ON THE REPRESENTATION OF LARGE EVEN INTEGERS AS SUMS OF TWO ALMOST PRIMES. II

By

Saburô UCHIYAMA

In a previous paper [3] the writer has given with Miss A. Togashi an elementary proof for the fact that every sufficiently large even integer is representable as a sum of two almost primes, each of which has at most three prime factors, a result first obtained by A. I. Vinogradov. On the other hand, we are able to prove by a rather transcendental method that every large even integer is representable as a sum of a prime and an almost prime composed of at most four prime factors (see [4]). The aim in the present paper is to show that a somewhat weaker result than this can be obtained by an elementary argument. We shall prove the following¹⁾

Theorem. Every sufficiently large even integer N can be written in the form

$$N=n_1+n_2$$
,

where $n_1 > 1$, $n_2 > 1$, $(n_1, n_2) = 1$ and

$$V(n_1) + V(n_2) \leq 5.$$

In other words, every large even integer N can be represented in the form $N=n_1+n_2$, where $n_1>1$, $n_2>1$, $(n_1, n_2)=1$ and either

$$V(n_1)=1$$
, $V(n_2) \leq 4$,

or

$$V(n_1) \leq 2$$
, $V(n_2) \leq 3$.

Our method of proving this result is a refinement of that of proving the previous one, used in [3].

The writer wishes to express his gratitude to M. Uchiyama, Computation Centre, Hokkaidô University, for providing various numerical data to him in

¹⁾ Throughout in this paper, the letters i, j, k, m, n (with or without indices) represent positive integers, while p, q (with or without indices) represent prime numbers. We denote by V(m) the total number of prime divisors of m.

the course of the present investigation.

1. Let N be a sufficiently large but fixed even integer. We consider as in [3] the $\varphi(N)$ integers $a_n = n(N-n)$ $(1 \le n \le N, (n, N) = 1)$.

Let $x \ge 2$ be a fixed real number satisfying

$$N^{c_1} < x < N^{c_2}$$
,

where c_1 and c_2 are constants with $0 < c_1 < c_2 < 1$. We denote by P(x) the number of those integers a_n $(1 \le n \le N, (n, N) = 1)$ which are not divisible by any prime $p \le x$. Using the sieve method of A. Selberg (cf. [5, Appendix]) we find that

$$P(x) \leq \frac{\varphi(N)}{W} + R,$$

where

$$W = \sum_{\substack{m \le x^a \\ g(m) \le x}} \frac{\mu^2(m)}{f_1(m)}$$

and

$$R = O(B_N x^{2a} (\log \log x)^2),$$

a>0 being a constant²). In the following we shall suppose that $0< a \le 4$. For brevity's sake we put, for $0< a \le 1$,

$$\dot{F}(a) = F_{
m o}(a) \stackrel{
m def}{=} a^2$$
 ;

for $1 < a \le 2$,

$$F(a) = F_1(a) \stackrel{\text{def}}{=} (2a-1)^2 - 2a^2 \log a$$
;

for $2 < a \leq 3$,

$$F(a) = F_{1}(a) + F_{2}(a) + F_{2,1}(a) + F_{2,2}(a) ,$$

where

$$F_{2}(a) \stackrel{\text{def}}{=} (a-2)^{2} + 2a^{2} \log^{2} \frac{a}{2} - \frac{1}{2} (a-2) (7a-2) \log \frac{a}{2}$$

and $F_{2,1}(a)$ and $F_{2,2}(a)$ are defined as follows: write

²⁾ For the definitions of $f_1(m)$, g(m), A_N , B_N , C_N we refer to [3].

