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Recently, in his paper [7] one of the authors has presented several general-
ized normal basis theorems for a division ring extension, which contain as
special cases the normal basis theorems given in [1] by Kasch (provided for
division ring extensions). One of the purposes of this paper is to extend his
results to simple rings. In \S 1, we shall prove those extensions, and add
a decision condition for a normal basis element in a strictly Galois extension
of a division ring, which is well-known in commutative case. Next, in \S 2,
we shall treat exclusively an F-group of order $p^{e}$ in a simple ring, and consider
the relations between the extension dimension over the fixed subring and the
order of the F-group. The principal theorem of \S 2 is an improvement of the
result stated in [8] for a DF-group. As to notations and terminologies used
in this paper, we follow [3] and [5].

\S 1. The following lemma has been given in $[7]^{1)}$ , and will play a funda-
mental role in our present study.

Lemma 1. Let $\mathcal{T}^{t}\ni 1$ be a ring with minimum condition for right
ideals, and let $M,$ $N$ be unital right Tmodules.

(i) $M$ is T-projective if and only $\iota f$ it is T-isomorphic to a direct sum
of submodules each of which is Tisomorphic to a directly indecomposable
direct summand of $T$.

(ii) If $M^{(m)}\simeq T^{(\omega)}$ for a positive integer $m$ and an infinite cardinal
number $\omega$ , then $M\simeq T^{(\omega)}$ .

(iii) If $M^{(m)}\simeq T^{(t)}$ for positive integers $m,$ $t$ and $t=mq+r(0\leq r<m)$ ,
then $M\simeq T^{(q)}\oplus M_{0}$ , where $M_{0}$ is a Thomomorphic image of $T$ such that
$M_{0}^{(m)}\simeq T^{(r)}$ . In particular, if $m=t$ then $M\simeq T$.

(iv) If $M$ is T-projective and $M^{(m)}\sim N^{(n)}$ with $m\leq n$ then $M\sim N$

Theorem 1. Let $\mathfrak{H}$ be an N-group with $B=J(\mathfrak{H}, A)$ , and $N\ni 1$ an
$\mathfrak{H}$-invariant subring of $A$ with minimum condition for right ideals such
that Apossesses a finite (linearly independent) right Nbasis $\{x_{1}, \cdots, x_{t}\}$ . If

1) Numbers in brackets refer to the references cited at the end of this paper.
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$t\leq[A:B]$ then $A$ is $\mathfrak{H}N_{r}$-homomorphic to $\mathfrak{H}N_{r}$ , in particular, $A$ is always
$\mathfrak{H}B_{r}$-homomorphic to $\mathfrak{H}B_{r}$ .

Proof. Since $V_{Hom(A,A)}(B_{l})=\mathfrak{H}A_{r}$ by [3, Theorem 1], $[A:B]=m$ implies
$A^{(m)^{\mathfrak{H}}}\simeq^{A_{r}}\mathfrak{H}A_{r}$ and $\mathfrak{H}A_{r}=\oplus_{i=1}^{m}\sigma_{i}A_{r}=\oplus_{i,j}\sigma_{i}x_{jr}N_{r}$ with some $\sigma_{i}\in \mathfrak{H}$ . Then, to be
easily verffied, $\mathfrak{H}N_{r}$ satisfies the minimum condition for right ideals and $\mathfrak{H}A_{r}=$

$A_{r}\mathfrak{H}=\sum x_{ir}N_{r}\mathfrak{H}=\sum x_{ir}(\mathfrak{H}N)$ , so that $\mathfrak{H}A_{r}$ is $\mathfrak{H}N_{r}$-homomorphic to $(\mathfrak{H}N_{r})^{(t)}$ ,
whence it follows that $A^{(m)}$ is $\mathfrak{H}N_{r}$-homomorphic to $(\mathfrak{H}N_{r})^{(t)}$ . Hence, by
Lemma 1 (iv), $A$ is $\mathfrak{H}N_{r}$-homomorphic to $\mathfrak{H}N_{r}$ .

