwgfw(ll%)=1,
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the second morm 1is strictly convex. If R is mon-atomic, the converse is
also true. ' '

Poof. Let m be strictly convex and inf w(l]w):i.
230 )
The latter assumption shows that “|||z[||=1" is equivalent to “m(x)=1".
1t a,beR [lalll=Ibli=1 [la-+blli=2, then m(a)=m(b)=m( “‘2“’)=1,

hence by (s’) a=b. Thus the second norm is strictlj convex. Now con-

versely, let R be non-atomic and the second norm be strictly convex.

Since the norm is monotone®, by [2; Theorem 3.3] we obtain inf «(1]|x)=1.
. 230

Nextv' suppose that for 0x-acR a=p=0
m( a-zf—ﬁ a) _ m(aa)z—l— (Ba) _ o

From (19) we may assume that [a]<I ’ m(aa)<=1, because R is non-
atomic. By Lemma 1.5 there exist b,ceR such that

bte=(a+pPa,  |b—c|=(a—p)|al

and \ m(b)_—_ m(e)= m(aa);—m(ﬁa)

Since there exists de(l/—[a])R such that m(b)+m(d)=1, we have

m(.b—l—d—;c-i—d )= m<g-£_ﬁa>+m(d)

= MUaa)FmBO) | (@)= m(5) 4 mid)=1,

or equivalently by () |llb+dll=(lle+dllj=]2EE+d|=1

then by (S) we can conclude b=c, ie. aa=pa. Thus m is strictly
convex. _ Q.E.D.

Remark 2.1. Since we proved im [b] that (x) implies continuity
of the morm, we can state ‘‘ when R is non-atomic, the second morm 1is
strictly convex, vf and only 1f m is normal tn the sense of H. Nakano”.

Next we shall consider evenness. ‘

Remark 2.2. (see [3]) Evenness of a morm implies its continuity.

Theorem 2.3. If m is even, finite and infinitely increasing, then
the first norm is even. If R is mon-atomic, the converse 18 also true.

Proof. Let m be even, finite and infinitely increasing. For any

6) ie. 0=a<b implies [lalj<|d]|.
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acR @cR satisfying ||e||=]|l|z|]|=a(a)=1 by Lemma 2.1 there exists
>0 such that m(¢a)+1=¢, ie. m(fa)+m(a)=¢&a(a). Then by Lemma
1.2 @ is uniquely determined for a. Thus (E’) is satisfied, because

ﬁnitenessv'ilrnplies R=R by Theorem C. Now conversely let R be non-
atomic and the first norm be even. m is infinitely increasing, as shown
in the proof of Theorem 2.1. m is finite by Lemma 1.6 and Remark 2.2.

Finally suppose that for ae R 0<[a]<I there exist @, a,c R such that

m(a)+ (@) =a.(a) (v=1,2).
Using (18), we may assume |@,|<[@;]. As in the proof of Theorem 2.1
we can find de(I—[a])R de(I—[a])R such that d|a,|=0,

m(@)+m@d)=d@d) and PEIEML) Lq@—1.
By’Lemma 1.5 there exist b,éeR such that b+¢=a,+a,,

() = mi(c) = (@) + ()
2

|b—¢|=|a,—a&,| and

hence we have m(a+d)+mb+d)=(b+d)(a+d)

and o m(a—+d)+7@E-+d)=(+d)(a+d).

From this by (22) we obtain 4

| lla+d||=0+d)a+d)=(@E+d)a+d).

Finally by (E’) we can conclude b=¢, ie. @, =da,. Thus m is even

by Lemma 1.2. ' ‘ . QED.
Theorem 2.4. If m 1s finite and even, the second morm 'iske'ven.

If R is mon-atomic, the converse is also true. : .
Proof. Let m be finite and even. Then R=R by Theorem C, and

the conjugate modular m is strictly convex and increasing by Lemma 1.3

and Theorem A. Thus by Theorem 2.1 the first norm by m is strictly

convex, consequently by (15) and Lemma 1.4 the second norm by m is
even. Now conversely let B be non-atomic and the second norm be even.

Finiteness of m follows from Remark 2.2. For acR acR satisfying
m(a)=1 14m(a)=a(a), it follow from (22) ||a||=a(a). (E’) show that

2 s uniquel‘y determined for a. We can prove further that @ itself

lall
is uniquely determined. From this, through easy arguments we ecan
conclude that m is even. , Q.E.D.
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§ 3. Uniform convexity and uniform evenness of the norms

In this section we shall treat uniform convexity and uniform evenness
of the norms by a modular. As uniformization of convexity H. Nakano
[12] defined that a modular m is said to be uniformly convex, if for
any 7,¢>0 there exists 6=d(r,¢)>0 such that

r=a>p=0 a—p=e implies
(uc) { co(a'la,)—;-a)(ﬁ!a) gw<“;ﬁ]a>+5 for é,ll a==0.

It is easy to see that uniform convexity implies uniform simplicity. A
modular m is said to be uniformly even, if for any 7,e¢>0 there exists
0=0(r, e)>0 such that

r=a=[8], a—B=<é implies
(ue) { w(ala);—w(ﬁ!a) =< Q)(_a—_;ﬁ#‘a,)-[_(a_ﬁ)e for all a#O.

Uniform evenness'implies uniform finiteness and uniform monotony.

As a relation between uniform convexity and uniform evenness, H.
Nakano [12; §51] proved: _

Lemma 3.1. If m 1s unzformly convex and uniformly increasing,
the assoctated modular is uniformly even. If m is. unzformly even and
uniformly increasing, then the associated modular is uniformly convex.

Corresponding to these definitions, a norm ||.|| on a normed linear
space S is said to be wuntformly convex, if for any e>0 there exists

0=0(¢)>0 such that

(UC) lell=]Ib]|=1 fa—bl|=e implies |]a+b]]<2 0.

A norm is said to be uniformly even, if for any e>0 there ex1sts
0=0(¢)>0 such that - ' _ |

| lfell=ll?]|=1 0=<£=9 implies

{ lla-+ebll-+|la—ebll=2+¢ .

Lemma 3.2. ([13; §77]) Uniform convexity and uniform evenness
of morms are assoctated. '

H. Nakano [13; §§87-88] derived uniform convexity of the norms
from that of m. .

Theorem 3.1. (1) If m is uniformly convex and unzformly 1N~
creasing, the first norm is uniformly convex.