$$a_{i} = 1 + \frac{a-2}{i+1}$$
 $(i \ge 1)$, $b_{i} = \frac{a}{2} - \frac{a-2}{4i+2}$ $(i \ge 1)$,

and let k_1 , k_2 be arbitrary but fixed positive integers. Then

$$F_{2,1}(a) = \sum_{j=1}^{k_1} \left(8(a_{j+1} - 1) (a_j - a_{j+1}) + 4a^2 \log a_{j+1} \log \frac{a - a_{j+1}}{a - a_j} \right) - 2(a_j - a_{j+1}) (2a + a_j + a_{j+1}) \log a_{j+1} - 2(a_{j+1} - 1) (4a - a_{j+1} - 1) \log \frac{a - a_{j+1}}{a - a_j} \right),$$

$$F_{2,2}(a) = \sum_{j=1}^{k_2} \left(8(b_{j+1} - b_j) \left(\frac{a}{2} - b_{j+1} \right) + 4a^2 \log \frac{b_{j+1}}{b_j} \log \frac{2(a - b_{j+1})}{a} - \left(\frac{a}{2} - b_{j+1} \right) (5a + 2b_{j+1}) \log \frac{b_{j+1}}{b_j} - 2(b_{j+1} - b_j) (4a - b_j - b_{j+1}) \log \frac{2(a - b_{j+1})}{a} \right).$$

Finally, we set for $3 < a \le 4$

$$F(a) = F_1(a) + F_2(a) + F_{2,1}(a) + F_{2,2}(a) - F_3(a)$$

where

$$F_{3}(a) \stackrel{\text{def}}{=} \frac{4}{9} (a-3)^{2} \log \frac{a}{3} \cdot \left(3 \log^{2} \frac{a}{3} + 4 \log \frac{a}{3} \log \frac{3(a-2)}{a} + \log^{2} \frac{2a-3}{a}\right).$$

(Note that the function F(a) thus defined is positive and continuous for $0 < a \le 4$.) We have then, for $0 < a \le 4$,

$$W \ge F(a) C_N \log^2 x + O(\log N \log \log N).$$

Indeed, it is easy to verify this relation for $0 < a \le 2$ (cf. [3]). For $2 < a \le 3$ we have

$$W = \sum_{m \leq x^a} \frac{\mu^2(m)}{f_1(m)} - \sum_{x$$

where the last double summation is found to be

$$\geq \frac{1}{2} \sum_{\substack{x < p_1 \leq x^{a/2} \\ x < p_2 \leq x^{a/2}}} \sum_{\substack{m \leq x^a \\ m \equiv 0}} \frac{\mu^2(m)}{f_1(m)} + O\left(\frac{\log^2 x}{x}\right)$$

$$+ \sum_{j=1}^{k_1} \sum_{\substack{x < p_1 \leq x^{a_{j+1}} \\ x^{a-a_{j}} < p_2 \leq x}} \sum_{\substack{m \leq x^a \\ m \equiv 0}} \frac{\mu^2(m)}{f_1(m)} + \sum_{j=1}^{k_2} \sum_{\substack{x^{b_j} < p_1 \leq x^{b_{j+1}} \\ x^{d/2} < p_2 \leq x}} \sum_{\substack{m \leq x^a \\ m \equiv 0}} \frac{\mu^2(m)}{f_1(m)}$$

$$= (F_2(a) + F_{2,1}(a) + F_{2,2}(a)) C_N \log^2 x + O(\log N \log \log N),$$

and for $3 < a \le 4$ we have

$$W = \sum_{m \leq x^{a}} \frac{\mu^{2}(m)}{f_{1}(m)} - \sum_{x$$

where the last double summation is (in absolute value)

$$\leq \left(\frac{1}{6} \sum_{\substack{x < p_3 \leq x^{a/3} \\ x < p_4 \leq x^{a/3} \\ x < p_5 \leq x^{a/3}}} + \frac{1}{2} \sum_{\substack{x < p_3 \leq x^{a/3} \\ x < p_4 \leq x^{a/3} \\ x^{a/3} < p_5 \leq x^{a-2}}} + \frac{1}{2} \sum_{\substack{x < p_3 \leq x^{a/3} \\ x^{a/3} < p_4 \leq x^{(2a/3) - 1} \\ x^{a/3} < p_5 \leq x^{(2a/3) - 1}}} \sum_{\substack{m \leq x^a \\ m \equiv 0 \ (p_3 p_4 p_5)}} \frac{\mu^2(m)}{f_1(m)} + O\left(\frac{\log^2 x}{x}\right) = F_3(a) C_N \log^2 x + O(\log N \log \log N).$$