Lemma 2. Let $\mathfrak{H}$ be an N-group with $B=J(\mathfrak{H}, A)$ and $N\ni 1$ an $\mathfrak{H}-$

invariant subring of $A$ with minimum condition for right ideals such that
A possesses a right Nbasis $\{x_{\lambda} ; \lambda\in\Lambda\}$ .

(i) If $V=C$ or $V\subseteq N$, then $\mathfrak{H}N_{r}$ possesses a right $N_{r}$-basis containing
$[A:B]$ elements and $\{x_{\lambda r} ; \lambda\in\Lambda\}$ forms a right $\mathfrak{H}N_{r}$-basis of $\mathfrak{H}A_{r}$ .

(ii) If $A/B$ is strictly Galois with respect to $\mathfrak{H}=\{\sigma_{1}, \cdots, \sigma_{m}\}$ , then
$\mathfrak{H}N_{r}=\oplus_{1}^{m}\sigma_{i}N_{r}$ and $\{x_{\lambda r} ; \lambda\in\Lambda\}$ forms a right $\mathfrak{H}N_{r}$-basis of $\mathfrak{H}A_{r}$ .

Proof. (i) As in the proof of Theorem 1, $A^{(m)}\simeq \mathfrak{H}A_{r}\mathfrak{H}A_{r}(m=[A:B])$

and $\mathfrak{H}A_{r}=\oplus_{1}^{m}\sigma_{i}A_{r}=\oplus_{1}^{m}A_{r}\sigma_{i}$ with some $\sigma_{i}\in \mathfrak{H}$ . If $V=C$ then $\mathfrak{H}$ coincides
with $\{\sigma_{1}, \cdots, \sigma_{m}\}$ by [6, Theorem 1]. On the other hand, if $V\subseteq N$ then
$\mathfrak{H}V_{r}=\oplus_{1}^{m}\sigma_{i}V_{r}\subseteq\oplus_{1}^{m}\sigma_{i}N_{r}$ by [5, Lemma 1.3 (iii)]. Thus, in either cases,
$\mathfrak{H}N_{r}=\oplus_{1}^{m}\sigma_{i}N_{r}$ and $\mathfrak{H}A_{r}=\oplus_{i,\lambda}x_{\lambda r}N_{r}\sigma_{i}=\oplus_{\lambda}x_{\lambda r}(\mathfrak{H}N_{r})$ , so that $\{x_{\lambda r} ; \lambda\in\Lambda\}$ is
a right $\mathfrak{H}N_{r}$-basis of $\mathfrak{H}A_{r}$ .

(ii) As $\mathfrak{H}A_{r}=\oplus_{1}^{m}\sigma_{i}A_{r},$ $\mathfrak{H}N_{r}=\oplus_{1}^{m}\sigma_{i}N_{r}$ of course. So that, the rest of
the proof is the same with the last part of (i).

Lemma 3. Let $A$ be Galois and finite over $B$, and $N\ni 1$ a G-invariant
simple subring of A. If $V$ is different from $(GF(2))_{2}$ and $[\mathfrak{G}N_{r} : N_{r}]_{r}=$

$[A:B]$ then $V=C$ or $V\subseteq N$.

Proof. The proof will proceed except only one point in the same way
as [3, Theorem 3] did. However, for the sake of completeness, we shall give
it here. Suppose on the contrary that $V$ is neither $C$ nor contained in $N$

Every element of $V$ is a finite sum of elements contained in $V$ (the group
of units in $V$ ) and $[\mathfrak{G}A_{r} : A_{r}]_{r}=[A:B]=[\mathfrak{G}N_{r} : N_{r}]_{r}$ . In what follows, we
shall prove that there exist some $v,$ $v_{1},$ $\cdots,$

$v_{k}\in V$ such that $\{v_{1}, \cdots, v_{/c}\}$ is
linearly independent over $C$ and $\tau\sim|=\sum_{1}^{k}\tilde{v}_{i}a_{ir}$ with some $a_{i}\in A$ not all contained
in $N$ (But, by [4, Lemma 1.3 and Lemma 1.4], the last fact yields at once
a contradiction.) To this end, we set $V=\sum_{1}^{l}Ug_{pq}$ where $\{g_{pq}\}$ is a system of
matrix units and $U=V_{V}(\{g_{pq}\})$ a division ring, and distinguish between two
cases:
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Case I. $l=1$ : Let $\{vl’\cdots, v_{m}\}$ be a C-basis of $V$ Then, $V\neq C$ yields
$m>1$ . We shall distinguish further between three cases:

(i) $CQ_{=}^{-}N$ : As is readily verified, $v_{1}\overline{+v}_{2}=\tilde{v}_{1}(v_{1}(v_{1}+v_{2})^{-1})_{r}+\tilde{v}_{2}(v_{2}(v_{1}+$

$v_{2})^{-1})_{r}$ . If $v_{1}(v_{1}+v_{2})^{-1}\not\in N$ then $v_{1}+v_{2},$ $v_{1}$ and $v_{2}$ are elements desired. On
the other hand, if $d_{1}=v_{1}(v_{1}+v_{2})^{-1}$ is in $N$ then $v_{2}=(d_{1}^{-1}-1)v_{1}$ and $d_{1}$ is dif-
ferent from 1. For an arbitrary $c\in C\backslash N$, we have $v_{1}+cv_{2}=\tilde{v}_{1}(v_{1}(v_{1}+cv_{2})^{-1})_{r}+$

$\tilde{v}_{2}(v_{2}c(v_{1}+cv_{2})^{-1})_{r}$ . Then, $d_{2}=v_{1}(v_{1}+cv_{2})^{-1}$ is not contained in $N$ In fact, if
$d_{2}\in N$ then $(d_{1}^{-1}-1)v_{1}=v_{2}=c^{-1}(d_{2}^{-}-1)v_{1}$ yields a contradiction $c=(d_{2}^{-1}-1)$ .
$(d_{1}^{-1}-1)^{-1}\in N$

(ii) $C\subseteq N$ and $\{v_{1}, \cdots, v_{m}\}_{\cap}N=\emptyset:1=v{}_{1}C_{1}+\cdots+v_{m}c_{m}$ with $c_{i}\in C$, so that
$\sim 1=\tilde{v}_{1}(v_{1}c_{1})_{r}+\cdots+\tilde{v}_{m}(v_{m}c_{m})_{r}$ . Recalling that $c_{j}\neq 0$ for some $j$ and hence
$v_{j}c_{j}\not\in N,$ $1,$ $v_{1},$ $\cdots,$ $v_{m}$ are evidently desired ones.

(iii) $C\subseteq N$ and $\{v_{1}, \cdots, v_{m}\}_{\cap}N\neq\emptyset$ : As $C\subseteq N$ and $V\Sigma N$, without loss
of generality, we may assume that $v_{1}\in N$ and $v_{2}\not\in N$ Then, $v_{1}+v_{2}=\tilde{v}_{1}(v_{1}(v_{1}+$

$v_{2})^{-1})_{r}+\tilde{v}_{2}(v_{2}(v_{1}+v_{2})^{-1})_{r}$ and $v_{1}(v_{1}+v_{2})^{-1}\not\in N$, so that $v_{1}+v_{2},$ $v_{1}$ and $v_{2}$ are
desired ones.

Case II. $l>1$ : Evidently, $\{1, f_{pq}=1-q_{pq}(p, q=1, \cdots, l;p\neq q)\}(\underline{\subset}V)$ is
linearly independent over $C$, and similarly in case $l$ is even so is $\{f_{q}=q_{qq}+$

$\sum_{1}^{l}q_{pl-p+1}(q=1, \cdots, l)\}(\subseteq V)$ . By [2, Theorem 2], $V\underline{\subset}N$ or $N\subseteq H$, so that
$N\subseteq H$ in reality2). Noting that $V_{\cap}N$ is then a field contained in the center
of $V$, it is clear that no non-diagonal elements of $V$ are contained in $N$

Now, we shall complete our proof by distinguishing between two cases:
(i) $V$ is not of characteristic 2: In this case, every $1+f_{pq}$ is. in $V$ and