(UE)
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(2) If m is uniformly convex cmd uniformly finite, the second norm

8 uniformly convex. :
Now we shall prove the converse in the case R is non-atomic. The

following remark is useful."

Remark 3.1. If R is non-atomic and the norm is uniformly convex,
the associated norm together with it is continuous, hence by Lemma 1.6;
Theorem B and Theorem C m 1s unzformly finite and uniformly in-
creasing.

Theorem 3.2. Let R be non-atomic. If the first norm is uniformly
convex, then m is uniformly convex.

- Proof. First fix 7y ¢>0. For any O<aeR m(a)=1 and for any
a,ﬂ;0 r=a=p a—p=¢ by Lemma 2.1 there exists @cR such that

[@a]*=[a]<I and m(a;‘@ )—i—rn(a)_ <a+ﬂ )

If wm(a)=1, by non-atomicity of R we can find peR such that
m([pla)=1. If m(@)<1l there exist de(l1—[a])R de(I—[a])R such

that m@+d)=1 and m(d)+m(d)=d(d).

Put x=[p]la, x,=a[pla x,=5[pla in the former case,

or T=a+d, ,=aa+d  w=pa+d . in the latter case.

By Lemma 1.5 there exists b,ce R such that ' |
btc=u,+x,,  |b—c|=|x,—x,|=(a—p)[p]]|a]

and _ ol =llicll,

because the first norm is continuous. From the definition of p and by
(22) we obtain a+ﬁ |[plall=a (““2"/3 [p]a)>rc ([p]l@)=1, consequenly

.HEp]allzl/r and ubn=ucug—1r—.

On the other hand, by Remark 3.1 and Theorem B i is umformly finite,
hence there exists a constant p>0 such that

.Y =p for all yeR m(y)<1.
Since the first norm is uniformly convex by assumption, there exists >0
such that 20=(|z||=|lyl|=1/2r |lz—yll=< |
' 7
implies Nle+y|[=2(|2]]—0) (cf. [13: §76]).

If (b)+o=mb)+m@E)=m(d)+1 and %(c)+o=m(c)+m(@E)=mc)+1,
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it follows from (8) and (15)
”b+0”+25>”b”+”0”——2”b”
_contradicting the above, because [|b—c|l = (a—B)|| [p]allg;—?

and - . ” b—;—c ”ga(%)gp.
Thus we have, say, ":E(b)—l—& < m(b)+1. On the other hand, by (11) we know
z(c) < m(c)+m@)=m(c)+1,

(20)+

Since from the definition we_have

(25 v =552

hence

m@®)+m(e) | ;.
2

IA

we can conclude

b+ec m(b)+ m(c)
| m< >+'§ = 2
From this by (4) and (6) we can deduce
a+f — m(aa)+m(ba)
m(&5Ea)+g =

2 2
Thus m is uniformly convex, because for any 0<zeR |||z |]|=1 there exist
0<z,eR such that [||=;]]]=1 [oc]<I (v=12,- ) and hmm(gx) m(€x)
for all £=0. - Q.E.D.

Theorem. 3.3. Let R 'be non-atomic. - If the second morm 1is uni-
Jormly convex, them m 1is uniformly convex.

Proof. For any 7>1>¢>0 and for ahy 0=<acR M(d)zl there

exists pe R such that [p]<I and 2L§|H[p]a||l§—1-. Since the second
s 7

-norm is uniformly convex by assumption, there exists >0 such that

oo Hzlll=Mlvlll=1, |lle—ylli=e/2r
implies ( ety =21-9).
For any a,f=0 r=a=f, a—pB>¢ by Lemma 1.5 there exist b,ccR
such that b+cec=(a+B)[p]a lb—clz(a—ﬁ)[p]a

and m()=m(c)= m(a[pla)+m(B[p]a)

2
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’Choose Vd‘e(]f—[p])R such that m(b)+m(d)=1, then we have
, o+allf =Tllle+dlli=1
and ”l(b-l-d)—(c-!-d)”l:”lb*cll]Z(Q—ﬁ)”l[p]a”lz*;?,

hence we have
. m( a-+B [p]a>_l_m(d.)g\}l(b—kd)—{z—(c-{—d} m

2
— 15— ma[p]a) + m(BLP1D) | pidy—s,
consequently m(%ﬁ_ [p] a,) +o6< m(a [p]a);—m(ﬂ [pla) .

Finally by»(6) and (11) we can conclude
atB ) 5 maa)+m(ba)
m( 5 a>+5: 5 ,

thus m is uniformly convex. o ' Q.E.D.
Combining the above two theorems, we obtain a quite simple relation.

. Theorem 3.4. Let R be non-atomic. Then the following conditions
are mutually equivalent:
(1) m is uniformly convex.
(2) The first norm s uniformly convex.
_(3) The second morm is uniformly conwvex.

Proof. If m is uniformly Convex, it is uniformly siniple, hence by
‘Lemma 1.6 uniformly finite. Then Theorem 3.1 is applicable, and the
second norm is uniformly convex, ie. (1)—(3). If the second norm is
uniformly convex, by Remark 8.1 and Theorem 8.3 m is uniformly convex
and uniformly increasing, consequently by Theorem 8.1 the first norm is
uniformly convex, i.e. (8)—(1)—(2). (2)— (1) follows from Theorem 3.2.

’ ~ ' ' Q.E.D.

Theorem 3.5. Let R be non-atomic. Then the following conditions
are mutually equivalent: '
(1) m is uniformly even.

(2) The first norm is uniformly even.
(8) The second norm is uniformly even.

The assertion follows from (15), Lemma 3.1, Lemma 3.2 and Theorem
3.4. ’ ’ ‘
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Chapter II. Equivalent Modulars

§4. Some topological properties

When Banach spaces are considered, usually reflexivity and weak
completeness are discussed. But when we consider semi-ordered Banach
space, further continuity of morms comes into question. In this section
we shall investigate these properties in relation to concrete spaces and
order-structures of the space. Throughout this section (S, [|.||) denotes a
semi-ordered Banach space. - '

l(4) denotes the Banach space, consisting of all bounded real function
on /4 with the norm: ”a”:S}éIZISXI for a=(¢,), and [,(4) denotes the

Banach space, consisting of all real functions on 4 such that >] |&:]< o0,
with the norm: |je||=>1]&:] for a=(£,). When 4 is a set of countable
€4 ’

points, we write simply I, and [,. ¢, denotes the closed linear subspace
of I, consisting of all null sequences.

