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\S 1. Let $(E, \Omega, \mu)$ be a finite $n\iota easure$ space with a countably additive
non-negative measure $\mu$ defined on a a-field $\Omega$ . Two real-valued $\mu$-measurable
functions $f(t)$ and $g(t)$ on $E$ are called mutually equi-measurable [14], if $\mu\{t$ ;
$f(t)>r\}=\mu\{t;g(t)>r\}$ holds for each real number $r$. If we write $f\sim g$ ,
when $f$ and $q$ are mutually equi-measurable, it is observed easily that the
relation $\sim$ is an equivalence relation on the space $\mathfrak{M}$ of all measurable
functions on $E$. As is shown in [14], the concept of equi-measurability plays
an important r\^ole in the theory of functions of real variables. Now let $X$ be a
linear space consisting of real-valued measurable functions, which is semi-normal
in the sense of Nakano [11], $i.e$ .

(1. 1) $0\leqq f\in X$ , $|q\rfloor\leqq f$ , $g\in \mathfrak{M}$ implies $g\in X$ ,

where $0\leqq f$ means that $0\leqq f(t)$ holds almost everywhere. Evidently the
function space $X$ is considered as a universally continuous semi-ordered linear
space1) by this order.

We say that a function space $X$ has the weak rearrangement invariant
property (w-RIP), if $f\in X,$ $f\sim g$ always implies $q\in X,$ $i.e$ . $X$ is closed under the
relation defined by equi-measurability. In the sequel, a function space $X$ on
$E$ is termed to be a Banach function space2) on $E$, if it is semi-normal and
has a complete norm satisfying

(1. 2) $\Vert f\Vert=\sup_{\lambda\epsilon A}\Vert f_{\lambda}\Vert$ , whenever $0\leqq f_{\lambda}\uparrow_{\lambda\in\Lambda}f$ .

A Banach function space $X$ is said to have the strong rearrangement in-
variant property (s-RIP), if $f\in X,$ $f\sim q$ implies $g\in X$ and $\Vert g\Vert\leqq A\Vert f\Vert$ , where
$A$ is a fixed constant independent on $f$ and $g$ . $L^{p}(E)$ spaces with $1\leqq p$, Orlicz
spaces $L_{\Phi}(E)$ and $\Lambda(\phi)$-spaces established by G. G. Lorentz $[5, 6]$ and I. Halperin

1) A semi-ordered linear space $R$ is called universally continuous, if $0\leqq a_{\lambda}(\lambda\in\Lambda)$ implies
$\bigcap_{\lambda\epsilon A}a_{\lambda}\in R,$

$i.e$ . a conditionally complete vector lattice in Birkhoff’s sense or a K.space in the sense
of Vulich [12].

2) For the detailed properties of Banach function spaces see [7] or [13].



42 T. Shimogaki

[1] independently with much regard to this property, have all. s-RIP with the
majorant 1 obviously. The subject of this note concerns with RIP of function
spaces, but we deal with abstract semi-ordered linear spaces in the first place,
since the theory of semi-ordered linear spaces can throw light on this subject
by formalization and by use of representation theory of the spaces.

In \S 2 we generalize axiomatically the relation of equi-measurability on
function spaces, to an equivalence relation (called an $\mathcal{E}$-relation) on abstract
semi-ordered linear spaces $R$ . Theorem 1 shows, however, that in case the
space $R$ is discrete, the equivalence relation generalized is essentially the same
one as is given by equi-measurability on $R$ considered as a discrete measure
sp\‘ace. In the next section 3, we treat about a semi-ordered linear space $R$

which has a certain functional $\rho$ together with an $\mathcal{E}$-relation. Utilizing some
topological properties of the proper space $\mathfrak{E}$ of $R$ , we derive a result showing
th\"at the functional $\rho$ is uniformly bounded with respect to the $\mathcal{E}$-relation in
a sense (Theorem 1). In \S 4 we retum to function spaces and applying this
result, we show that if a Banach function space has w-RIP, then it must have
s-RIP, in case $E$ is a non-atomic finite measure space (Theorem 3). Fur-
thermore, as another application of this, we state a theorem characterizing

Orlicz spaces among modulared function spaces $L_{W(\xi,t)}\lrcorner(E)$ in terms of RIP, $i.e$ .
we prove that if a modulared function space $L_{\langle M\xi,t)}(E)$ has w-RIP it reduces
to an Orlicz space $L_{\Phi}(E)$ (Theorem 4).