$1\overline{+f_{pq}}=1(1\sim+f_{pq})_{r}^{-1}+\tilde{f}_{pq}(f_{pq}(1+f_{pq})^{-1})_{r}$ with $(1+f_{pq})^{-1}\not\in N$

(ii) $V$ is of characteristic 2: If $l$ is odd, then $u=1+\sum_{2}^{l}f_{p-1p}\in V$ and
$\tilde{u}=1u_{r}^{-1}\sim+\sum_{2}^{l}\tilde{f}_{p-1p}(f_{p-1p}u^{-1})_{r}$ with $u^{-1}\not\in N$ On the other hand, if $l$ is even
then $1=\Sigma_{1}^{l}f_{p}$ , so that $\sim 1=\Sigma_{1}^{l}\tilde{f}_{p}f_{pr}$ with $f_{p}\not\in N$

The following example will show that the assumption $V\neq(GF(2))_{2}$ is
indispensable in Lemma 3.

Example 1. Let $A=(GF(2))_{2},$ $B=GF(2)$ . Then, $1=\left(\begin{array}{l}10\\01\end{array}\right),$ $\alpha=\left(\begin{array}{l}10\\ll\end{array}\right)$ ,

$\beta=\left(\begin{array}{l}11\\0l\end{array}\right),$ $\gamma=\left(\begin{array}{ll}0 & 1\\10 & \end{array}\right),$ $\delta=\left(\begin{array}{l}11\\10\end{array}\right),$ $\epsilon=\left(\begin{array}{l}01\\l1\end{array}\right)$ induce the Galois group $\mathfrak{G}=\{1\sim,$ $\alpha\sim$ ,

$\tilde{\beta},$ $\mathcal{T},\tilde{\delta},$ $\tilde{\epsilon}$ }
$\sim$

of $A/B,$ $V=A$ and $N=\{0,1, \delta, \epsilon\}$ is a G-invariant subfield of $A$ .
Since $\tilde{\mathcal{T}}=\alpha\sim\epsilon_{r}+\tilde{\beta}\delta_{r}$ and $\tilde{\epsilon}=1\delta_{r}\sim+\tilde{\delta}\epsilon_{r}$ , we obtain $\mathfrak{G}N_{r}=1N_{r}\oplus\tilde{\alpha}N_{r}\oplus\tilde{\beta}N_{r}\oplus\tilde{\delta}N_{r}\sim$ , so
that $[GN_{r} : N_{r}]_{r}=4=[A:B]$ . However, to be easily verified, $V\neq C$ and $\not\subset N$

2) The assumption $V\neq(GF(2))_{2}$ is needed only to secure $N\subseteq H$ (provided $ V\not\subset N\cdot$). Accord-
ingly, our lemma is evidently valid for $N=B$ even in case $V=(GF(2))_{2}$ . (Cf. [2, Theorem 3]).
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Theorem 2. Let $A/B$ be Galois, $[A:B]=m,$ $V$ different from $(GF(2))_{2}$ ,
and let $N$ be a G-invariant simple subring of $A$ .

(i) $\mathcal{I}he$ following conditions are equivalent to each other:
(1) $V=C$ or $V\subseteq N$

(2) $[\mathfrak{G}N_{r} : N_{r}]_{r}=[A:B]$ .
(ii) If $[A:N]_{r}$ is an infinite cardinal number $\omega$ , then $A$ is $\mathfrak{G}N_{r^{-}}$

isomorphic to $(\mathfrak{G}N_{r})^{(\omega)}$ .
(iii) If $[A:N]_{r}=t$ and $t=mq+r(0\leq r<m)$ , then each of the conditions

(1), (2) cited in (i) is equivalent to the next:
(3) $A$ is $GN_{r}$-isomorphic to $(\mathfrak{G}N_{r})^{(q)}\oplus \mathfrak{U}t$, where $\mathfrak{M}$ is a GN-homo-

morphic image of $GN_{r}$ such that $M^{(m)}\simeq(\mathfrak{G}N_{r})^{(r)}$ .
Proof. (i) The equivalence is a direct consequence of Lemma 2 (i) and

Lemma 3. (ii) $A^{(m)}\simeq GA_{r}\simeq(\mathfrak{G}N_{r})^{(\omega)}\mathfrak{G}A_{r}\mathfrak{G}N_{r}$ by Lemma 2 (i). Hence, Lemma 1 (ii)
yields at once our assertion. (iii) By (i) and Lemma 1 (iii), one will easily see
the equivalence relations.