S, considered as a semi-ordered linear space, is said to be uniformly
continuous, if for any a,J>.,0 there exists a,€S and {¢}; such that
e 0 a,=Zeq, (v=1,2,---). A subset A of S is said to be C-bounded, if

{a,}.. S A f a,< o” implies Zm] a,a,< + %, S is said to be K-bounded,
y=1

v=1=x
v=1

if every C-bounded subset {a.;},e, such that 0=<a,};c, is bounded, i.e.
a,<a, for some a, (1€A). It is known (see [12; §30] and [16]) that
when (S, [|.]]) is complete, C-boundness is equivalent to boundedness under
the norm, and K-boundedness is equivalent to monotone completeness. S -
is said to be contractile, if for any orthogonal system of positive elements

o

{a;},c4, where A is a set of uncountable indices, there exist {a,}., and

{a,  }-1&{a:}ies such that ﬁay:oo and via,a“<+oo. S is said to
v=1

v=1

be strictly contractile, if for any C-bounded orthogonal sequence of posi-

tive elements {a,}., there exist {a,}; such that >l a,=~ and > a,a,
- p=1

yv=1 .
< 4. We call a subspace V of a Banach space S. a direct factor, if
there exists a bounded linear projection from S onto V.

Theorem 4.1. The following conditions are mutually equivalent:

7) «,B denote positive real numbers, and a, b positive elements of S.

8) Slav<-+co means that {3 a.}3°,; is (order).bounded.
v=1 . v=1 .
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(1.1) The morm on S is continuous.
(1.2) S is uniformly continuous.
(1.8) (S, ||.]]) does mot contain any subspace isomorphic to l..

Proof. (1.1)2(1.2) is proved in [12; §30]. For (1.83)—(1.1), see [3].
Finally if (S,[|.|[) contains a subspace M isomorphic to l., denote by V
the closed subspace of M corresponding to ¢, under the isomorphic mapping.
A. Sobszyk [15] showed that for any closed separable subspace U such
that VSEUCS M, V is a direct factor of U but U is never that of M.
Since M is a direct factor of S (see [9; p. 94]), any separable closed sub-
space of S containing V can not be a direct factor of S. Hence (1.1)—
(1.3) is a consequence of the following lemma.

Lemma 4.1. If the norm on S is continuous, for any {fa.} .. &S
there exists a separable closed subspace V22 {a,}., which is a direct
Sactor of S. . .

Proof. We may assume that there exists 0=<w,cS with [@,]*=L
Let V be the least order-closed (a fortiori closed) linear lattice manifold
containing : {a,};>;,, then by continuity of the norm V is separable.

We may assume that [V]=I Let U be the least order-closed linear
manifold of S containing all [p]a,. (pe V). Then for any aclU there
éxists acV with [@]®=[a], hence the mapping Usa—a'cV defined by
a'(x) = a(x) for all zeV
is one-to-one. On the other hand, by Hahn-Banach’s theorem (see [9; §3])
and Theorem C for any 0=<d'c¢V there exists 0§5€S— such that
' | b(x) = b'(x) © for all zeV.

Put b, = |J Z then we can prove -®=0. Thus we have proved that

A
0<zT<d

IA
NA

a |

e . ) ! '
Uis order-isomorphic to the conjugate space T7 of V under the mapping
indicated. Since (U, [|<|]) and (V,|[.]ls) are both Bach spaces, where

N ] = sup |@'(x)] for ZF'eV, by Theorem C there exists a>0 such
: zeEV,|%||<1 . .
that la]] = all@’ ||« for all @eU.
We can define a mapping T from S to 14 by
| Ta(®) = %(a) for acS, FcU,
then we have [[Ta||; <.a||a|| for all acS, where ||-||. is the norm on V.

Since V is a complete semi-normal manifold of 17, we have from the
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definition of T, TacV for all aecS satisfying |a]=x for some xeV.
Since for any 0=<<aeS there exist 0=<a,1"..a such that a,<z, for some
z,eV (v=1,2,---), we have
| | Ta,—Ta || <alla—a, || (v=1,2,---).

Since the norm on S is continuous, hm [Ja,—a||=0. Since V is closed,
we can conclude TacV. Thus T is a bounded linear prOJectlon from S
onto the separable subspace V. Q.E.D.

Theorem 4.2. The followm,g conditions are mutually equwalent
(2. 1) (S, |I.1) 4s weakly complete.”
(2.2) S is uniformly continuous and K-bounded

2.3) (S, |].]) does not contain any subspace zsomorp‘hie_ to co.
Proof. (2.1)—(2.8), for ¢, is not weakly complete.” (2.3)—>(2.2) If
(S, [|.]]) contains no subspace isomorphic to ¢, the norm is continuous and

S is monotone complete, hence S is uniformly continuous and K-bounded.
(2.2)->(2.1) If S is uniformly continuous and K-bounded by [12; Theorem
82.7] it is order-reflexive. Then by [12; Theorem 27.57 (S; ||.[]) is weakly
complete, because S=S by Theorem C. Q.E.D.

Before considering reflexivity, we shall treat contmulty of the associ-
ated norm for the later use.

Lemma 4.2. If the associated space S is uniformly continuous, S
is strictly contractile. Conversely if S 1is strictly contractile, the con-

jugaté space S is uniformly continuous.
Proof. Let S be uniformly continuous and {a,}., be a C-bounded

orthogonal sequence of positive elements of S. For any 0<@eS we have
lim @(a,)=0, because otherwise hm [| [a.]@||2=0 contradicting continuity

Y >0

of the associated norm. Dev1de the set of all natural number into a
countable subsets {I,}®.,, each -consisting of countable elements. From
the above and by a theorem on separatlon of convex sets (see [9; §6])

there exist k, €I, ' (v=12,---,p, £=1, 2,--+)

and ' 0<a,,. (v=1, 2,---,p;; k=1,2,---)
. ' Py -

such that SMa,,,=1 and Sla,,.a., ?<*—21—; (zc———l, 2,---).
y=1 v=1

Arranging {x,},,. in a line, we have > a,.,=o0 Z Za, ,,atv<+oo
, o L V,E . o k=1y=1

9) Sequentially complete under the weak tepology.
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.+, |=1. Thus S is strictly contractile. Conversely let

S be strictly contractile. If the conjugate space S is not uniformly con-
tinuous, by Theorem 4.1 there exist 0<acS and orthogonal {p,}:, such

that | ' inf ||[p.]Ja||>e>0 for some e.
: v=1,2,00¢
Further there exist {a,}.; such that
[p]Ja.=a,, |la.|]|=1, @&,)>-¢ (v=L2,--).