This proves our assertion. Hence

Lemma 1. For $0 < a \le 4$ we have

$$P(x) \leq \frac{2e^{2C}}{F(a)} A_N \frac{\varphi(N)}{\log^2 x} + O\left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N}\right) + O(B_N x^{2a} (\log \log N)^2).$$

2. We now evaluate $P(N^{\frac{1}{u}})$ for some values of $u \ (\geq 2)$. The result to be obtained will be of the form either

$$P(N^{\frac{1}{u}}) \leq A(u) A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N}\right)$$

or

$$P(N^{\frac{1}{u}}) \geq a(u) A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) \left(\log\log N\right)^5}{\log^3 N}\right).$$

Here, it is clear that $0 \le a(u) \le A(u) < \infty$ $(u \ge 2)$: moreover, we may assume

without loss of generality that each of the coefficients A(u) and a(u) is, as a function of u, monotone non-decreasing for $u \ge 2$.

Lemma 2. We have

$$a(10) = 98.0$$
.

This is in substance identical with [1, Lemma 1]. The result is obtained by simply applying the sieve method of Viggo Brun. We note a rather better result than the above, viz. a(10) = 99.9818, is known (see [2]): but this is not necessary for our purpose.

Lemma 3. For $8 \le u \le 9$ we have

$$A(u) = 1.0541 u^2$$
.

If we apply Lemma 1 with $x=N^{\frac{1}{u}}$ ($8 \le u \le 9$) and a=3.95, then we get

$$P(N^{\frac{1}{u}}) \leq \frac{2e^{\imath \mathcal{C}}u^{\imath}}{F(3.95)}A_{N}\frac{\varphi(N)}{\log^{\imath}N} + O\bigg(\frac{\varphi(N)\left(\log\log N\right)^{5}}{\log^{3}N}\bigg),$$

and the result follows from this at once, since we have

$$\frac{2e^{2C}}{F(3.95)}$$
 < 1.0541,

where we have taken $k_1 = 20$ and $k_2 = 5$.

Lemma 4. Suppose that $3 \le u \le u_1 \le 10$. If we set

$$a_1(u) = \max \left(a(u), \ a(u_1) - 2 \int_{u-1}^{u_1-1} A(v) \frac{v+1}{v^2} dv \right),$$

then the coefficient a(u) can be replaced by the new one, $a_1(u)$.

This is [1, Theorem 1].

Now, it is known that a(9)=75.58 (see [1, p. 385]), while we find using the results in Lemmas 2 and 3 that

$$a(10) - 2 \int_{8}^{9} A(v) \frac{v+1}{v^{2}} dv = a(10) - 2 \cdot 1.0541 \int_{8}^{9} (v+1) dv$$
$$= 98.0 - 20.0279 = 77.9721.$$

It follows from Lemma 4 (and the definition of a(u)) that $a_1(9) = 77.9721$, and we thus have proved the following

Lemma 5. We have

$$S_1 \stackrel{\text{def}}{=} P(N^{\frac{1}{9}}) \ge 77.9721 A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N}\right).$$

3. Let q, (q, N)=1, be a fixed prime number in the interval $z < q \le z_1$, where

$$z=N^{rac{1}{9}}\,,\qquad z_{\scriptscriptstyle 1}=N^{rac{5}{9}}\,,$$

and let S(q) denote the number of those integers $a_n = n(N-n)$ $(1 \le n \le N, (n, N) = 1)$ which are not divisible by any prime $p \le z$ and are divisible by the prime q. Then we find as in [3] that

$$S(q) \le \frac{2\varphi(N)}{qW_q} + R ,$$

where

$$W_q \ge \sum_{\substack{m \le x^a \ g(m) \le z}} \frac{\mu^2(m)}{f_1(m)}$$
 with $a = 4.5 \left(1 - 2\varepsilon - \frac{\log q}{\log N}\right)$