Now, by the light of Lemma 2 (ii), Lemma 1 (ii) and (iii) will yield the
following, too. The proof may be left to readers.

Theorem 3. Let $A/B$ be strictly Galois with respect to $\mathfrak{H}$ of order
$m$ , and $N\ni 1$ an $\mathfrak{H}$-invariant subring of $A$ with minimum condition for
right ideals such that A possesses a right Nbasis $\{x_{\lambda} ; \lambda\in\Lambda\}$ .

(i) If $\Lambda$ is infinite then there exists a subset $\{u_{\lambda} ; \lambda\in\Lambda\}$ of $A$ such that
{ $ u_{\lambda}\sigma;\lambda\in\Lambda$ and $\sigma\in \mathfrak{H}$ } is a right Nbasis of $A$ .

(ii) If $\#\Lambda=t<\infty$ and $t=mq+r(0\leq r<m)$ then $A$ contains $q$ elements
$u_{1},$ $\cdots,$ $u_{q}$ and an $\mathfrak{H}N_{r}$-homomorphic image $M$ with $M^{(m)}\simeq(\mathfrak{H}N_{r})^{(r)}$ such that
{ $u_{i}\sigma;i=1,$

$\cdots,$ $q$ and $\sigma\in \mathfrak{H}$ } is right linearly independent over $N$ and $A=$

$(\oplus_{i,\sigma}(x_{i}\sigma)N)\oplus M$

As a special case of Theorem 3 (ii), we see that if $A/B$ is strictly Galois
with respect to $\mathfrak{H}$ then there exists a right (and similarly a left) $\mathfrak{H}- n.b.e$ . (cf.
[3, Theorem 4]). In case $A$ is a division ring, we can prove the following
theorem, that is well-known for the commutative case.

Theorem 4. Let $A$ be a division ring, and $\mathfrak{H}=\{\sigma_{1}, \cdots, \sigma_{m}\}$ an auto-
morphism group of $A$ with $B=J(\mathfrak{H}, A)$ . In order that $[A:B]$ coincides
with $m$ , it is necessary and suffcient that there exists an element $a\in A$ such
that the matrix $(a\sigma_{i}\sigma_{j})$ is regular. Moreover, $a\in A$ is a left $\mathfrak{H}- n.b.e$ . (right
$\mathfrak{H}- n.b.e.)\iota f$ and only $\iota f$ the matrix $(a\sigma_{i}\sigma_{j})$ (the matrix ${}^{t}(a\sigma_{i}\sigma_{j})$ tmnsposed) is
regular.

Proof. If $[A:B]=m$ , that is, $A/B$ is strictly Galois .with respect to $\mathfrak{H}$ ,
then there exists a left $\mathfrak{H}- n.b.e$ . $a\in A$ by Theorem 3, for which we have
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$T_{\mathfrak{H}}(a)=\sum a\sigma_{i}\neq 0$ . Suppose $(a\sigma_{i}\sigma_{j})$ is non-regular. Then, the matrix is a zero-
divisor, so that there hold non-trivial relations $\sum a_{i}\cdot a\sigma_{i}\sigma_{j}=0(j=1, \cdots, m)$ with
some $a_{1},$ $\cdots,$ $a_{m}\in A$ , where we assume $a_{k}\neq 0$ . Since $\sum aa_{k}^{-1}a_{i}\cdot a\sigma_{i}\sigma_{j}=0(j=$