At the end of this paper we extend the equi-measurablity relation on finite
measure spaces to the relation between two integrable functions on $\rho- finite$

measure spaces. It is then noted that for function spaces on $\rho- finite$ measure
spaces, the above results conceming w-RIP and s-RIP hold all to be valid.

It will be assumed, in the sequel, that $R$ is a universally continuous
semi-ordered linear space and $S^{+}(S\subset R)$ denotes the set of all positive parts

of $S,$ $i.e$ . $S^{+}=\{x\cup 0;x\in S\}$ . A linear lattice manifold $M$ of $R$ is called
a P-manifold, if $[p]M\subset M$ for any projector $[p]^{3)}(p\in R)$ . A $P$manifold $M$

is called full, if $M\perp x^{4)}$ implies $x=0$ . It is obvious that if $M$ is a full P-
manifold, $0\leqq x$ is represented as $x=\cup x_{\lambda}$ , where $x_{\lambda}\in M(\lambda\in\Lambda)$ . A system $\{x_{\lambda}\}_{\lambda\epsilon A}$

$\lambda\in\Lambda$

of elements of $M$ is said to be M-fundamental with respect to $x\in R$ , if $x=\cup x_{\lambda}$

$\lambda\in A$

and $[p]x=[p]x_{\lambda}$ holds for each $\lambda\in\Lambda$ , whenever $[p]x\in M$ . Now we introduce
an equivalence relation on $R$ which can be considered as a generalization of
that of equi-measurability in function spaces.

An $equiva!encerelation\sim onR^{+}$ is called an $\mathcal{E}$-relation, if it satisfies the

\S 2.

3) A projector $[p]$ is a projection operator on $R$ onto the normal manifold $\{F^{1}\}\perp$ .
4) Mlx means $|x|\cap|y|=0$ for all $y\in M$ We write $x=x_{1}\oplus x_{2}$ , if $x=x_{1}+x_{2}$ and $x_{1^{\backslash }}\perp x_{2}$ .
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following conditions (R. $1$ ) $-(R.4)$ :
(R. 1) $x\sim y,$ $x,$

$y\in R^{+}$ implies $\alpha x\sim\alpha y$ for each $\alpha>0$ ;
(R. 2) if $0\leqq x_{\lambda}\uparrow_{\lambda\epsilon_{/}4}$ and $ 0\leqq y_{\lambda}\uparrow_{r\epsilon}\Lambda$ and $x_{\lambda}\sim y_{\lambda}$ for each $\lambda\in\Lambda$ , then $\bigcup_{\lambda\in A}x_{\lambda}\in R^{+}$

implies $\bigcup_{\lambda\in A}y_{\lambda}\in R^{+}$ with $\bigcup_{\lambda\in A}x_{\lambda}\sim\bigcup_{i\in\Lambda}y_{\lambda}$
;

(R. 3) if $x=x_{1}\oplus x_{2},$ $y=y_{1}\oplus y_{2}$ and $x_{i}\sim y_{i}(i=1,2)$ , then $x\sim y$ ;
(R. 4) there exists a full P-manifold $M\subset R$ satisfying the following

properties:
(i) if $x\sim y,$ $x,$

$y\in R^{+}$ , then there exists a pair of M-fundamental systems
$\{x_{J}\}_{\lambda\in\Lambda}$ and $\{y_{\lambda}\}_{\lambda\epsilon A}$ with respect to $x$ and $y$ respectively such that $x_{J}\sim y_{\lambda}$ holds
for each $\lambda\in\Lambda$ ;

(ii) if $x\sim y,$ $x,$
$y\in M^{+}$ and $\{[p_{\lambda}]\}_{\lambda\in A}$ is a mutually orthogonal system

of projectors with $\sum_{\lambda\epsilon\Lambda}[p_{i}]=[x]$ there exists also a mutually orthogonal system

of projectors $\{[q_{\lambda}]\}_{\lambda\epsilon A}$ such that

$\sum_{\lambda\epsilon A}[q_{\lambda}]=[y]$ and $[p_{\lambda}]x\sim[q_{\lambda}]y$ $(\lambda\in\Lambda)$ hold.