and

$$R_q = O\left(\frac{N^{1-\epsilon}(\log\log N)^2}{q}\right),$$

 ε being a sufficiently small, fixed positive real number. Clearly we have 0 < a < 4. Hence we may repeat the argument in the proof of Lemma 1 to obtain

$$W_q \ge F(a) C_N \log^2 z + O(\log N \log \log N)$$
,

so that

$$S(q) \leq \frac{C_{\bullet}(t_q)}{q} A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) (\log \log N)^5}{q \log^3 N}\right),$$

where we have put $t_q = (\log N)/\log q$ and

$$C_{\epsilon}(t) = \frac{324e^{2C}}{F(a)} \quad \text{with} \quad a = 4.5 \left(1 - 2\epsilon - \frac{1}{t}\right).$$

Now, if we denote by S_2 the number of those integers a_n $(1 \le n \le N, (n, N) = 1)$ which are not divisible by any prime $p \le z$ and are divisible by at least four distinct primes q, (q, N) = 1, in the interval $z < q \le z_1$, then

$$S_2 \leq \frac{1}{4} \sum_{\substack{z < q \leq z_1 \\ (q,N)=1}} S(q).$$

Since we have

$$\sum_{\substack{z < q \le z_1 \\ (q,N)=1}} \frac{C_{\epsilon}(t_q)}{q} \leqq \int_{1.8}^{9} \frac{C_{\epsilon}(t)}{t} dt + O\left(\frac{1}{\log^{1/2} N}\right),$$

we obtain the following lemma:

Lemma 6. We have

$$S_{\mathbf{2}} \leq \frac{1}{4} \int_{1.8}^{9} \frac{C_{\mathbf{c}}(t)}{t} dt \, A_{N} \frac{\varphi(N)}{\log^{2} N} + O\left(\frac{\varphi(N) \left(\log \log N\right)^{2}}{\log^{5/2} N}\right).$$

4. We shall show that for some sufficiently samll $\varepsilon > 0$ we have

$$I(\varepsilon) \stackrel{\text{def}}{=} \frac{1}{4} \int_{1.8}^{9} \frac{C_{\epsilon}(t)}{t} dt \leq 77.5008.$$

To do this it will obviously suffice to prove that

$$I(0) < 77.500719$$
,

since the integral defining $I(\varepsilon)$ is, as a function of ε , continuous at $\varepsilon = 0$. We have

$$I(0) = \frac{1}{4} \int_{1.8}^{9} \frac{C_0(t)}{t} dt = 81e^{2C} \int_{2}^{4} \frac{ds}{(4.5-s)F(s)} ,$$

on substituting $s=4.5\left(1-\frac{1}{t}\right)$. It is not difficult to verify—by a simple but rather tedious calculation—that the function

$$k(s) = \frac{1}{(4.5 - s)F(s)}$$

is convex on either of the intervals $2 \le s \le 3$ and $3 \le s \le 4$ (indeed, k(s) may be convex throughout on the interval $2 \le s \le 4$). Hence, in order to estimate from above the value of the integral of k(s) over the interval $2 \le s \le 4$, we may apply the trapezoidal rule with an arbitrary set of division points including the point s=3. Thus

$$\int_{2}^{4} k(s) ds \leq 0.05 \left(\frac{1}{2} k(2.00) + \sum_{j=1}^{39} k(2.00 + 0.05j) + \frac{1}{2} k(4.00) \right).$$