Since {a,}:, is C-bounded, by assumption there exist {a,}>; such that

Sla,=oo  and f‘, a,a,<+ . Then we have

ye=1 y=1 |
:g :E: abZi(aT) ;; 25( 5;3 au(lv>‘<:(30 (KZZ:]q QL' ").
. =1 v=1

Clearly this is a contradiction. Q.E.D.

A semi-ordered linear space S is said to be superuniversally con-
tinuous, if a; -a,=0 (A%p), a,<a implies a,=0 except for countable
indices. Then quite similarly as in Lemma 4.2 we can prove:

Lemma 4.3. If the associated space S is superunwersally con-
tinuous, S is contractile. Conversely if S is contractile, the conjugate

space S is superuniversally continuous.

Remark 4.1. If S=S, namely the norm on S is continuous, strict
contractility (resp. contractility) is a mecessary and sufficient condition
for the uwiform continuity (resp. superuniversal continuity) of the as-
sociated space. |

Remark 4.2. As is shown in [4], if S is a modulared semi-ordered
linear space, uniform continuity (resp. superuniversal continuity) of

the conjugate space S implies that of the associated space. S.
Theorem 4.3. The followzng conditions are mutually equwalent
3.1) (S, ]].1) s reflexive (as o Banach space). v
(8.2) S is K-bounded, uniformly continuous and strictly contractile.
3.3) (S,{|.]]) does nmot contain any subspace isomorphic to c, or to l,.

Proof. (3.1)—>(3.3), for neither ¢, nor [, is reflexive. (8.3)—(8.2)
If (S; |].]]) does not contain any subspace isomorphic to ¢, nor to I,, then
by Theorem 4.2 S is K-bounded and uniformly continuous. If S is not
strictly contractile, there exists a orthogonal sequence of positive elements

{a.};2: of S such that a,>0 Za a,< -+ oo implies Za < co. This means

yv=1 v=1
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that the subspace generated by {a,}.; is isomorphic to I,, this contradict
the assumption. (8.2)—>(8.1) If S is K-bounded, uniformly continuous
and strictly contractile, by Theorem 4.2 and Lemma 4,2 (S; ||.]|) is weakly

complete and the associated space is uniformly continuous, because S=8.
Then as is well-known, (S; [|.|]) is reflexive. Q.E.D.

§ 5. Methods of construction of new modulars

Two modulars m,, m, on a semi-ordered linear space is said to be
equivalent, if their modular norms are equivalent. In this section R denotes
a modulared semi-ordered linear space with a modular m. The most simple
principles of construction of equivalent modulars are the following:

(i) If m, is another modular on R whose modular norm is weaker
than that by m, then the functional m+m, is an equivalent modular.

(ii) If ' is a modular on R, equivalent to the conjugate modular m
of m, the conjugate modular m, of 7', considered on R, is a modular on
R equivalent to m.

H. Nakano [12; Chap. IX] discovered an intrinsic method of con-
struction of a modular. In the remainder of this section, we shall re-
formulate some of his results in a convenient form.

Let m' be a modular on R equivalent to the conjugate modular .
Then there exists an operator T from the domain

F={z; =0 m@x)< o} to F={Z; R>%=0 m'(&)< w} such that

| @ ([p]Ta)® < m([pla) for all peR acF
and “ f?ﬂl([p]ac)<m([p]a) for all peR” implies Z<Ta. In fact, we
can define T by the formula: ' o '

(23) =U{z; m'([p]x) =m([p]a) for all peR}.
If m' is continuous, we have further .
24) . _ m([p]Ta)=m([pla) for all peR acPF.

For, if  m'([p.]Ta)<m([p,Ja) for some O=[p,]=[a], there exist.s

O0<aeR such that [p,]J@=a and ml([p(,]Ta+c—t)<oo because of continuity

of m'. Suitably modifying @, we may assume that

| wn'([p]Ta+[pla) =< m([p]a) for all [p]=[p.],
Then" from the deﬁnltlon of T we have [p,(Ta+2)<Ta, contradlctmg

a=>0.

10) We use [p]z insteated of z[p].



Convexity and Evenness in Modulared Semi-ordered Linear Spaces : 81

Lemma 5.1. If m is continuous and ' is a modular on R equi-
valent to the conjugate modular m, them there exists a modular m, on
R whach is_ equivalent to m and satisfies

m (@)= f "Tea(a)ds  for all acF,

where T s defined by (23).
Proof. Without loss of generality we may assume that (R, m) is
monotone complete. We define first a functional m, on F by
my(a)= f ]Téa(a)dé .' for all ackF.
Since Téa(a) is an increasing fur.;ction of 12520, m,(fa) is a convex
function of 1=£6=0 for every acF, hence for any a,bcF and 0=<a=1
my(aa+(1—a)b) < am,(a)+(1-—-a)m,b).
From the integration theory, 0=<a;},c,ac¢F implies sxlenz m(a,)=m,(a).
If a,beF a-b=0, then
Te(a+b)(a+b)=Téa(a)+TEb(b)  for 0=<E£<I,
consequently | m(a+0)=m,(a)+m,0). | :
Define a functional m* on R by the formula: .
(25) m*(a) = ggg'{lal(w)—ml(x)} for @cR,

thenlwe shall show that m* satisfies all the modular conditions. The
conditions except (8) are easily tested (see [12; §887]). Generally we can
prove (see. [12; §58]): Tia(3a) = m,(a)

and Ta(b)+Tb(a) < Ta(a)+ Tb(b) for a,bekF.

For any 0<acR there exists a>0 such that m'(a@)< . By continuity
of m, using (24) we can find acF such that

m'(a[pla) = m([pla) for all peR,
hence by the definition (23) we have aa@=<Ta, hence it follows that
ad(3x) = Ta(3x) = {Ta(a)+ Tix(dx)}
=< Ta(a)+ m,(x) for all xzeF,
consequently 4’72*(—“— Zz‘) = sup {9— a(x)—ml(x)}§Ta(a)< oo .
2 zeF (2

Since for any 0<xeR there exists 8>0 such that m(B8x)< «, from the
above consideration we can conclude that (R, m*) is monotone complete,
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hence by Theorem C m* is equivalent to 7. Define m, on R as the
conjugate modular of m*. We can prove as in [12; §39] that
my(a) =m,(a) for all ackF. Q.E.D.

