ON THE NORMAL BASIS THEOREMS AND THE EXTENSION DIMENSION

By
Kazuo Kishimoto, Takesi OnODERA and Hisao TOMINAGA

Recently, in his paper [7] one of the authors has presented several generalized normal basis theorems for a division ring extension, which contain as special cases the normal basis theorems given in [1] by Kasch (provided for division ring extensions). One of the purposes of this paper is to extend his results to simple rings. In §1, we shall prove those extensions, and add a decision condition for a normal basis element in a strictly Galois extension of a division ring, which is well-known in commutative case. Next, in §2, we shall treat exclusively an F-group of order p^{e} in a simple ring, and consider the relations between the extension dimension over the fixed subring and the order of the F-group. The principal theorem of $\S 2$ is an improvement of the result stated in [8] for a $D F$-group. As to notations and terminologies used in this paper, we follow [3] and [5].
\S 1. The following lemma has been given in [7] ${ }^{1)}$, and will play a fundamental role in our present study.

Lemma 1. Let T 'э1 be a ring with minimum condition for right ideals, and let M, N be unital right T-modules.
(i) M is T-projective if and only if it is T-isomorphic to a direct sum of submodules each of which is T-isomorphic to a directly indecomposable direct summand of T.
(ii) If $M^{(m)} \simeq T^{(\omega)}$ for a positive integer m and an infinite cardinal number ω, then $M \simeq T^{(\omega)}$.
(iii) If $M^{(m)} \simeq T^{(t)}$ for positive integers m, t and $t=m q+r(0 \leq r<m)$, then $M \simeq T^{(q)} \oplus M_{0}$, where M_{0} is a T-homomorphic image of T such that $M_{0}^{(m)} \simeq T^{(r)}$. In particular, if $m=t$ then $M \simeq T$.
(iv) If M is T-projective and $M^{(m)} \sim N^{(n)}$ with $m \leq n$ then $M \sim N$.

Theorem 1. Let \mathfrak{S} be an N-group with $B=J(\mathfrak{F}, A)$, and $N \ni 1$ an \mathfrak{S}-invariant subring of A with minimum condition for right ideals such that A possesses a finite (linearly independent) right N-basis $\left\{x_{1}, \cdots, x_{t}\right\}$. If

1) Numbers in brackets refer to the references cited at the end of this paper.
$t \leq[A: B]$ then A is $\mathfrak{F} N_{r}$-homomorphic to $\mathfrak{S} N_{r}$, in particular, A is always $\mathfrak{S} B_{r}$-homomorphic to $\mathfrak{S}_{\mathrm{E}} B_{r}$.

Proof. Since $V_{\text {Hom }(A, A)}\left(B_{l}\right)=\mathfrak{S} A_{r}$ by [3, Theorem 1], [$\left.A: B\right]=m$ implies $A^{(m)} \stackrel{\mathscr{S}_{2} A_{r}}{\simeq} \mathscr{S}_{2} A_{r}$ and $\mathscr{S} A_{r}=\oplus_{i=1}^{m} \sigma_{i} A_{r}=\oplus_{i, j} \sigma_{i} x_{j r} N_{r}$ with some $\sigma_{i} \in \mathfrak{S}$. Then, to be easily verified, $\mathfrak{S} N_{r}$ satisfies the minimum condition for right ideals and $\mathfrak{S} A_{r}=$ $A_{r} \mathfrak{S}=\sum x_{i_{r}} N_{r} \mathfrak{S}=\sum x_{i r}\left(\mathfrak{N} N_{r}\right)$, so that $\mathfrak{S} A_{r}$ is $\mathfrak{S} N_{r}$-homomorphic to $\left(\mathfrak{S} N_{r}\right)^{(t)}$, whence it follows that $A^{(m)}$ is $\mathfrak{S} N_{r}$-homomorphic to $\left(\mathfrak{S} N_{r}\right)^{(t)}$. Hence, by Lemma 1 (iv), A is $\mathscr{S} N_{r}$-homomorphic to $\mathscr{S} N_{r}$.