$1,$
$\cdots,$ $m$ ) and

$T_{\mathfrak{H}}(aa_{k}^{-1}a_{k})=T_{\mathfrak{D}}(a)\neq 0-1$ we may assume further $T_{e}(a_{k})\neq 0$ . We
obtain then $0=\sum_{i,j}a_{i}\sigma_{j}$ . $a\sigma_{i}=\sum_{i}T_{\mathfrak{H}}(a_{i})\cdot a\sigma_{i}$ . Now, $T_{\mathfrak{H}}(a_{i})\in B$ and $T_{\mathfrak{H}}(a_{k})\neq 0$

contradict our assumption that $a$ is a left $\mathfrak{H}- n.b.e$ . Conversely, if $(aa_{i}\sigma_{j})$ is
regular then $\{a\sigma_{1}, \cdots, a\sigma_{m}\}$ is linearly left independent over $B$, so that
$[A:B]=m$ by [3, Lemma 2]. The latter assertion will be evident by the
above proof.

Corollary 1. Let a division ring $A$ be strictly Galois with respect $\mathfrak{H}$

of order $m$ . A left $\mathfrak{H}- n.b.e$ . is a right $\mathfrak{H}- n.b.e$ . as well, provided either $\mathfrak{H}$

is abelian or $A$ is of characteristic $p$ and $m=p^{e}$ .
Proof. If $\mathfrak{H}$ is abelian, our assertion is evident by Theorem 4. On the

other hand, in case $A$ is of characteristic $p$ and $m=p^{e}$ , our assertion is a direct
consequence of [3, Corollary 1].

\S 2. In $[8]^{3)}$ , the results obtained in [3, \S 3] have been generalized as
follows: Let $A(\ni 1)$ be a simple ring (satisfying the minimum condition for
right ideals) with the center $C,$ $\mathfrak{H}$ a DF-group of order $p^{e}$ ( $p$ a prime), and
$B=J(\mathfrak{H}, A)$ . If the center $Z$ of $B$ contains no primitive p-th roots of 1, then
$V=V_{A}(B)$ coincides with $C[Z]$ and $[A:B]$ divides $p^{e}$ . If moreover $A$ is not
of characteristic $p$, then $[A:B]$ coincides with $p^{e}$ . In below, we shall present
an improvement of the above theorem (Theorem 5) together with several
additional remarks. Our improvement is essentially due to the following brief
lemma.

Lemma 4. Let $A$ be a central simple algebn of finite rank over $C$,
$\mathfrak{H}$ an automorphism group of $A$ such that $J(\mathfrak{H}, A)=C$ and $\#\mathfrak{H}=p^{e}$

( $p$ a $p_{p}\cdot ime$). If $C$ contains no $p’$.imitive p-th roots of 1 then $A$ coincides
with $C$.

Proof. Suppose on the contrary $e>0$ . As $\mathfrak{G}(A/C)=\tilde{A}$ , the center of $\mathfrak{H}$

contains a subgroup $\mathfrak{P}=\{1\tilde{v}, \cdots,\tilde{v}^{p-1}\}\sim$, of order $p$ . Then, for each $\sigma=\tilde{u}\in \mathfrak{H}$ ,
$\tilde{v}\sigma=\sigma\tilde{v}$ implies $v\sigma=vc_{\sigma}$ with some $c_{\sigma}\in C$. And, $v^{p}=uv^{p}u^{-1}=(v\sigma)^{p}=v^{p}c_{\sigma}^{p}$ yields
$c_{\sigma}^{p}=1,$ $i.e$ . $c_{\sigma}=1$ , which means evidently $v\sigma=v$ , so that $v\in J(\mathfrak{H}, A)=C$. But,
this is a contradiction.

In the rest of this paper, we use the following conventions: $A$ is
a simple ring with the center $C$, and $\mathfrak{H}$ an F-group of $A$ of order $p^{e}(p$

a prime). We set $B=J(\mathfrak{H}, A)$ , that is a simple ring by [3, Lemma 2]. And,

3) By the way, we should like to note here a typographical error in the proof of [8,
Theorem 2]: $\mathfrak{J}=\tilde{V}_{\cap}\mathfrak{G}$ should replace $\mathfrak{J}=\tilde{V}$ .
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$Z$, $V$ and $H$ represent the center of $B$ , $V_{A}(B)$ and $V_{A}(V)$ , respectively.
$\mathfrak{H}_{0}=\mathfrak{H}_{\cap}\overline{V}^{7}$

’

is evidently an invariant subgroup of $\mathfrak{H}$ consisting of all the inner
automorphisms contained in $\mathfrak{H}$ . Cne may remark here that $V=V(\mathfrak{H})=V(\mathfrak{H}_{0})$

by [3, Lemma 2]. Finally, by $p^{\epsilon}$ we denote the exponent of $\mathfrak{H}_{0}$ , and set
$p^{r}=(\mathfrak{H}:\mathfrak{H}_{0})\cdot p^{\epsilon}$ .

