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The classical Goldbach problem, which still survives unsolved, is to prove
that every even integer $\geqq 6$ is a sum of two prime numbers. In 1948 A.
R\’enyi [4] succeeded, by making use of his refinement of the large sieve of
Yu. V. Linnik, in proving that every even integer $\geqq 6$ is a sum of a prime
and of an almost prime. Here an almost prime is a positive integer $(>1)$ the
total number of prime factors of which is bounded by a certain constant.
Recently this result was sharpened in part by Ch.-D. Pan [3], who showed
that every sufficiently large even integer can be represented as a sum of
a prime and of an almost prime possessing at most five prime factors.

On the other hand, A. A. Buhstab [1] has proved that every large even
integer can be written as a sum of two almost primes, each of which is
composed of at most four prime factors. The purpose of the present paper is
to improve this result of Buh\v{s}tab. Indeed, we shall prove the following

Theorem. Every sufficiently large even integer is representable as
a sum of two integers, each of which has not more than three prime
factors.

We know that this result is originally due to A. I. Vinogradov [7].
However, as has been reviewed by H. Davenport [2], the exposition of Vino-
gradov in [7] does not seem to be quite clear. Thus it will be worth while,
we believe, to give another proof for the theorem. Our proof of the above
theorem is based on a combination of the sieve methods of Viggo Brun and
of A. Selberg: in fact, it is substantially a deduction from an intermediate
result obtained by Buh\v{s}tab [1].

It should be noted that the following result can also be proved by the
same argument mutatis mutandis: for every fixed integral value of $k\geqq 1$ there
are infinitely many pairs of integers $m,$ $m+2k$ with $V(m)\leqq 3,$ $V(m+2k)\leqq 3$ ,

where $V(n)$ denotes the total number of prime factors of $n$ .
1. Throughout in this paper the letters $d,$ $k,$ $m,$ $n,$ $r$ are used to denote

positive integers, $p,$ $q$ to denote prime numbers, and $x$ to denote a positive
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real number. $\epsilon(0<\epsilon<\frac{1}{30})$ is a sufficiently small positive real number. $c$ will

represent positive constants not necessarily the same in each occurrence; the
constants implied in the symbol $O$ may depend only upon the parameter $\epsilon$ .

Let $N\geqq N_{0}$ be a fixed even integer, where $N_{0}=N_{0}(\epsilon)>3$ . We consider
the $\varphi(N)$ integers $a_{n}=n(N-n)(1\leqq n\leqq N, (n, N)=1)$ . Denote by $S_{l}$ the
number of those $a_{n}(1\leqq n\leqq N, (n, N)=1)$ which are divisible by $d$.

Lemma 1. We have

$S_{cl}=\frac{\omega(d)}{d}\varphi(N)+R(d)$ ,

where

$\omega(d)=\left\{\begin{array}{l}2^{v(d)}if(d,N)=1\\0\end{array}\right.$

if $(d, N)>1$ ,

and

$|R(d)|\leqq B_{N}\omega(d)$ with $B_{N}=c2^{v(N)}$ .

Here $v(m)$ denotes the number of distinct prime divisors of $m$ . Lemma 1
is essentially the same as [5, Lemma 1].

We now put $f(m)=m/\omega(m)$ and define $f_{1}(m)$ by

$f_{1}(m)=\sum_{d|m}\mu(d)f(\frac{m}{d})$ .

The functions $f(m)$ and $f_{1}(m)$ are multiplicative functions of $m$ , and we find
easily that $ 1<f(m)\leqq\infty$ for $m>1$ and if $\mu^{2}(m)=1$ then

$f_{1}(m)=f(m)\prod_{plm}(1-\frac{1}{f(p)})$ .

For the sake of convenience let us set

$C_{N}=\frac{1}{8}\prod_{p>2}\frac{(p-1)^{2}}{p(p-2)}\prod_{p|N,p>2}\frac{p-2}{p}$ .

It is easy to see that
$ c>C_{N}>c(\log$ log $N)^{-2}$

Lemma 2. For $x\geqq 2$ we have

$\prod_{p\leqq x}(1-\frac{1}{f(p)})=\frac{A_{N}}{\log^{2}x}+o(\frac{(\log\log N)^{2}}{\log^{3}x})+O(\frac{\log N(\log\log N)^{2}}{x\log^{\prime}x})$ ,
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where $A_{N}=(2e^{2C}C_{N})_{g}^{-1}C$ being the Euler constant.