Lemma 2. Let \mathfrak{K} be an N-group with $B=J(\mathfrak{K}, A)$ and $N \ni 1$ an \mathfrak{S} invariant subring of A with minimum condition for right ideals such that A possesses a right N-basis $\left\{x_{\lambda} ; \lambda \in \Lambda\right\}$.
(i) If $V=C$ or $V \subseteq N$, then $S_{C} N_{r}$ possesses a right N_{r}-basis containing $[A: B]$ elements and $\left\{x_{i r} ; \lambda \in \Lambda\right\}$ forms a right $\mathfrak{S} N_{r}$-basis of $\mathfrak{g} A_{r}$.
(ii) If A / B is strictly Galois with respect to $\mathfrak{N}=\left\{\sigma_{1}, \cdots, \sigma_{m}\right\}$, then $\mathfrak{S} N_{r}=\oplus_{1}^{m} \sigma_{i} N_{r}$ and $\left\{x_{\lambda r} ; \lambda \in \Lambda\right\}$ forms a right $\mathfrak{S} N_{r}$-basis of $\mathfrak{S} A_{r}$.

Proof. (i) As in the proof of Theorem $1, A^{(m)} \stackrel{5 A_{r}}{\sim} \mathfrak{S g} A_{r}(m=[A: B])$ and $\mathfrak{S}_{\mathrm{g}} A_{r}=\oplus_{1}^{m} \sigma_{i} A_{r}=\oplus_{1}^{m} A_{r} \sigma_{i}$ with some $\sigma_{i} \in \mathfrak{S}$. If $V=C$ then \mathfrak{S}_{2} coincides with $\left\{\sigma_{1}, \cdots, \sigma_{m}\right\}$ by [6, Theorem 1]. On the other hand, if $V \subseteq N$ then $\mathfrak{S} V_{r}=\oplus_{1}^{m} \sigma_{i} V_{r} \subseteq \oplus_{1}^{m} \sigma_{i} N_{r}$ by [5, Lemma 1.3 (iii)]. Thus, in either cases, $\mathfrak{S} N_{r}=\oplus_{1}^{m} \sigma_{i} N_{r}$ and $\mathfrak{S}_{\mathcal{L}} A_{r}=\oplus_{i, \lambda} x_{\lambda r} N_{r} \sigma_{i}=\oplus_{\lambda} x_{\lambda_{r}}\left(\mathfrak{S} N_{r}\right)$, so that $\left\{x_{\lambda r} ; \lambda \in \Lambda\right\}$ is a right $\mathfrak{S} N_{r}$-basis of $\mathfrak{S} A_{r}$.
(ii) As $\mathfrak{S} A_{r}=\oplus_{1}^{m} \sigma_{i} A_{r}, \mathscr{S}_{2} N_{r}=\oplus_{1}^{m} \sigma_{i} N_{r}$ of course. So that, the rest of the proof is the same with the last part of (i).

Lemma 3. Let A be Galois and finite over B, and $N \ni 1$ a simple subring of A. If V is different from $(G F(2))_{2}$ and $\left[\oiint N_{r}: N_{r}\right]_{r}=$ [$A: B]$ then $V=C$ or $V \subseteq N$.

Proof. The proof will proceed except only one point in the same way as [3, Theorem 3] did. However, for the sake of completeness, we shall give it here. Suppose on the contrary that V is neither C nor contained in N. Every element of V is a finite sum of elements contained in $V^{\text {• }}$ (the group of units in V) and $\left[\oiint A_{r}: A_{r}\right]_{r}=[A: B]=\left[\mathscr{S} N_{r}: N_{r}\right]_{r}$. In what follows, we shall prove that there exist some $v, v_{1}, \cdots, v_{k} \in V^{\cdot}$ such that $\left\{v_{1}, \cdots, v_{k}\right\}$ is linearly independent over C and $\tilde{\mathfrak{v}}=\sum_{1}^{k} \widetilde{v}_{i} a_{i r}$ with some $a_{i} \in A$ not all contained in N. (But, by [4, Lemma 1.3 and Lemma 1.4], the last fact yields at once a contradiction.) To this end, we set $V=\sum_{1}^{l} U g_{p q}$ where $\left\{g_{p q}\right\}$ is a system of matrix units and $U=V_{V}\left(\left\{g_{p q}\right\}\right)$ a division ring, and distinguish between two cases:

Case I. $l=1$: Let $\left\{v_{1}, \cdots, v_{m}\right\}$ be a C-basis of V. Then, $V \neq C$ yields $m>1$. We shall distinguish further between three cases:
(i) $C \nsubseteq N$: As is readily verified, $\widetilde{v_{1}+v_{2}}=\widetilde{v}_{1}\left(v_{1}\left(v_{1}+v_{2}\right)^{-1}\right)_{r}+\tilde{v}_{2}\left(v_{2}\left(v_{1}+\right.\right.$ $\left.\left.v_{2}\right)^{-1}\right)_{r}$. If $v_{1}\left(v_{1}+v_{2}\right)^{-1} \notin N$ then $v_{1}+v_{2}, v_{1}$ and v_{2} are elements desired. On the other hand, if $d_{1}=v_{1}\left(v_{1}+v_{2}\right)^{-1}$ is in N then $v_{2}=\left(d_{1}^{-1}-1\right) v_{1}$ and d_{1} is different from 1. For an arbitrary $c \in C \backslash N$, we have $\tilde{v}_{1}+c v_{2}=\widetilde{v}_{1}\left(v_{1}\left(v_{1}+c v_{2}\right)^{-1}\right)_{r}+$ $\tilde{v}_{2}\left(v_{2} c\left(v_{1}+c v_{2}\right)^{-1}\right)_{r}$. Then, $d_{2}=v_{1}\left(v_{1}+c v_{2}\right)^{-1}$ is not contained in N. In fact, if $d_{2} \in N$ then $\left(d_{1}^{-1}-1\right) v_{1}=v_{2}=c^{-1}\left(d_{2}^{-1}-1\right) v_{1}$ yields a contradiction $\dot{c}=\left(d_{2}^{-1}-1\right)$. $\left(d_{1}^{-1}-1\right)^{-1} \in N$.
(ii) $C \subseteq N$ and $\left\{v_{1}, \cdots, v_{m}\right\} \frown N=\emptyset: \quad 1=v_{1} c_{1}+\cdots+v_{m} c_{m}$ with $c_{i} \in C$, so that $\widetilde{\mathrm{I}}=\widetilde{v}_{1}\left(v_{1} c_{1}\right)_{r}+\cdots+\widetilde{v}_{m}\left(v_{m} c_{m}\right)_{r}$. Recalling that $c_{j} \neq 0$ for some j and hence $v_{j} c_{j} \notin N, 1, v_{1}, \cdots, v_{m}$ are evidently desired ones.
(iii) $C \subseteq N$ and $\left\{v_{1}, \cdots, v_{m}\right\} \frown N \neq \emptyset:$ As $C \subseteq N$ and $V \nsubseteq N$, without loss of generality, we may assume that $v_{1} \in N$ and $v_{2} \notin N$. Then, $\widetilde{v_{1}+v_{2}}=\widetilde{v}_{1}\left(v_{1}\left(v_{1}+\right.\right.$ $\left.\left.v_{2}\right)^{-1}\right)_{r}+\tilde{v}_{2}\left(v_{2}\left(v_{1}+v_{2}\right)^{-1}\right)_{r}$ and $v_{1}\left(v_{1}+v_{2}\right)^{-1} \notin N$, so that $v_{1}+v_{2}, v_{1}$ and v_{2} are desired ones.