Taking again $k_1 = 20$ and $k_2 = 5$, we find that:

```
k(2.00) < 0.115781,
                        k(2.05) < 0.114122,
k(2.10) < 0.112731,
                        k(2.15) < 0.111591,
k(2.20) < 0.110689,
                        k(2.25) < 0.110014,
k(2.30) < 0.109555,
                        k(2.35) < 0.109306,
k(2.40) < 0.109262
                        k(2.45) < 0.109417,
k(2.50) < 0.109769
                        k(2.55) < 0.110317,
k(2.60) < 0.111063,
                        k(2.65) < 0.111961
                        k(2.75) < 0.114535,
k(2.70) < 0.113156,
k(2.80) < 0.116084,
                        k(2.85) < 0.117881,
k(2.90) < 0.119914,
                        k(2.95) < 0.122197,
k(3.00) < 0.124746,
                        k(3.05) < 0.127505,
k(3.10) < 0.130723
                        k(3.15) < 0.134199
                        k(3.25) < 0.142288,
k(3.20) < 0.138042,
k(3.30) < 0.146983,
                        k(3.35) < 0.152180,
k(3.40) < 0.157943,
                        k(3.45) < 0.164347
k(3.50) < 0.171494,
                        k(3.55) < 0.179491,
k(3.60) < 0.188478,
                        k(3.65) < 0.198634,
k(3.70) < 0.210176,
                        k(3.75) < 0.223384,
k(3.80) < 0.238618,
                        k(3.85) < 0.256350,
k(3.90) < 0.277210,
                        k(3.95) < 0.302060,
k(4.00) < 0.332108.
```

The above table was computed on the electronic digital computer, HIPAC 103.

These data will give

$$\int_{2}^{4} k(s) ds < 0.301618,$$

and consequently

$$I(0) < 81e^{iC} \cdot 0.301618 < 77.500719$$
.

This is the result which was to be shown.

5. Let us fix $\varepsilon > 0$ so small as to satisfy $I(\varepsilon) \le 77.5008$, and suppose that $N \ge N_0 = N_0(\varepsilon)$ be a sufficiently large even integer. Let S denote the number of those integers $a_n = n(N-n)$ $(1 \le n \le N, (n, N) = 1)$ which are divisible by no primes $p \le z$, by at most three primes q, (q, N) = 1, in the interval $z < q \le z_1$, and by no integers of the form q^2 with q in the interval $z < q \le z_1$, where, as before,

$$z=N^{rac{1}{9}}, \qquad z_1=N^{rac{5}{9}}.$$

Since the number S_3 of those integers a_n $(1 \le n \le N, (n, N) = 1)$ which are not divisible by any prime $p \le z$ and are divisible by some integer q^z with q, (q, N) = 1, in $z < q \le z_1$ is of $O(N^{\frac{8}{9}})$, we have, by virtue of Lemmas 5 and 6,

$$\begin{split} S &\geq S_{\text{\tiny 1}} - S_{\text{\tiny 2}} - S_{\text{\tiny 3}} \\ &\geq (77.9721 - 77.5008) A_{N} \frac{\varphi(N)}{\log^{2} N} + O\left(\frac{\varphi(N) \left(\log\log N\right)^{2}}{\log^{5/2} N}\right) \\ &> 0.4712 A_{N} \frac{\varphi(N)}{\log^{2} N} > 2 \; . \end{split}$$

This implies the existence of at least one integer n with 1 < n < N-1, (n, N) = 1, such that $V(a_n) \le 5$, i.e.

$$V(n) + V(N-n) \leq 5,$$

which completes the proof of our theorem, since N=n+(N-n).

References

- [1] A. A. BUHŠTAB: New improvements in the sieve method of Eratosthenes, Matem. Sbornik, vol. 4 (46) (1938), pp. 375-387 (in Russian).
- [2] A. A. BUHŠTAB: On the representation of even numbers as the sum of two numbers with a bounded number of prime factors, Dokl. Akad. Nauk SSSR, vol. 29 (1940), pp. 544-548 (in Russian).
- [3] A. TOGASHI and S. UCHIYAMA: On the representation of large even integers as sums of two almost primes, I, J. Fac. Sci., Hokkaidô Univ., Ser. I, vol. 18 (1964), pp. 60-68.
- [4] M. UCHIYAMA and S. UCHIYAMA: On the representation of large even integers as sums of a prime and an almost prime, Proc. Japan Acad., vol. 40 (1964), pp. 150-154.
- [5] S. UCHIYAMA: On the distribution of almost primes in an arithmetic progression, J. Fac. Sci., Hokkaidô Univ., Ser. I, vol. 18 (1964), pp. 1-22.

Department of Mathematics, Hokkaidô University

(Received April 1, 1964)