Proof. We have

$\prod_{p_{\approx}^{<}x}(1-\frac{1}{f(p)})=$ $\prod_{p\leqq x,p\gamma_{N}}(1-\frac{2}{p})=\prod_{2<p\leq x}(1-\frac{2}{p})\prod_{p|N}(1-\frac{2}{p})^{-1}$ ,

where

$2<p<x\prod_{\approx}(1-\frac{2}{p})=4\prod_{\Rightarrow}\frac{p(p-2)}{(p-1)^{2}}\prod_{pz<p<x<\approx x}(1-\frac{1}{p})^{2}$

Now

$2<p<xp|N\prod_{\leftrightarrow}(1-\frac{2}{p})^{-1}=$ $\prod_{p>2,p|N}(1-\frac{2}{p})^{-1}\cdot(1+O(\frac{\log N}{x}))$

$=\prod_{p|N,p>2}\frac{p}{p-2}+o(\frac{\log N(\log\log N)^{2}}{x})$ ;

$\prod_{2<p<\approx x}\frac{p(p-2)}{(p-1)^{2}}=\prod_{p>2}\frac{p(p-2)}{(p-1)^{2}}\cdot(1+O(\frac{1}{x}))$

$=\prod_{p>2}\frac{p(p-2)}{(p-1)^{2}}+O(\frac{1}{x})$ ;

$\prod_{p\leqq x}(1-\frac{1}{p})^{2}=\frac{e^{-2C}}{\log^{l}x}+O(\frac{1}{\log^{3}x})$ .

Gathering up these results, we obtain Lemma 2.
Lemma 3. For $x\leqq N$ we have

$(m,k)-1\sum_{m\leqq x}\frac{\mu^{2}(m)}{f_{1}(m)}=C_{kN}\log^{2}x+O$ ($\log kN$ log log $kN$).

This is [5, Lemma 3].

2. Let $P(N^{\frac{1}{u}})(u\geqq 2)$ denote the number of those integers $a_{n}=n(N-n)$

$(1\leqq n\leqq N, (n, N)=1)$ which are not divisible by any prime $p\leqq N^{\frac{1}{u}}$ . We

evaluate $P(N^{\frac{1}{u}})$ for some values of $u$ by Brun’s method, just as in Buh\v{s}tab
[1].

Let $\epsilon(0<\epsilon<\frac{1}{30})$ be small enough and put $h=(5-30\epsilon)/(4-30\epsilon)$ . For

$x\geqq x_{0}=x_{0}(\epsilon)$ we have

0.4463 $>\tau^{def}=2$ log $(h+\epsilon)>x<p<x^{h}\sum_{\approx}\frac{1}{f(p)}$



On the Representation of Large Even Integers as Sums of Two Almost Primes. $I$ $6S$,

1.5630 $>\lambda^{d}=^{ef}(h+\epsilon)^{2}>\prod_{x<p\leqq x^{h}}(1-\frac{1}{f(p)})^{-1}$

Then we get

$P(N^{\frac{1}{15}})>(1-\sum_{m=0}^{\infty}\frac{\lambda^{m+1}((m+1)_{T})^{2m+8}}{(2m+8)!})\prod_{p\leqq N^{\frac{1}{15}}}(1-\frac{1}{f(p)})\cdot\varphi(N)+O(N^{1-})j$

$>224.9997A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{\log^{3}N})$ ,

on taking account of Lemmas 1 and 2 and noticing that $B_{N}=O(N)$ and

$1<,a_{\approx}\max_{<cN^{2}}R(d)=cB_{N}\max_{1\leqq dScN^{2}}2^{v(\ell)}=O(N^{3=})$ .

In like manner we can show that

$P(N^{\div})<196.0022A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{\log^{3}N})$ ,

$P(N^{\frac{1}{12}})<144.1328A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{1og^{3}N})$ ,

$P(N^{\frac{1}{10}})>98.0A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{\log^{3}N})$ ,

$P(N^{\frac{1}{10}})<101.6A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{\log^{3}N})$ .