The P-manifold $M$ satisfying the conditions (i) and (ii) in (R.4) is called
the D-manifold of the $\mathcal{E}$-relation $\sim$ .

It is clear that the $\mathcal{E}$-relation on $R^{+}$ can be extended to $R$ canonically,
$i.e$ . we now induce the $relation\sim to$ be defined on $R$ in such a way that for
any $x,$ $y\in R$

(2. 1) $x\sim y$ if and only if $x^{+}\sim y^{+}$ and $x^{-}\sim y_{\sim}^{-}$

This extended $\mathcal{E}- relation\sim is$ called an $\mathcal{E}$-relation on $R$ , and $R$ associated
with an $\mathcal{E}$-relation is called shortly a space with an $\mathcal{E}$-relation. It follows
from the condition (R.4) that if $x\sim y,$ $x,$ $y\in M$ and $[p]$ is an arbitrary projector,
then we can find a projector $[q]$ for which $[p]x\sim[q]y$ and $(1-[p])x\sim(1-[q])y$

hold simultaneously, that is, we may say that the $\mathcal{E}- relation\sim is$ decomposable
on $M$.

In what follows, $\sim stands$ for an $\mathcal{E}$-relation on $R$ always.
Lemma 1. $x\sim O$ implies $x=0$ .
Proof. If $x\sim O$ and $x\in R^{+}$ , then $nx\sim O$ for each natural number $n$ by

(R. 1). Putting $x_{n}=0$ and $y_{n}=nx(n=1,2, \cdots)$ , we obtain increasing sequences
$\infty$

$\{x_{n}\}$ and $\{y_{n}\}$ with $x_{n}\sim\cdot y_{n}(n\geqq 1)$ . Since $0=\bigcup_{n=1}x_{n}\in R^{+}$ , we have $\bigcup_{n=1}y_{n}\in R^{+}$ on
account of (R.2), which implies $x=0$ , because $R$ is Archimedean5). From the

5) Since $R$ is universally continuous, $\bigcap_{\nu=1}^{\infty}\div a=0$ must hold for any $a\in R^{+}$ .
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formula (2.1) it is now evident that Lemma 1 holds.

Lemma 2. If $x\sim\alpha x$ for some $0<\alpha\neq 1$ , then $x\sim O$ .

Proof. If $0\leqq x\sim\alpha x$ for some $\alpha with1\infty<\alpha$ , then $x\sim\alpha x\sim\alpha^{2}x\sim\cdots\sim\alpha^{n}x$

$\sim\cdots$ Thus, from (R.2) again we have $\bigcup_{n--1}\alpha^{n}x\in R$ . Hence $x=0$ must hold.

On account of (R. 1) and (2.1) it is obvious that the lemma holds. Q. E. D.

Lemma 3. If $x\sim y$ and $x$ is an atomic element,6) then $y$ is also such
$a$ one.

Proof. Assume that $x\sim y,$ $x,$
$y\in R^{+}$ and $x$ is an atomic element. If $y$ is

decomposed into $y=z_{1}\oplus z_{2}$ with $z_{i}\neq 0(i=1,2)$ , then for each $M$fundamental
system $\{y_{\lambda}\}_{\lambda\in A}$ with respect to $y$ , we can find an index $\lambda\in\Lambda$ with $[z_{i}]y_{\lambda}\neq 0$

$(i=1,2)$ . On the other hand, as $M$ is full, $x\in M$ and also $x\sim y_{\lambda}=[z_{1}]y_{\lambda}\oplus[z_{2}]y_{\lambda}$ .
This implies that one of the elements $[z_{i}]y_{\lambda(i=1,2)}$ , say $[z_{1}]y_{\lambda}$ , must be equivalent
to $0$ by virtue of (R.4, (ii)) and the assumption that $x$ is an atomic element.
It follows from Lemma 1 that $[z_{1}]y_{\lambda}=0$ and it is a contradiction. Q. E. D.