Case II. $l>1$: Evidently, $\left\{1, f_{p q}=1-g_{p q}(p, q=1, \cdots, l ; p \neq q)\right\}\left(\subseteq V^{\cdot}\right)$ is linearly independent over C, and similarly in case l is even so is $\left\{f_{q}=g_{q q}+\right.$ $\left.\sum_{1}^{l} g_{p l-p+1}(q=1, \cdots, l)\right\}\left(\subseteq V^{\cdot}\right)$. By [2, Theorem 2], $V \subseteq N$ or $N \subseteq H$, so that $N \subseteq H$ in reality ${ }^{2)}$. Noting that $V \frown N$ is then a field contained in the center of V, it is clear that no non-diagonal elements of V are contained in N. Now, we shall complete our proof by distinguishing between two cases:
(i) V is not of characteristic 2: In this case, every $1+f_{p q}$ is in V and $\widetilde{1+f_{p q}}=\widetilde{\mathbf{1}}\left(1+f_{p q}\right)_{r}^{-1}+\tilde{f}_{p q}\left(f_{p q}\left(1+f_{p q}\right)^{-1}\right)_{r}$ with $\left(1+f_{p q}\right)^{-1} \notin N$.
(ii) V is of characteristic 2: If l is odd, then $u=1+\sum_{2}^{l} f_{p-1 p} \in V^{\cdot}$ and $\tilde{u}=\tilde{\mathbf{1}} u_{r}^{-1}+\sum_{2}^{l} \tilde{f}_{p-1 p}\left(f_{p-1 p} u^{-1}\right)_{r}$ with $u^{-1} \notin N$. On the other hand, if l is even then $1=\sum_{1}^{l} f_{p}$, so that $\widetilde{1}=\sum_{1}^{l} \tilde{f}_{p} f_{p r}$ with $f_{p} \notin N$.

The following example will show that the assumption $V \neq(G F(2))_{2}$ is indispensable in Lemma 3.

Example 1. Let $A=(G F(2))_{2}, B=G F(2)$. Then, $1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \alpha=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, $\beta=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \gamma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \delta=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), \varepsilon=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ induce the Galois group $\mathcal{S}=\{\tilde{1}, \tilde{\alpha}$, $\tilde{\beta}, \tilde{\gamma}, \tilde{\delta}, \tilde{\varepsilon}\}$ of $A / B, V=A$ and $N=\{0,1, \delta, \varepsilon\}$ is a (S)-invariant subfield of A. Since $\tilde{\gamma}=\tilde{\alpha} \varepsilon_{r}+\widetilde{\beta} \delta_{r}$ and $\tilde{\varepsilon}=\tilde{\mathbf{1}} \delta_{r}+\widetilde{\delta} \varepsilon_{r}$, we obtain $\mathscr{B} N_{r}=\tilde{\mathbf{1}} N_{r} \oplus \tilde{\alpha} N_{r} \oplus \tilde{\beta} N_{r} \oplus \widetilde{\delta} N_{r}$, so that $\left[\mathscr{G} N_{r}: N_{r}\right]_{r}=4=[A: B]$. However, to be easily verified, $V \neq C$ and $\nsubseteq N$.
2) The assumption $V \neq(G F(2))_{2}$ is needed only to secure $N \subseteq H$ (provided $\left.V \nsubseteq N\right)$. Accordingly, our lemma is evidently valid for $N=B$ even in case $V=\left(G F(2)_{2}\right.$. (Cf. [2, Theorem 3]).

Theorem 2. Let A / B be Galois, $[A: B]=m, V$ different from $(G F(2))_{2}$, and let N be a $(\mathbb{S}$-invariant simple subring of A.
(i) The following conditions are equivalent to each other:
(1) $V=C$ or $V \subseteq N$.
(2) $\left[\oiint N_{r}: N_{r}\right]_{r}=[A: B]$.
(ii) If $[A: N]_{r}$ is an infinite cardinal number ω, then A is $\mathbb{S} N_{r}$ isomorphic to $\left(\mathbb{B} N_{r}\right)^{(\omega)}$.
(iii) If $[A: N]_{r}=t$ and $t=m q+r(0 \leq r<m)$, then each of the conditions (1), (2) cited in (i) is equivalent to the next:
(3) A is $\mathbb{B} N_{r}$-isomorphic to $\left(\$ N_{r}\right)^{(q)} \oplus \mathfrak{M}$, where \mathfrak{M} is a (SS N_{r}-homomorphic image of $\mathbb{G} N_{r}$ such that $M^{(m)} \simeq\left(\mathbb{S} N_{r}\right)^{(r)}$.

Proof. (i) The equivalence is a direct consequence of Lemma 2 (i) and Lemma 3. (ii) $A^{(m)} \stackrel{\left(B A_{r} r\right.}{\simeq}\left(\mathbb{S} A_{r}^{\left(3 N_{r} r\right.}\left(\mathbb{S} N_{r}\right)^{(\omega)}\right.$ by Lemma 2 (i). Hence, Lemma 1 (ii) yields at once our assertion. (iii) By (i) and Lemma 1 (iii), one will easily see the equivalence relations.