Now we can proceed along with Buh\v{s}tab [1], obtaining finally the follow-
ing result:

Lemma 4. We have

$S_{1}^{c^{1}}=^{ef}P(N^{\frac{1}{6}})>26.4612A_{N}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(\log\log N)^{2}}{\log^{3}N})$ .

3. Let $q$ be a fixed prime number in the interval $z<q\leqq z_{1}$ with $(q, N)=1$ ,
where

$z=N^{\frac{1}{6}}$ , $z_{1}=N^{\frac{1}{3}}$

We wish to evaluate from above the number $S(q)$ of those integers $a_{n}=$

$n(N-n)(1\leqq n\leqq N, (n, N)=1)$ which are not divisible by any prime $p\leqq z$ and
are divisible by the prime $q$ . Applying the generalized ‘upper’ sieve of A.
Selberg (cf. [6, Appendix]), we find on account of Lemma 1 that

$’\backslash $

$S(q)\leqq\frac{2\varphi(N)}{qW_{q}}+R_{q}$ ,



64 A. Togashi and S. Uchiyama

where

$W_{q}=$
$\sum_{m\leqq z^{a},g(m)\leqq z}\frac{\mu^{2}(m)}{f_{1}(m)}$ with $a=3(1-2\epsilon-\frac{\log q}{\log N})$

and

$R_{q}=O$ ( $B_{N}z^{2a}$ ( $\log$ log $z$) ) $=O(\frac{B_{N}N^{1- 2}(\log logN)^{2}}{q})$ .

In the expression for $W_{q}$ the function $g(m)$ is defined as follows: $g(1)=1$ and
for $m>1g(m)=the$ greatest prime divisor of $m$ .

If $0<a\leqq 1$ then we have, by Lemma 3 (with $k=1$ ),

$W_{q}=\sum_{m\leqq z^{a}}\frac{\mu^{2}(m)}{f_{1}(m)}=C_{N}$ log2 $z^{a}+O$ ($1ogN$ log log $N$)

$=\frac{a^{2}}{36}C_{N}\log^{2}N+O$ ($\log N$ log log $N$),

while if $a>1$ then we have, by Lemma 3 again,

$W_{q}\geqq\sum_{m\leqq z^{a}}\frac{\mu^{2}(m)}{f_{1}(m)}-\sum_{z<p\leqq z}a\sum_{<m_{\simeq}z}\sigma\frac{\mu^{2}(m)}{f_{1}(m)}m\equiv 0(p)$

$=\sum_{<m_{\Leftrightarrow}z^{a}}\frac{\mu^{2}(m)}{f_{1}(m)}-\sum_{z<p\leqq z^{a}}\frac{1}{f_{1}(p)}\sum_{(m,p)=1}\frac{\mu^{2}(m)}{f_{1}(m)}m\leqq z^{a}/p$

$=C_{N}\log^{2}z^{a}+O$ ($\log N$ log log $N$)

$-\sum_{z<p\leqq\iota^{a}}\frac{2}{p-2}(C_{pN}$ log2 $\frac{z^{a}}{p}+O$ ($\log pN$ log log $pN$)$)$

$=\frac{(2a-1)^{2}-2a^{2}\log}{36}$
a

$C_{N}\log^{2}N+O$ ($\log N$ log log $N$)
$.$

’

since $\frac{2}{p-2}C_{pN}=\frac{2}{p}C_{N}$ for $(p, N)=1$ , where we have used the well-known

inequalities

$\sum_{p_{\Rightarrow}^{<}x}\frac{1}{p}=\log$ log $x+c+O(\frac{1}{1ogx})$ ,

$\sum_{p\leqq x}\frac{\log p}{p}=\log x+O(1)$ ,

and

$\sum_{p\leq_{\rightarrow}x}\frac{\log^{2}p}{p}=\frac{1}{2}\log^{2}x+O(\log x)$ .
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We define for $t>(1-2\epsilon)^{-1}$ the function