Theorem 5. If $Z$ contains no primitive p-th roots of 1, then $V$ is the
composite $C[Z]$ of $C$ and $Z$ (accordingly $\mathfrak{H}$ is a $DF- group^{4)}$ ), and $[A:B]$ is
a multiple of $p^{f}$ and a divisor of $p^{e}$ . In particular, $\iota f$ moreover, $A$ is not

of characteristic $p$ then $[A:B]$ coincides with $p^{e}$ .
Proof. Let $C_{0}$ be the center of $V$ Then, $\mathfrak{H}|C_{0}$ is evidently the Galois

group of $C_{0}/Z$, so that $[C_{0} : Z]=\#(\mathfrak{H}|C_{0})$ divides $p^{e}$ . Hence, $C_{0}$ contains no
primitive p-th roots of 1. Next, $\mathfrak{H}_{0}|V$ is an automorphism group of $V$ and

its order divides $F$ . As $J(\mathfrak{H}_{0}|V, V)=C_{0}$ and [V: $C_{0}$] $<\infty$ , Lemma 4 yields

then $V=C_{0}$ . Suppose $V_{\neq}^{\supset}C[Z]$ . Then, noting that $V=V(\mathfrak{H}_{0})$ , we can find
an element $v\in V\backslash C[Z]$ with $\tilde{v}\in \mathfrak{H}_{0}$ . Since the field $V$ is normal and separable
over $C[Z]$ and $v^{p^{e}}=c\in C$, there exists an element $u\in V$ different from $v$ with
$u^{p^{e}}=v^{p^{e}}$ , that is, $(vu^{-1})^{p^{e}}=1$ . Recalling here that $C_{0}=V$ contains no primitive

p-th roots of 1, we obtain $vu^{-1}=1$ . Hence, we have a contradiction $v=u$ ,

which proves our first assertion $V=C[Z]$ . It follows then, $[A:B]$ is a divisor
of $p^{e}$ by [4, Theorem 1] and in case $A$ is not of characteristic $p$ it coincides
with $p^{e}$ by [8, Theorem 3]. And so, in what follows, we shall prove that if
$A$ is of characteristic $p$ then $p^{f}$ divides $[A:B]$ . By [6], we obtain $\mathfrak{H}(H)=\mathfrak{H}_{0}$

and $[H:B]=$ $(\mathfrak{H} : \mathfrak{H}_{0})$ . Since the field $V$ coincides with $V(\mathfrak{H}_{0})$ and the order

of $\mathfrak{H}_{0}$ is a power of $p,$ $V$ is a finite dimensional purely inseparable extension
of $C$ and one will easily see that the exponent of $V/C$ coincides with $\epsilon$ .
Hence, $p*$ divides [V: $C$] $=[A:H]$ , so that $p^{\prime}=p*.(\mathfrak{H}:\mathfrak{H}_{0})$ does $[A:H][H:B]$

$=[A:B]$ .
Now, combining the first assertion of Theorem 5 with [4, Corollary 1. 3],

we readily obtain the next:

Corollary 2. Let $A$ be of chamcteristic $p$ , and $\mathfrak{H}$ a fundamental
abelian group: $\mathfrak{H}=\mathfrak{H}_{1}\times\cdots\times \mathfrak{H}_{e}$ , where $\mathfrak{H}_{i}=[\sigma_{i}]$ is cyclic with a generator $\sigma_{i}$

of order $p$. If $A/B$ is strictly Galois with respect to $\mathfrak{H}$ then there exist

some $x_{1},$ $\cdots,$
$x_{e}\in A$ such that (1) $x_{i}^{p}-x_{i}\in B,$ (2) $A=B[x_{1}, \cdots, x_{e}],$ (3) $B=B[x_{i}]_{\cap}$