We conclude this section with an example of change of a modular.

Therem 5.1. FEwvery modular 1is equivalent to one which s con-
tinuous and infinitely increasing at the same time. If the original
modular is strictly convex (or even), the obtained one can be also.

The proof is not difficult and is left to the readers.

§ 6. Strict convexity

In §8§6-7 let (R, m) be complete under the modular norm:. Our aim
in this section is to investigate conditions under which we can introduce
a new modular on R that is equivalent to the original and possesses
some prescribed properties (for example, strict convexity, uniform con-
vexity, etc.). We wish to express these conditions in connection with
topological and order structures of R. Our investigation was motivated
by the question: ‘what kmds of properties are invariant under an iso-
morphism!” between two modulared semi-ordered hnear spaces?7”  Since,
as is shown in Chapter I, convexity and evenness of a modular are in
close connection with those of their norms, our results give answers for
the question: under what conditions the modular norm is equivalent to a
strictly convex (uniformly convex, etec.) norm. Problems of this type
were treated in the theory of Banach spaces by M. M. Day [8]. Supported
by some of his results, we shall give almost complete answers, so far as
modulared semi-ordered linear spaces are considered.

~ In the sequel, (M.), (0.), (T.) and (N.) denote respectively a condition
related to the modular structure of R, to the order one, to the topological
one and to the type of norms.

We begin with almost finiteness, though it has no direct connection
with strict convexity and evenness. Consider the atomic part R, of R
In R, there exists a system of atoms {d;},c, such that

xléJA[dsz[Rdjy dlr‘\d#:O (2#‘&) “ld;”l: (/2, ,LCG/I).

We call {ola}l,IE 1+ the complete system of atoms (with respect to ‘m) Let

{d:};c. be the complete system of atoms of R with respect to the con-
jugate modular m. If we put

11) Isomorphic as Banach spaces.
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m(Ed,) for 0<&(<1,
(& —m(d,))+m(ed,) - for 1<ég,
each ¢,(§) is a convex function of £>0. Defining a new functional m,
on R, by

901(5):{

M@ =3 ¢:(6) where &d,=[d,]|al (ed),
we obtain a modular satisfying |
m,(@)=m@) for all acR, and m,@)=m@ for acR, m@=L.

Thus #, is a modular on R,, equivalent to 7n. From the definition (26)—
(27) we can see without difficulty that i is increasing. Hence by Theo-
rem A the conjugate modular of i, (considered on R,) is almost finite
and equivalent to m. Thus any modular is always equivalent to an
almost finite one on the atomic part. ’

On the other hand, there exists the decomposition of the non-atomic
part R,:R.=R,,®R,, such that m is almost finite on R, , and infinite
on R,, (see [12; §44]). Since we may assume by Theorem 5.1 continuity
of m, by [12, Theorem 44.16] there exists 0<a,cR,. such that for any
zecR there exists a>0 satisfying [a,]|z]|=<aa,.

Theorem 6.1. The following conditions are mutually equwalent
(M,;) m is equivalent to an almost finite modular. ‘

(0.,) For any mon-atomic 0<acR there exists be[a]R such that
| (b—va)* %0 (v=1,2,---).

Proof. (0,,)—(M,,) is proved above. If for some non-atomic
O<acR and for any xzc[a]R there exists a>0 such that |z|=aa, any
non-trivial semi-normal manifold of [a]R is not uniformly continuous as
itself, hence by Theorem 4.1 on any semi-normal manifold of [a]R the
modular norm is not continuous. This means that R does not admit any
equivalent ‘modular which is almost finite, i.e. (M, ) —=~>(0.;). QE.D.

Theorem 6.2. The following conditions are mutually equivalent:
(M,) m is equivalent to an increasing modular.

(0,) For any non-atomic 0<acR there ewist {a,}.:; and {a, K ElalR
such that Sla,=o and S a,B.a,<-+ o for all C-bounded set

y=1 el

of the form {B,a.}>

" Proof. If m is not equlvalent to any increasing modular, by Theorem
A the conjugate modular 7 is not -equivalent to any almost finite modular.
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~

Then by Theorem 6.1 there exists a non-atomic O0<@eR such that for

any Ze[@]R there exists >0 with |Z|<ad. Then clearly the norm
defined on [@]*R by - o

(29) lz|l« =a(z]) for ze[a]”R
is equivalent to the modular norm by m. Let {a.}>..c[a]R,
}oi;a,:—l—oo, e l[|=1 and} a,=>0 (v=1,2,---),

then we have iayay = iapﬂay”*—"—”fwo
v=1 % v=1

hence { ﬁa#ay} is not order-bounded. This shows (0,)— (M,).
v=1
If m is equivalent to an increasing modular, we can find {a,}72., <R

such that ia,<+oo and i}“ap]l:+oo.

v=1

oo

6=1

because, otherwise, putting ’
a(a) = sup > || . || - for 0=<aecR
y=1

‘where supremum is formed over all the family {«,}:_, such that
' €, ~2,=0 (vp), Sle,<a.
v=1

a(.) is finite valued and can be extended as a universally continuous

linear functional over R. It is not difficult to see that for any ZecR
there exists a>0 with |Z|<aa, contradicting the assumption by Theorem

6.1. Putting «,=||a.|| (+=1,2,--.) we have iay:oo and ia,ﬁ,au<+oo

ve=1 v=1

for all C-bounded set of the form. {8,a,}2, i.e. (M,)—(0O,). Q.E.D.
We could not find any topological invariance for almost finiteness.
Theorem 6.3. The following conditions are mutually equivalent :

(M,) m 1is equivalent to a finite modular.
(0,) R s uniformly continuous.
(T, (R, |]].|l]) does mot contain any subspace isomorphic to ..