$C_{\epsilon}(t)=\left\{\begin{array}{ll}\frac{144e^{2C}}{a^{2}} & (0<a\leqq 1)\\\frac{144e^{2C}}{(2a-1)^{l}-2a^{2}\log a} & (1<a\leqq 3)\end{array}\right.$

where

$a=3(1-2\epsilon-\frac{1}{t})$ :

the function $C.(t)$ is positive and continuous for $t>(1-2\epsilon)^{-1}$ , since the denom-
inator in the definition of $C_{*}(t)$ is positive and continuous for $0<a\leqq 3$

(moreover, it is not difficult to see that $C_{\epsilon}(t)$ is monotone decreasing for
$t>(1-2\epsilon)^{-1})$ . Then it follows from the above results that

$S(q)\leqq A_{N}\frac{C.(t_{q})}{q}\frac{\varphi(N)}{\log^{2}N}+O(\frac{\varphi(N)(1og1ogN)^{5}}{q\log^{3}N})+O(\frac{B_{N}N^{1-2}(1og1ogN)^{2}}{q})$

where $t_{q}=(\log N)/\log q$ .
Now, let $r\geqq 1$ be a fixed integer and let $S_{2}$ denote the number of those

integers $a_{n}(1\leqq n\leqq N, (n, N)=1)$ which are not divisible by any prime $p\leqq z$

and are divisible by at least $r+1$ distinct primes $q$ in the interval $z<q\leqq z_{1}$ ,
$(q, N)=1$ . Clearly $S_{2}$ is not greater than

$\frac{1}{r+1}\sum_{<z<q-\rightarrow z_{1}}S(q)$ .

Here we can argue just as in [6, \S 5], obtaining the evaluation

$z<q\leqq z_{1}\sum_{(q,N)=1}\frac{C_{*}(t_{q})}{q}\leqq\int_{3}^{6}\frac{C.(u)}{u}du+O(\frac{1}{\log^{1/2}N})$
.

We thus have proved the following lemma, since $B_{N}=O(N)$ :

Lemma 5. We have

$S_{z}\leqq\frac{1}{r+1}\int_{3}^{6}\frac{C.(u)}{u}duA_{N}\frac{\varphi(N)}{1og^{2}N}+o(\frac{\varphi(N)(\log\log N)^{z}}{\log^{s/z}N})$ .

4. We shall prove that for some sufficiently small $\epsilon(0<\epsilon<\frac{1}{30})$ we have

$I(\epsilon)^{d}=^{ef}\int_{3}^{6}\frac{C.(u)}{u}du\leqq 79.3026$ .

To accomplish this it will suffice to show that
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$I(0)<79.3025$ ,

since the integral $I(\epsilon)$ is itself a continuous function of $\epsilon$ .
We have

$I(0)=\int_{3}^{6}\frac{C_{0}(u)}{u}du=144e^{2C}\int_{2}^{2.5}\frac{ds}{(3-s)((2s-1)^{2}-2s^{2}\log s)}$ ,

on substitutin$gs=3(1-\frac{1}{u})$ .

Lemma 6. The function
$h(s)=\frac{1}{(3-s)((2s-1)^{2}-2s^{2}\log s)}$

is positive and convex for $2\leqq s\leqq 2.5$ .
Proof. Putting $h_{1}(s)=(h(s))^{-1}$ , we find that

$h_{1}(s)=-4s^{3}+16s^{2}-13s+3+2s^{3}$ log $s-6s^{z}$ log $s$ ,

$h_{1}^{\prime}(s)=-10s^{2}+26s-13+6s^{2}$ log $s-12s$ log $s$ ,

$h_{1}^{\prime\prime}(s)=-14s+14+12s$ log $s-12$ log $s$ ,

$h_{1}^{\prime\prime\prime}(s)=-2+12$ log $s-\frac{12}{s}$ .

Thus, $h_{1}^{\prime\prime\prime}(s)$ is monotone increasing for $s>0$ and $h_{1}^{\prime\prime\prime}(2)=12$ log $2-8>0$ , which
implies that $h_{1}^{\prime\prime\prime}(s)>0$ for $s\geqq 2$ . Hence $h_{\iota}^{\prime\prime}(s)$ is monotone increasin$g$ for $s\geqq 2$ .
But $h_{1}^{\prime\prime}(2.5)=18$ log $2.5-21<0$ and, therefore, $h_{1}^{\prime\prime}(s)<0$ for $2\leqq s\leqq 2.5$ . This
implies in tum that $h_{1}^{\prime}(s)$ is monotone decreasing for $2\leqq s\leqq 2.5$ . But $h_{1}^{\prime}(2)=$