Lemma 4. If $x\sim y$ and $x$ is of finite dimension,7) then $y$ is also of
the same dimension.

Proof. Since P-manifold $M$ is full, each atomic element, hence each element
of finite dimension belongs to $M$. Now the proof is easily derived similarly
from Lemma 3 and (R. 4).

Lemma 5. If $x\sim y,$ $x,$ $y\in R$ and $[p]x$ is of finite dimension, then
there exists a projector $[q]$ such that $[p]x\sim[q]y$ and $(1-[p])x\sim(1-[q])y$ hold
simultaneously.

Proof. First suppose that $x,$ $y\in R$ and $[p]x$ is an atomic element. Then
in view of (R.4), we can find a pair of M-fundamental systems $\{x_{\lambda}\}_{\lambda\in A},$ $\{y_{\lambda}\}_{\lambda\in\Lambda}$

with respect to $x$ and $y$ and a system of projectors $\{[q_{\lambda}]\}_{\lambda\in A}$ such that $[q_{\lambda}]\leqq[y_{\lambda}]$ ,
$[p]x=[p]x_{\lambda}\sim[q_{\lambda}]y_{\lambda}$ and $(1-[p])x_{\lambda}\sim(1-[q_{\lambda}])y_{\lambda}$ hold for all $\lambda\in\Lambda$ . By Lemma 3
$[q_{\lambda}]y_{\lambda}$ is an atomic element, hence $[q_{\lambda}]y$ is also such a one, and \’a fortiori
$[q_{\lambda}]y\in M$ and $[q_{\lambda}]y=[q_{\lambda}]y_{\lambda}$ for all $\lambda\in\Lambda$ . If $[q_{\lambda}]\neq[q_{\lambda_{1}}]$ holds for a fixed $\lambda_{1}\in\Lambda$ ,
we have by (R.3)

$(1-[p])x_{\lambda}\sim(1-[q_{\lambda}])y_{\lambda}=(1-[q_{\lambda_{1}}]-[q_{\lambda}])y_{\lambda}+[q_{\lambda}]y_{\lambda}\sim$

$(1-[q_{\lambda_{1}}]-[q_{\lambda}])y_{\lambda}+[q_{\lambda}]y_{\lambda}=(1-[q_{\lambda_{1}}])y_{\lambda}$

and $[p]x_{\lambda}\sim[q_{\lambda_{1}}]y_{\lambda}$ . Consequently both $[p]x\sim[q_{\lambda_{1}}]y_{\lambda}$ and $(1-[p])x_{\lambda}\sim(1-$

6) An element $x\in R$ is called an atomic element, if $x=y\oplus z$, implies always $y=0$ or $z=0$ .
7) An element $x\in R$ is called to be of finite dimension, if it is represented as $x=\sum_{\nu=1}^{n}\xi_{\nu}e_{\nu}$,

where $e_{\nu}$ is an atomic element for each $1\leqq\nu\leqq n$ .
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$[q_{\lambda_{1}}])y_{\lambda}$ hold for all $\lambda\in\Lambda$ . Then from (R. 2) it follows that $(1-[p])x=$