Proof. (0,)2(T,) follows from Theorem 4.1. (M,)—>(0O,) is clear.
If the modular norm is continuous, by Lemma 1.6 m is finite on the
non-atomic part R, and is equivalent to an almost finite modular on the
atomic part by Theorem 6.1. Since the finite manifold ie. the totality
of all finite elements, is closed under the norm, the almost finite modular
obtained above is finite, because under continuity of the norm a closed
complete semi-normal manifold coincides with the whole space, i.e. (0,)—~

M), Q.E.D.
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Now let us take up strict convexity and evenness. Let m be simple.
By Theorem 5.1 we may assume that m is further contimuous and inm-

finitely increasing.. By Theorem A the conJugate modular % on R is
continuous. The operator T, defined by (23) for in'=im, satisfies

m([p]Ta) = m([p]a) for all peR, ack,

and ‘is one-to-one from F={x; 0<xcR m(x)< o} to F={Z; 0<%cR
(%)< oo}, because x, yeF xy implies m([p]x)==([pr]y) for some p by
virtue of simplicity of m, hence Téa(a) is a strictly increasing function
of 1=6=0, consequently m, defined by '

my(a)= fTEa(aj{f for ackF

is strictly convex on F. By Lemma 5.1 we can extend m, over R as an
equivalent modular. We shall show ‘strict convexity of m, on R. If aa
is a domestic element (with respect to m,), we can prove that there
exists 0=x[p,]=[a] such that a[p,]JacF in fact, for ¢>0 satisfying
m*((l+s)aa)< o, put e= U x. If [(Q14+e)aa—e)*Je=p=0, then

2eF x(1+e)aa

for 0<aecR with a(p)>0 by (25) we have :
, my(§[pla) = sa(p) for all £=0
(because, from the definition of p, xe¢F implies [p]e=<p), hence
‘ my((1+e)alpla) = sup {(1+e)a®( [p]a)— (%)}
= (1+e)ata([pla)—my(S[P]a) .
> ca([p](1+¢e)aa—e))=>0 for all &£>0,

clearly this isa contradmtlon, thus we have proved e=(1+¢)aa, consequently
O0<a[p,]acF : for some p,cR.
If _
a=p=0 and m*(a+,3>:__m*(aa)—|—m*(ﬂa)
== 2 2 y\

then by (19) we have -

m*<a_+ﬁ [po]a>= my(alpo]a)+my(B[Po]a)
2 2
Strict convexity of m, on F implies a[p,Ja=p[Dp]a ie. a=4pf. Thus
we have proved that every simple modular is equivalent to a strictly
convex orie. ,

Theorem 6.4. Let (B, m) be monotone complete. The following
conditions are mutually equivalent: )
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(M,) m s equivalent to a simple moduylar.
(M,) m 1is equivalent to a strictly convexr modular.
(0,) R s superuniversally comtinuous.

(T, (R, []].1l]) does mot contain any subpace isomorphic to lo(A), where
A is a set of uncountable indices. ‘ A
(N,) The modular norm is equivalent to a strictly convex morm!?,
Proof. (M,)Z(M,) is proved above. (M, — (N,) follows from Theo-
rem 2.2, because we may assume that m, defined above is infinitely in-
creasing. M. M. Day [8] proved that [l.(A) does not admit any equivalent
norm which is strictly convex, hence we obtain (N,)—(T,). (T.,)—(0,) is

clear. It remains only to prove (0,)—(M,). Putting e= |J = (e exists by
) m{x)=0

virtue of monotone completeness), we are in the situation that m is simple
on (1—[e])R and there exist {@,}]=., <R such that U [@,]?=[e], because

R is superuniversally continuous and semi-regular by assumptlon. Putting

62%@— and m,(a)=m(a)+a(|a]) for acR,

we obtain a simple modular equivalent to m. | ~ Q.E.D.
Remark 6.1. In Theorem 6.4 we can mnot replace monotone com-
pleteness by completeness.
In fact, generally we can prove that a semi-ordered Banach space
with a continuous norm admits an equivalent, strictly convex norm. If
Theorem 6.4 is true under completeness, a modulared semi-ordered linear

space with a continuous norm has the second ‘conjugate space R which is
superuniversally continuous. But this is not the case.

Theorem 6.5. The followzng conditions are mutually equwalent
(Mm) m is equivalent to a monotone modular.
M,) m 18 equivalent to an even modular.
(0,) R 1is contractile. '

(T,) (B, [l].]l) does mot admit any direct factor isomorphic to 1,(4),
where A is any set of uncountable indices.

(N,;L)  The associated morm on R is equivalent to a strictly convex one.
Proof. (M,)>(M,) follows from Theorem 6.4 and Theorem A. If
m is monotone, the associated modular # on R is simple by Theorem A,

- 12) In this section, equivalent norms need not satisfy the condition ().
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hence (M,,)—(N,,) follows from Theorem 6.4. (N,)—(0,)—>(M,) follows
from Lemma 4.3, Theorem 6.4 and Theorem A. If R is not super-

universally continuous, there exist 0<a@cR and "{a,};es <SR (4 being a
set of uncountable indices) such that

a;~a,=0 (23 p), Hle:dll=1  (2e4)
and inf.a(a;)>0. o
e 4
Putting a, = a(a,), b, =[a;]a (1 A),
we define a linear operator P by '
| Pa =7 bi(a) a, | for acR.
iE4 .

Then clearly P is a bounded linear projection from R onto the subspace
V generated by {a;};c,.. On the other hand, V is isomorphic to 1,(4).
Thus we have proved (T,)—(0,) by virtue of Lemme 4.3 and Remark

4.2. Finally if (R,|||.]]]) contains a direct factor isomorphic to (1),

then (R, ||=]|) contains a subspace isomorphic to l.(4), thus (M,)—>(T,)

follow from Theorem 6.4 and Theorem A. - Q.E.D.
Remark 6.2. In Theorem 6.5 we can mot replace (T,) by

(T.) (B, |]].|I) does not contain any subspace isomorphic to 1,(4).

In fact, I,(4) is isometrically imbedded into I.(I") for some I and (")
admits a monotone modular as a modulared semi-ordered linear space.

Remark 6.3. In Theorem 6.5 we can mnot replace (N,) by
(N,) The modular norm is equivalent to an even mnorm.

For evenness of the norm implies its continuity.
Finally we shall give conditions for evenness of the modular norm.

Theorem 6.6. The following conditions are mutually equivalent.

M, ) m s equivalent to a finite, monotone modular.

M,.) - m is equivalent to a finite, even modular.

(Oy,m) R is uniformly continuous and contractile.

(T,.) (R, || l]) does mot contain any subspace isomorphic to l. or
to 1,(A), where A is any set of uncountable indices.

(N,) . The modular morm 1is equivalent to an evern norm.