$-1$ , so that $h_{1}^{\prime}(s)<0$ for $2\leqq s\leqq 2.5$ . Hence $h_{1}(s)$ is monotone decaeasing for
$2\leqq s\leqq 2.5$ and, as will be seen a moment later, $h_{1}(2.5)>0$ , which means that
$h_{1}(s)>0$ for $2\leqq s\leqq 2.5$ . Therefore

$h^{\prime\prime}(s)=\frac{2(h_{1}^{\prime}(s))^{2}-h_{1}(s)h_{1}^{\prime/}(s)}{h_{1}^{3}(s)}>0$

for $2\leqq s\leqq 2.5$ . This completes the proof of the lemma.
Now we have

$h(2)<0.2895$ , $h(2.3)<0.3445$ ,

0.4399 $<h(2.5)<0.4400$ .

By virtue of Lemma 6, we thus find that

$\int_{2}^{2.5}h(s)ds\leqq 0.15(h(2)+h(2.3))+0.1(h(2.3)+h(2.5))$
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$<0.09510+0.07845<0.1736$ .

Since $e^{2C}<3.1723$ , we finally obtain

$I(O)=144e^{2C}\int_{2}^{2.5}h(s)ds<144e^{\underline{C}}\cdot 0.1736<79.3025$ ,

which is the desired result.
5. We are now going to conclude our proof of the theorem. Let us fix

$\epsilon(0<\epsilon<\frac{1}{30})$ so small that Lemma 4 holds and that we have

$I(\epsilon)=\int_{3}^{6}\frac{C.(u)}{u}du<79.3026$ ,

and suppose that $N\geqq N_{0}=N_{0}(\epsilon)$ be a sufficiently large even integer. We put
$z=N^{\frac{1}{6}}$ and $z_{1}=N^{\frac{1}{3}}$ as before. Then, by Lemma 5 with $r=2$ , the number $S_{2}$

of those integers $a_{n}=n(N-n)(1\leqq n\leqq N, (n, N)=1)$ which are not divisible by
any prime $p\leqq z$ and are divisible by at least three distinct primes $q$ in the
interval $z<q\leqq z_{1}$ with $(q, N)=1$ is not greater than

$\frac{I(\epsilon)}{3}A_{N}\frac{\varphi(N)}{\log^{2}N}+o(\frac{\varphi(N)(\log 1ogN)^{2}}{\log^{52}N})$

$<26.4342A_{N}\frac{\varphi(N)}{\log^{2}N}+o(\frac{\varphi(N)(\log\log N)^{2}}{\log^{5’ 2}N})$ .

Now, the number $S_{3}$ of those integers $a_{n}(1\leqq n\leqq N, (n, N)=1)$ which are
not divisible by any prime $p\leqq z$ and are divisible by some integer $q^{2}$ with $q$

in $z<q\leqq z_{1}$ does not exceed

$\sum_{z<q\leqq z_{1}}(\frac{2\varphi(N)}{q^{l}}+O(N))=O(N^{\frac{5}{6}})+O(N^{\frac{1}{3}+})=O(N^{\frac{5}{6}})$ .

Therefore, if we denote by $S$ the number of those integers $a_{n}(1\leqq n\leqq N$,
$(n, N)=1)$ which are divisible by no primes $p\leqq z$ , by at most two primes $q$

in $z<q\leqq z_{1}$ , and by no integers of the form $q^{2}$ with $q$ in $z<q\leqq z_{1}$ , then, by
Lemma 4,

$S\geqq S_{1}-S_{z}-S_{3}$

$=(26.4612-26.4342)A_{N}\frac{\varphi(N)}{\log^{2}N}+o(\frac{\varphi(N)(\log\log N)^{z}}{\log^{52}N})$

$>0.0269A_{N}\frac{\varphi(N)}{\log^{2}N}>2$ .

Hence there exists at least one integer $n$ with $1<n<N-1,$ $(n, N)=1$ , such
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that $V(n)\leqq 3,$ $V(N-n)\leqq 3$ . Since

$N=n+(N-n)$ ,

our proof of the theorem is now complete.
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