Now, by the light of Lemma 2 (ii), Lemma 1 (ii) and (iii) will yield the following, too. The proof may be left to readers.

Theorem 3. Let A / B be strictly Galois with respect to \mathfrak{S} of order m, and $N \ni 1$ an \mathfrak{K}-invariant subring of A with minimum condition for right ideals such that A possesses a right N-basis $\left\{x_{2} ; \lambda \in \Lambda\right\}$.
(i) If Λ is infinite then there exists a subset $\left\{u_{\lambda} ; \lambda \in \Lambda\right\}$ of A such that $\left\{u_{\lambda} \sigma ; \lambda \in \Lambda\right.$ and $\left.\sigma \in \mathfrak{S}\right\}$ is a right N-basis of A.
(ii) If $\# \Lambda=t<\infty$ and $t=m q+r(0 \leq r<m)$ then A contains q elements u_{1}, \cdots, u_{q} and an $\mathfrak{S}_{2} N_{r}$-homomorphic image M with $M^{(m)} \simeq\left(\mathfrak{S} N_{r}\right)^{(r)}$ such that $\left\{u_{i} \sigma ; i=1, \cdots, q\right.$ and $\left.\sigma \in \mathfrak{S}\right\}$ is right linearly independent over N and $A=$ $\left(\oplus_{i, \sigma}\left(x_{i} \sigma\right) N\right) \oplus M$.

As a special case of Theorem 3 (ii), we see that if A / B is strictly Galois with respect to $\mathscr{S E}_{\mathcal{E}}$ then there exists a right (and similarly a left) \mathfrak{S}-n.b.e. (cf. [3, Theorem 4]). In case A is a division ring, we can prove the following theorem, that is well-known for the commutative case.

Theorem 4. Let A be a division ring, and $\mathfrak{E}=\left\{\sigma_{1}, \cdots, \sigma_{m}\right\}$ an automorphism group of A with $B=J(\mathfrak{S}, A)$. In order that $[A: B]$ coincides with m, it is necessary and sufficient that there exists an element a A such that the matrix $\left(a \sigma_{i} \sigma_{j}\right)$ is regular. Moreover, $a \in A$ is a left \mathfrak{W}-n.b.e. (right $\mathfrak{S}-n . b . e$.$) if and only if the matrix \left(a \sigma_{i} \sigma_{j}\right)$ (the matrix ${ }^{t}\left(a \sigma_{i} \sigma_{j}\right)$ transposed) is regular.

Proof. If $[A: B]=m$, that is, A / B is strictly Galois with respect to \mathfrak{S}, then there exists a left \mathfrak{S}-n.b.e. $a \in A$ by Theorem 3, for which we have
$T_{\sqrt{j}}(a)=\sum a \sigma_{i} \neq 0$. Suppose $\left(a \sigma_{i} \sigma_{j}\right)$ is non-regular. Then, the matrix is a zerodivisor, so that there hold non-trivial relations $\sum a_{i} \cdot a \sigma_{i} \sigma_{j}=0(j=1, \cdots, m)$ with some $a_{1}, \cdots, a_{m} \in A$, where we assume $a_{k} \neq 0$. Since $\sum a a_{k}^{-1} a_{i} \cdot a \sigma_{i} \sigma_{j}=0(j=$ $1, \cdots, m)$ and $T_{\mathfrak{\xi}}\left(a a_{k}^{-1} a_{k}\right)=T_{ई}(a) \neq 0$, we may assume further $T_{5}\left(a_{k}\right) \neq 0$. We obtain then $0=\sum_{i, j} a_{i} \sigma_{j}^{-1} \cdot a \sigma_{i}=\sum_{i} T_{\mathfrak{j}}\left(a_{i}\right) \cdot a \sigma_{i}$. Now, $T_{\mathfrak{j}}\left(a_{i}\right) \in B$ and $T_{Ð}\left(a_{k}\right) \neq 0$ contradict our assumption that a is a left \mathfrak{g}-n.b.e. Conversely, if $\left(a \sigma_{i} \sigma_{j}\right)$ is regular then $\left\{a \sigma_{1}, \cdots, a \sigma_{m}\right\}$ is linearly left independent over B, so that $[A: B]=m$ by [3, Lemma 2]. The latter assertion will be evident by the above proof.