$\bigcup_{\lambda\epsilon\Lambda}(1-[p])x_{\lambda}\sim\bigcup_{\lambda\in\Lambda}(1-[q_{\lambda},])$ $y_{\lambda}=(1-[q_{\lambda_{1}}])y$ . In case $x$ is n-dimensional, the proof

is similarly obtained by use of induction and the condition (R.3). Q. E. D.
Now we establish a theorem which reveals the structure of an $\mathcal{E}- re1^{\backslash }ation$

in the case of discrete spaces. Suppose that $R$ is discrete. Then there exists
a mutually orthogonal system of positive atomic elements $\{e_{\gamma}\}_{\gamma\in\Gamma}$ such that each
element $x\in R^{+}$ is uniquely represented as $x=\sum_{\gamma\epsilon r}\xi_{\gamma}e_{\gamma}$ , where $\xi_{\gamma}\geqq 0$ . We call the
system $\{e_{\gamma}\}_{r\epsilon r}$ above the natural basis of $R$ . We put further $ I(x, \xi)=\{\gamma;\gamma\in\Gamma$ ,
$\xi_{\gamma}=\xi\}$ . For any subset $ J\subset\Gamma$ we denote by $n(J)$ the number of elements be-
longing to $J$, that is, $n(J_{1}=k(k=0,1,2, \cdots)$ or $+\infty$ if $J$ contains an infinite
number of elements.

Theorem 1. Let $R$ be a discrete space with an $\mathcal{E}$-relation $\sim$ , Then
there exists a natural basis $\{d_{\gamma}\}_{r\in\Gamma}$ and a partition of the index set $\Gamma=\sum_{\backslash a\epsilon\alpha}$

T.,
$\Gamma_{a}\cap\Gamma_{\alpha^{\prime}}=\phi$ for $\alpha\neq\alpha^{\prime}$ , such that $x=\sum_{\gamma\epsilon r}\xi_{\gamma}d_{\gamma}$ and $y=\sum_{\gamma\epsilon\Gamma}\eta_{\gamma}d_{\gamma}$ stand in the relation

if and only if $n(\Gamma_{\alpha^{\cap}}I(x, \xi))=n(\Gamma_{\alpha^{\cap}}I(y, \xi))$ for all real number $\xi$ and $\alpha\in \mathfrak{U}$ .
Proof. Let $\{e_{\gamma}\}_{\gamma\epsilon\Gamma}$ be an arbitrary natural basis. $Since\sim is$ an equivalence

relation, we can classfy $\Gamma$ as $\Gamma=\sum_{\alpha\epsilon}$ T., $\Gamma_{\alpha}\cap\Gamma_{\alpha},$ $=\phi$ for $\alpha\neq\alpha^{\prime}$ in such a way

that for any $\gamma,$ $\gamma^{\prime}\in\Gamma_{\alpha},$
$e_{\gamma}\sim\xi e_{\gamma^{\prime}}$ holds with some $\xi>0$ , and there exists no real

number $\xi>0$ for which $e_{\gamma}\sim\xi e_{\gamma^{\prime}}$ holds, whenever $\gamma$ and $\gamma^{\prime}$ do not belong to the
same class. Then, by Choice Axiom, we can find a subsystem $\{e_{\gamma_{a}}\}_{\alpha\in \mathfrak{N}}$ of
$\{e_{\gamma}\}_{\gamma\in\Gamma}$ with $e_{\gamma_{\alpha}}\in\Gamma_{\alpha}$ for every $\alpha\in \mathfrak{U}$ . Here for any fixed $\alpha$ , we define $d_{\gamma}(\gamma\in\Gamma_{a})$ by

(2. 2) $d_{V}=\xi e_{\gamma}$ ,

where $\xi$ is a positive number satisfying $e_{r_{\alpha}}\sim\xi e_{\gamma}$ . $d_{\gamma}$ is atomic and uniquely
determined for each $\gamma\in\Gamma_{\alpha}$ on account of Lemma 2 and the construction of $\Gamma_{\alpha}$ .
Repeating this process to whole $\alpha\in\Gamma$ , we obtain a natural basis $\{d_{\gamma}\}_{\gamma\in\Gamma}$ for which
$d_{\gamma}\sim d_{\gamma^{\prime}}$ stands if and only if 7 and $\gamma^{\prime}$ belong to the same class $\Gamma_{a}$ . Assume now
$x=\sum_{\gamma\epsilon\Gamma}\xi_{\gamma}d_{\gamma},$ $y=\sum_{\gamma\in\Gamma}\eta_{\gamma}d_{\gamma}$ and $x\sim y$ . For any fixed $\alpha_{0}\in \mathfrak{U},$ $[\{d_{\gamma_{1}},d_{\gamma_{2}}, \cdots, d_{\gamma_{k}}\}]x\in M$