$B[x_{1}, \cdots, x_{i}^{v}, \cdots, x_{e}]$ and (4) $B[x_{i}]/B$ is strictly Galois with respect to $\mathfrak{H}_{i}$

Theorem 6. Let $A$ be of characteristic $p$ . In order that $[A:B]$ coin-

cides with $p^{f}$, it is necessary and $su$fficient that $V/C$ is primitive.

Proof. As was noted in the proof of Theorem 5, $[H:B]=(\mathfrak{H}:\mathfrak{H}_{0})$ and

4) However, in case $Z$ contains a primitive p.th root, $\mathfrak{H}$ is not always a DF-group.
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the exponent of $V/C$ coincides with $\epsilon$ . So that, by [9, p. 140], $V/C$ is primitive
if and only if $p^{\epsilon}=[V:C]=[A:H],$ $i.e$ . $p^{r}=[A:B]$ .

Corollary 3. Let $Z$ contain no primitive p-th roots of 1. If $\mathfrak{H}_{0}$ is
cyclic then $[A:B]=p^{e}$ , in particular, $\iota fC$ is a Galoisfeld then $[A:B]=p^{e}5$ )

Proof. In virtue of Theorem 5, we may assume that $A$ is of charac-
teristic $p$ . Since the exponent of cyclic $\mathfrak{H}_{0}$ coincides with $\#\mathfrak{H}_{0}$ , our assertion
is a direct consequence of Theorem 6.

Finally, let $A$ be of characteristic $p$ . As $\mathfrak{H}_{0}$ is abelian by Theorem 5,
we may set $\mathfrak{H}_{0}=\mathfrak{H}1\times\cdots\times \mathfrak{H}_{t}$ with cyclic $\mathfrak{H}_{i}\cdot$

’ If we set $V_{i}=V(\mathfrak{H}_{i})$ (a field),
then $V=V_{1}\cdots V_{t}$ and $[V_{i} : C]=\#\mathfrak{H}_{i}$ by Corollary 3. Now, one will easily see
the following:

Theorem 7. Let $A$ be of $character\cdot isticp$. In order that $[A:B]$ coin-
cides with $p^{e}$ , it is necessary and sufficient that $V_{1}\cdots V_{t}=V_{1}\otimes_{C}\cdots\otimes_{C}V_{t}$ .

Example 2. Let $\Phi=GF(p)$ , and $C=\Phi(x_{1}, \cdots, x_{e})$ with $e$ indeterminates
$x_{1},$ $\cdots,$ $x_{e}$ . $B=C(x^{\frac{1}{1p}},\cdots, x^{\frac{1}{e^{p}}})$ is evidently a $p^{e}$-dimensional purely inseparable
extension over $C$ with exponent 1. Let $A$ be the ring of $p^{e}\times p^{e}$ matrices with
entries in $C$. Then, $C$ is the center of $A,$ $B$ is a maximal subfield of $A$ and
$[A:B]=p^{e}$ . We consider here inner automorphisms $\sigma_{i}$ induced by $x^{\frac{1}{\iota p}}$

$(i=1, \cdots, e)$ . To be easily verified, $\mathfrak{H}_{1}=[\sigma_{1}, \cdots, \sigma_{e}]=[a_{1}]\times\cdots\times[\sigma_{e}]$ is a DF-
group of order $p^{e}$ with $J(\mathfrak{H}1’ A)=B$ . If $e>1$ , we consider further the inner
automorphism $\sigma_{0}$ induced by $\sum_{1}^{e}x^{\frac{1}{ip}}$ . $\mathfrak{H}_{2}=[\sigma_{0}, \sigma_{1}, \sigma_{e}]=[\sigma_{0}]\times[a_{1}]\times\cdots\times[\sigma_{e}]$

is then a DF-group of order $p^{e+1}$ with $J(\mathfrak{H}_{2}, A)=B$.
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