Corollary 1. Let a division ring A be strictly Galois with respect \mathfrak{b} of order m. A left \mathfrak{W}-n.b.e. is a right \mathfrak{G}-n.b.e. as well, provided either \mathfrak{S} is abelian or A is of characteristic p and $m=p^{e}$.

Proof. If \mathfrak{g} is abelian, our assertion is evident by Theorem 4. On the other hand, in case A is of characteristic p and $m=p^{e}$, our assertion is a direct consequence of [3, Corollary 1].
$\S 2$. In $[8]^{3}$, the results obtained in $[3, \S 3]$ have been generalized as follows: Let $A(\ni 1)$ be a simple ring (satisfying the minimum condition for right ideals) with the center C, \mathfrak{G} a $D F$-group of order p^{e} (p a prime), and $B=J(\mathfrak{S}, A)$. If the center Z of B contains no primitive p-th roots of 1 , then $V=V_{A}(B)$ coincides with $C[Z]$ and $[A: B]$ divides p^{e}. If moreover A is not of characteristic p, then $[A: B]$ coincides with p^{e}. In below, we shall present an improvement of the above theorem (Theorem 5) together with several additional remarks. Our improvement is essentially due to the following brief lemma.

Lemma 4. Let A be a central simple algebra of finite rank over C, \mathfrak{G} an automorphism group of A such that $J(\mathfrak{G}, A)=C$ and $\# \mathfrak{H}=p^{e}$ (p a prime). If C contains no primitive p-th roots of 1 then A coincides with C.

Proof. Suppose on the contrary $e>0$. As $\mathbb{B}(A / C)=\tilde{A}$, the center of \mathfrak{G} contains a subgroup $\mathfrak{P}=\left\{\widetilde{1}, \tilde{v}, \cdots, \tilde{v}^{p-1}\right\}$ of order p. Then, for each $\sigma=\tilde{u} \in \mathfrak{g}$, $\tilde{v} \sigma=\sigma \tilde{v}$ implies $v \sigma=v c_{o}$ with some $c_{\sigma} \in C$. And, $v^{p}=u v^{p} u^{-1}=(v \sigma)^{p}=v^{p} c_{o}^{p}$ yields $c_{o}^{p}=1$, i.e. $c_{a}=1$, which means evidently $v \sigma=v$, so that $v \in J(\mathfrak{G}, A)=C$. But, this is a contradiction.

In the rest of this paper, we use the following conventions: A is a simple ring with the center C, and \mathfrak{S} an F-group of A of order p^{e} (p a prime). We set $B=J(\mathscr{G}, A)$, that is a simple ring by [3, Lemma 2]. And,

[^0]Z, V and H represent the center of $B, V_{A}(B)$ and $V_{A}(V)$, respectively. $\mathfrak{S}_{0}=\mathfrak{S}_{\Omega} \widetilde{V}$ is evidently an invariant subgroup of \mathfrak{S} consisting of all the inner automorphisms contained in \mathfrak{S}. One may remark here that $V=V(\mathfrak{F})=V\left(\mathfrak{S}_{0}\right)$ by [3, Lemma 2]. Finally, by p^{e} we denote the exponent of \mathfrak{S}_{0}, and set $p^{f}=\left(\mathfrak{S}_{2}: \mathfrak{S}_{0}\right) \cdot p^{r}$.

Theorem 5. If Z contains no primitive p-th roots of 1 , then V is the composite $C[Z]$ of C and Z (accordingly \mathfrak{S} is a $D F$-group ${ }^{4}$), and $[A: B]$ is a multiple of p^{f} and a divisor of p^{e}. In particular, if moreover, A is not of characteristic p then $[A: B]$ coincides with p.