Proof. Using Theorem 6.3-6.5, we can prove: (M, .) =M, .)Z (O, .)-
(T,.)—>(0,.) is clear from Theorems 6.4-5. M.M. Day [8] proved that 1,(A4)
does not admit any even norm equivalent to the original one, hence we
obtain (N,)—(T,.). (M, .)—(N,) follows from Theorem 2.3. Q.E.D.
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8§ 7. Uniform convexity

For normed semi-ordered linear spaces, completeness and monotone
completeness are different properties. Some special aspect of a modulared
semi-ordered linear space which is monotone complete and has a continuous
modular norm was studied in [1], [14] and [16] For example, S. Yamamuro
[16] proved .

Lemma 7.1. If (R, m) is monotone complete, m 18 simple and the
modular norm is continuous, then m 1is uniformly simple.

Now let (R, m) be monotone complete and the modular norm be con-
tinuous. Since continuity of the modular norm implies superuniversal
continuity of R, by Theorems 6.3-6.4 we may assume that m is simple
and finite. Then by Lemma 7.1 m is uniformly simple. There exist
7>0 such that . m(x)é'—rl— ~ implies [[]x”[é% |

Define a new modular m; by m,=ym, then we have:

m(x) <1 implies m,(2x) 7.
Let {d.}.c. be a complete system of atoms of R (with respect to m,).
Define real convex functlons v, by :

‘PA(E) {

and a functional m; on R by :
my(a)=m,([R.Ja) + 33 ¢:(6;)  where  &d,=[d,][a]  (e4),
then m, is a modular equivalent to m. Further we have

my(28d,) < r,my(Ed;) for some 7,>0 and for all £>1.

On the other hand, by Lemma 1.6 m, is uniformly finite on B,. Combining .
these, we can conclude uniform finiteness of m,, (see[1]) in fact,

m,(2d,) for 0=:<1,
14+ (6 — Dz, . (d2) - for 1=,

my(a)=1 implies m,(2a)=<y,m.(a) for some constant 7..

The subset - . o
={z; m.(2[plx)=2r.m([p]x) for all peR}

is directed, i.e. =, ycU implies x~yeU and by the definition of 7,
o xelU implies = my(2)<1.

By monotone completeness of (R, m,), there exists e= Jx and for
zeU

0-—-26» : w°(2$’ €oy ‘p) = 3720)2(51 €o, p) fOI' all §>1 be U[e]:
where p is a point of the proper space of R and -
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. . mz(é[p:l 30)
o6, e ) = o ma([BTee)

(for the detailed discussion, see [12]). Put, for pe U,

3 for 0=¢<1,

w*(s’ p)_ { 0)2(5, €oy p) for Egl,
then w4(&, 1) is a convex function of £=>0 and a continuous one of p and
satisfies the condition: w(2&, D)= (24372)w« (&, D) for £=0, peU;.
Now we define a new modular m, by :
la] 1—Te.
()= f] (2L v), p)mapes +ma(@a—reo)-

Then we have my(a) <my(a) <my(a)+my(e) for all ackKR.

Since R is monotone complete under both m and m,, they are equivalent
by Theorem C. From the definition of ¢, we have :

my(22) < 27,mq(x) for all ze(1—[e,]))R,
hence my(20) < (2+87,)my(a)  for all acR,
that is, m, is upper bounded. ‘
Combining this result with Theorem 4.2, we obtain
Theorem 7.1. The following conditions are mutually equivalent:
(M,,) m 18 equivalent to a umformly simple (or uniformly finite)
modular.

(M,,) m 18 equivalent to an upper bounded ‘modular.

(0.,) R is K-bounded and uniformly continuous.
(T,) (B, [Il.11) is weakly complete.
(T..) (R, ||].ll]) does mot contain any subspace tsomorphic to c,.

We could not succeed in characterizing (M,,) by the type of norms.'
Theorem 7.2. The following conditions are mutually equivalent.

M,,,) m is equivalent to a unszTmly monotone (or uniformly in-
creasing) modular.

M,,) m 18 equivalent to a lower bounded modular.
O.n) R 1s strictly contractile. :
(T..) (B, ]|].]l]) does not admit any direct factor isomorphic to l1

The proof is similar to that of Theorem 6.5.
Remark 7.1. In Theorem 7.1 we can not replace (T,,) by
(Tow) (R, l].]I) does mot contain any subspace isomorphic to l,.
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In this dlrectlon, corresponding to Theorem 6.6, we have

Theorem 7.3. The following conditions are mutually equwalent
(Mf,lf)’ m 1s equivalent to a finite, lower bounded modular.
(Osum) R is uniformly continuous and strictly contractile.
(T,um) (B, ||.ll]) does mot contain any subspace isomorphic to 1.

Finally we shall consider uniform convexity and uﬁiform evenness.
It is well-known that a uniformly convex (or uniformly even) Banach
space is reflexive (see [13; §§76-77]). In case of modulared semi-ordered
linear space, if m is uniformly convex (or uniformly even), (R, |||.||]) is

reflexive.

Now let (R, |||.ll]]) be reflexive. Then by Theorem 4.3 and Theorem
7.1 m (resp. its conjugate modular 7) is equivalent to an upper bounded
modular m, (resp. to m'). Since m, and ‘m' are both simple and finite,
by Lemma 5.1 there exists a one-to-one mapping T from R*={x; x=0}

onto R*={%; £=0} defined by the condition:

m'([p]1Ta) = m([p]a) for all peR,
and we can define a new modular m, on R, equivalent to m, by
my(a) = fTS[aI(la[)ds for acR.

First we shall show uniform convexity of m,. Let 7,¢e>0 r=a==0,
a—p=¢ and my(a)=1. By the definition of m, we have

my(a0) £ s(P0) _ gy (4P ) 9P (00, Tata)de,

2
where _ _ o
o _(a+B a—p e (a+B  a—pB)\ ; gy
ae_( > +£& 2 )a and a_( 5 & 5 ) for 061,
Since a. = at and Ta, = Tat for 061,
. ‘ m*(aa)—f—m*(ﬁa) >
2.
> a+18 a— ﬂ — 3
= My ( 2 ) f(Ta Taf)(a)dE .
Since 3 Hlae——aflll*:g—@z—mgz. ~ for 1>§_g_;_

by uniform simplicity and uniform finiteness of m, there exist K, ,o>0
such that S '
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my(a.—a’) = p for $=<£<1,
m(Ta*)<m'(Ta.)=m,(a) <« for 0<¢&<1,
hence we have I Taf ||| < ||| Ta.|||' < £+1 - for 0=<&<1.
By uniform finiteness of ' there exists >0 such that |[|Z|||!<2(x+1)
implies m!'(X¥) < . We shall prove that _ \
|||Ta$—Tafmlg@ for i=e<1.
2]
Suppose the contrary, i.e. for some 31=<§¢,<1 |]]Tae°—Ta$°‘[”1f.<i”2+—1). :
Since ' #
| Tatet 22 (Tap —Tat) | s a1+ 20 PEED oy,
o P 2p
we have 0= my(a,—a’)