Proof. Let C_{0} be the center of V. Then, $\mathfrak{S} \mid C_{0}$ is evidently the Galois group of C_{0} / Z, so that $\left[C_{0}: Z\right]=\#\left(\mathfrak{S} \mid C_{0}\right)$ divides p^{e}. Hence, C_{0} contains no primitive p-th roots of 1 . Next, $\mathscr{S}_{0} \mid V$ is an automorphism group of V and its order divides p^{e}. As $J\left(\mathfrak{S}_{0} \mid V, V\right)=C_{0}$ and $\left[V: C_{0}\right]<\infty$, Lemma 4 yields then $V=C_{0}$. Suppose $V \ngtr C[Z]$. Then, noting that $V=V\left(\mathscr{S}_{0}\right)$, we can find an element $v \in V \backslash C[Z]$ with $\tilde{v} \in \mathfrak{S}_{0}$. Since the field V is normal and separable over $C[Z]$ and $v^{p^{e}}=c \in C$, there exists an element $u \in V$ different from v with $u^{p^{e}}=v^{p^{e}}$, that is, $\left(v u^{-1}\right)^{p^{e}}=1$. Recalling here that $C_{0}=V$ contains no primitive p-th roots of 1 , we obtain $v u^{-1}=1$. Hence, we have a contradiction $v=u$, which proves our first assertion $V=C[Z]$. It follows then, $[A: B]$ is a divisor of p^{e} by [4, Theorem 1] and in case A is not of characteristic p it coincides with p^{e} by [8, Theorem 3]. And so, in what follows, we shall prove that if A is of characteristic p then p^{f} divides $\left[A: B\right.$]. By [6], we obtain $\mathfrak{S}(H)=\mathfrak{S}_{0}$ and $[H: B]=\left(\mathscr{S}: \mathfrak{S}_{0}\right)$. Since the field V coincides with $V\left(\mathfrak{S}_{0}\right)$ and the order of \mathfrak{S}_{0} is a power of p, V is a finite dimensional purely inseparable extension of C and one will easily see that the exponent of V / C coincides with ε. Hence, p^{c} divides $[V: C]=[A: H]$, so that $p^{f}=p^{r} \cdot\left(\mathcal{E}: \mathscr{S}_{0}\right)$ does $[A: H][H: B]$ $=[A: B]$.

Now, combining the first assertion of Theorem 5 with [4, Corollary 1. 3], we readily obtain the next:

Corollary 2. Let A be of characteristic p, and \mathfrak{S} a fundamental abelian group: $\mathfrak{S}=\mathfrak{S}_{1} \times \cdots \times \mathfrak{S}_{e}$, where $\mathfrak{S}_{i}=\left[\sigma_{i}\right]$ is cyclic with a generator σ_{i} of order p. If A / B is strictly Galois with respect to \mathscr{N} then there exist some $x_{1}, \cdots, x_{e} \in A$ such that (1) $x_{i}^{p}-x_{i} \in B$, (2) $A=B\left[x_{1}, \cdots, x_{e}\right]$, (3) $B=B\left[x_{i}\right]$ $B\left[x_{1}, \cdots, \check{x}_{i}, \cdots, x_{e}\right]$ and (4) $B\left[x_{i}\right] / B$ is strictly Galois with respect to \mathfrak{S}_{i}.

Theorem 6. Let A be of characteristic p. In order that $[A: B]$ coincides with p^{f}, it is necessary and sufficient that V / C is primitive.

Proof. As was noted in the proof of Theorem $5,[H: B]=\left(\mathfrak{S}: \mathfrak{S}_{0}\right)$ and
4) However, in case Z contains a primitive p-th root, \mathfrak{F} is not always a $D F$-group.
the exponent of V / C coincides with ε. So that, by [9, p. 140], V / C is primitive if and only if $p^{s}=[V: C]=[A: H]$, i.e. $p^{f}=[A: B]$.

Corollary 3. Let Z contain no primitive p-th roots of 1 . If \mathfrak{S}_{0} is cyclic then $[A: B]=p^{e}$, in particular, if C is a Galoisfeld then $[A: B]=p^{e 5)}$.

Proof. In virtue of Theorem 5, we may assume that A is of characteristic p. Since the exponent of cyclic \mathfrak{S}_{0} coincides with $\# \mathfrak{S}_{0}$, our assertion is a direct consequence of Theorem 6.