< my(@e) —my(at) =i (Ta,,) —m (Ta')

P E'T@l(Taf*"-i—&l—(Tdeo— Taeo>> < P .u=2,
2p I 2p 2

A

(because m(x)ém(y)-{—s-m(y_l_l(x—y)) for all z,y 0<e< 1)
. . € '

clearly this is a contradiction. On the other hand, it is known (see [12;
§60]) that ’ my(a)+ My (Ta)=Ta(a) for all acR

and | W (@) = f &(T-1eq)de for all 0<gekR,
' )

hence i, is uniformly simple by Lemma 7.1, consequéntly there exists
0>0 such that

myx(Ta,—Ta®) =0 for %1=<¢

<1.
Thus we obtain ’
0 = My(Ta,—Ta*) < (Ta,—Ta®)(T(Ta.—Ta?))
= (Ta,—Ta*)(T-'Tef) < 7(Ta.—Ta)(a),
hence 9 < (Ta,—Ta*)(a) . for =e<l.
' 7

Finally we can conclude
my(aa)+m,(Ba) - m*( a+B a>+ (a—B)o .

"2

4

Thus m, is uniformly convex by definition. Similarly m, is uniformly
convex. It is not difficult to see that both m, and i, are upper bounded,
hence by Theorem B m is bounded. Finally by Lemma 8.1 m is uniformly
even. :
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Summarizing these resu‘lts,“we obtain.
Theorem 7.4. The following conditions are mutually equivalent.

(M,) m 18 equivalent to a bounded modular.

(M,..) m s equivalent to a unzformly convex, uniformly even modu-
lar. . _ :

(0,) R is K-bounded, uniformly continuous and strictly contractile.

(T,) R D s reflexive.

('Tum) (R, |||l does mot contain any subspace isomorphic to c, or
to ;.

(N...) The modular morm is equivalent to a wuniformly convex and
uniformly even one.
Remark 7.2. The condition (N,,,) is one of the characteristic pro-
perties of a reflexive modulared semi-ordered linear spaces.

In fact, M. M. Day [6] gave an example of a relexive semi-ordered
Banach space which does not admit any uniformly convex norm, equlvalent
to the or1g1nal one.

Appendix

A non-modularable semi-ordered Banach space with
a uniformly convex and uniformly even norm

From the consideration in Chapter II, it is natural to ask whether a
semi-ordered Banach space, with a uniformly convex and uniformly even
norm, is modularable, i.e. its norm is equivalent to a modular norm by some
modular. Recently T. Shimogaki [14] gave a negative answer to the
conjecture that a semi-ordered Banach space is modularable. The function
space used in his counter example has a continuous norm, but is not re-
flexive. We shall give an example of a semi-ordered Banach space, with
a uniformly convex and uniformly even norm, which is not modularable.

Lemma. If two finite modulars m,, m, on a non-atomic semi-ordered
linear espace R are equivalent, there exist a, >0 such that
Rsa m(a)=1 1implies ml(a)gmz(aa)gml(a,@q);
Proof. (cf. [1]). Since R is non-atomic and m, is finite, for any
0=aeR m(a)=1 there exist {a,};_, such that a,-a,=0 (v+p),

Sa,=a  3=mya,)=1 (b=1,2,- -, £).

v=1

On the other hand, there exist a’, />0 such that
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il 2l =Mll=ll.= £l Il for all xeR,

because these two norms are equivalent by assumption. Since

lalk=allallz% e=12--m,
we have
my (22 ) =1 (v=1,2,+--,x)
a ) f
hence .
mi(@)= 3} my(@.) = £ = 37 ma( 2 )=y 224
yv=1 v=1 o o
Simila-rly we have 'm2< 20 > < m1<4€, a> . Q.E.D.
a a

L, (1<p<o) 1is the totality of all p-integrale function f on the unit

1
interval, i.e. | f [ f®)|Pdé< . It is a modulared semi-ordered linear space
; :
with the modular

1
m(f) = 1@l at
and the modulaf norm ’

= [ s a)”

Let Lj denote the totality of all measurable function F on the unit’
square such that

(%) [wm_{f(jﬁFa@de Vs

L3 is a semi-ordered Banach space Wlth the norm (¥). It is known that
the norm on LZ is both uniformly convex and uniformly even (see [7]).

We shall show that LZ is not modularable, if p=-q. Suppose that
L} is modularable by a modular m. Then the linear operator T, from L,
to L7 and T, from L, to L2 are deﬁned by

L,>f — (T ), 8)=f(t) (for 0=t, s<1),

and Lg,39 — (T29) (¢, s)=g(s) (for 0=¢, s<1).
We can prove easily that

HTIfH—IHfH!p for all feL, and [|Tug|l=|llglll, for all geL,
Further N /=0 in L, implies ﬁ_o]Tlf ,=0 in Lg,

p=1
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and N g,=0. in L, - implies - | ﬁng,zo in Lg.
p==]

y=1

Since LJ is non-atomic and the norm on it is continuous, m is finite by
Lemma 1.6. Putting -

mu(F)=m(T,f) for feL, and m*(g)=m(Tsg) for geL,

we obtain a modular m, on L, (and m* on L,) equivalent to m, (and to
m, respectively). By Lemma there exist a, 8>>0 such that

m,(f)=1 implies  m,(f)=m(af)=<m(abf)

and m,(g) =1 implies mq(g) <m*(ag) <m/(afg) .

Putting Fo®)=go(s)=1 (for all 0=, s<1),
we have T, fo=T.9, and m,(fo)=m,g,)=1,

hence ' '

M (Efo)=E" <my(alfo) <m,(aPEfo)=(aB)"E"

and m(£go) =E1<m*(atg,) =m(aftg,) =(aB)*"
consequently ( 1 ) <ér-1 < (ap)? - for all &=1.

This 1nequa11ty is poss1b1e, only when p=gq.

-

It remains a fundamental question “under what conditions a semi-
ordered linear space is modularable”. -We shall treat 'this problem in

another paper.
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