Finally, let A be of characteristic p. As \mathscr{S}_{0} is abelian by Theorem 5, we may set $\mathfrak{S}_{0}=\mathfrak{K}_{1} \times \cdots \times \mathfrak{S}_{t}$ with cyclic \mathfrak{S}_{i}. If we set $V_{i}=V\left(\mathfrak{S}_{i}\right)$ (a field), then $V=V_{1} \cdots V_{t}$ and $\left[V_{i}: C\right]=\# \mathfrak{S}_{i}$ by Corollary 3. Now, one will easily see the following:

Theorem 7. Let A be of characteristic p. In order that $[A: B]$ coincides with p^{e}, it is necessary and sufficient that $V_{1} \cdots V_{t}=V_{1} \otimes_{C} \cdots \otimes_{C} V_{t}$.

Example 2. Let $\Phi=G F(p)$, and $C=\Phi\left(x_{1}, \cdots, x_{e}\right)$ with e indeterminates $x_{1}, \cdots, x_{e} . \quad B=C\left(x_{1}^{\frac{1}{p}}, \cdots, x_{e}^{\frac{1}{p}}\right)$ is evidently a p^{e}-dimensional purely inseparable extension over C with exponent 1 . Let A be the ring of $p^{e} \times p^{e}$ matrices with entries in C. Then, C is the center of A, B is a maximal subfield of A and $[A: B]=p^{e}$. We consider here inner automorphisms σ_{i} induced by $x_{i}^{\frac{1}{p}}$ $(i=1, \cdots, e)$. To be easily verified, $\mathfrak{S}_{1}=\left[\sigma_{1}, \cdots, \sigma_{e}\right]=\left[\sigma_{1}\right] \times \cdots \times\left[\sigma_{e}\right]$ is a $D F$ group of order p^{e} with $J\left(\mathfrak{E}_{1}, A\right)=B$. If $e>1$, we consider further the inner automorphism σ_{0} induced by $\sum_{1}^{e} x_{i}^{\frac{1}{p}} . \quad \mathscr{S}_{2}=\left[\sigma_{0}, \sigma_{1}, \cdots, \sigma_{e}\right]=\left[\sigma_{0}\right] \times\left[\sigma_{1}\right] \times \cdots \times\left[\sigma_{e}\right]$ is then a $D F$-group of order p^{e+1} with $J\left(\mathfrak{S}_{2}, A\right)=B$.

References

[1] F. KASCH: Über den Endomorphismenring eines Vektorraums und den Satz von der Normalbasis, Math. Ann., 126, (1953), 447-463.
[2] K. Kishimoto, T. Nagahara and H. Tominaga: Supplementary remarks to the previous papers, Math. J. Okayama Univ., 11 (1963), 159-163.
[3] T. Nagahara, T. Onodera and H. Tominaga: On normal basis theorem and strictly Galois extension of simple rings, Math. J. Okayama Univ., 8 (1958), 133-148.
[4] T. Nagahara and H. Tominaga: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961), 143-166.
[5] T. Nagahara and H. Tominaga: On Galois theory of simple rings, Math. J. Okayama Univ., 11 (1963), 79-117.
5) If C is a Galoisfeld of characteristic p, \mathfrak{F} is outer in reality. Moreover, we can prove that if A is of characteristic p and \mathscr{F} is not outer then every element of $V i C$ is transcendental over its prime field (cf. Example 2).
[6] T. Nakayama: Galois theory of simple rings, Trans. Amer. Math. Soc., 73 (1952), 276-292.
[7] T. Onodera: On semi-linear normal basis, J. Fac. Sci. Hokkaido Univ., Ser. I, 18 (1964), 23-33.
[8] T. TAKAZAWA and H. TOMINAGA: On a simple ring with a Galois group of order p^{e}, J. Fac. Sci. Hokkaido Univ., Ser. I, 15 (1961) 198-201.
[9] B. L. van der WAERden : Moderne Algebra, Bd. I, Berlin (1950).
Hokkaido Gakugei University
Hokkaido University
Hokkaido University

[^0]: 3) By the way, we should like to note here a typographical error in the proof of $[8$, Theorem 2]: $\mathfrak{F}=\widetilde{V} \frown \mathfrak{G}$ should replace $\mathfrak{F}=\widetilde{V}$.