$(\gamma_{i}\in\Gamma_{a_{0}},1\leqq i\leqq\kappa;\kappa=1,2, \cdots)$ , and furthermore there exists a collection of ele-
ments of $\Gamma_{\alpha_{0}}$ : $\gamma_{1}^{\prime},$ $\gamma_{2}^{\prime},$

$\cdots,$
$\gamma_{k}^{\prime}$ such that both $\sum_{i=1}^{k}\xi_{\gamma_{i}}d_{\gamma_{i}}\sim\sum_{i=1}^{l}\eta_{r_{i}^{\text{ノ}}}d_{\gamma_{i}^{\prime}}$ and $(1-[\{d_{x_{\iota}}, \cdots,d_{r_{k}}\}])x$

$\sim(1-[\{d_{r_{1}^{\prime}}, \cdots, d_{r_{k}^{\prime}}\}])y$ hold at the same time in accordance with Lemmas 4
and 5. Then, on account of the construction of the basis $\{d_{\gamma}\}_{r\in\Gamma}$ , we can infer
from Lemma 4 that $n(\Gamma_{\alpha_{0}}\cap I(x, \xi))=n(\Gamma_{a_{0}}\sim I(y, \xi))$ holds for each real number
$\xi$ and $\alpha\in \mathfrak{U}$ . Q.E. D.

Conversely suppose that a partition of $\Gamma$ exists. We obtain an equivalence
relation $\sim$ on $R$ in such a way that $x=\sum_{\gamma\epsilon\Gamma}\xi_{\gamma}d_{r}$ and $y=\sum_{\gamma\in\Gamma}\eta_{\gamma}d_{\gamma}$ stand in the
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relation $\sim$ if and only if $n(\Gamma_{\alpha}\leftrightarrow I(x, \xi))=n(\Gamma_{\alpha^{\cap}}I(y, \xi))$ for each $\xi$ and $\alpha\in \mathfrak{U}$ .
For the D-manifold we take a linear subset $S$ of all elements of finite dimension.
Now it is evident that the equivalence relation thus defined is an $\mathcal{E}$-relation with
the D-manifold $S,$ $i.e$ . it satisfies the conditions (R. $1$ )$-(R.4)$ .

\S 3. Here we deal with $R$ which has a certain functional $\rho$ together with
an $\mathcal{E}$-relation $\sim$ . The end of this section is to show, in a sense, uniform
boundedness of a $\rho$-functipnal with respect to an $\mathcal{E}$-relation (Theorem 2).

A functional $\rho$ defined on $R$ is called a $\rho$-functional, if it satisfies
$(\rho. 1)$ $ 0\leqq\rho(x)=\rho(|x|)\leqq+\infty$ for all $x\in R$ ;
$(\rho.2)$ $\rho(x+y)\leqq\rho(x)+\rho(y)$ , if $x\perp y$ ;
$(\rho.3)$ $\inf_{>}\rho(\alpha x)<+\infty$ for every $x\in R$ ;

$(\rho.4)$ $0\leqq x_{\lambda}\uparrow_{\lambda\in A}x$ implies $\rho(x)=\sup_{\lambda\in\Lambda}\rho(x_{\lambda})$ ;

$(\rho. 5)$ $\iota f\{x_{\nu}\}_{\nu=I}^{\infty}$ is a mutually orthogonal sequence with
$\sum_{\nu=1}^{\infty}\rho(x_{\nu})<+\infty$ , then $x_{0}=\sum_{\nu=1}^{\infty}x_{\nu}$ belongs to R.

From the definition it follows immediately

(3. 1) $\rho([p]x)\leqq\rho(x)$ for every $x,$ $p\in R$ ;

and

(3. 2) $[p_{\lambda}]\uparrow_{\lambda\in\Lambda}[p]$ implies $\rho([p]x)=\sup_{\lambda\epsilon A}\rho([p_{\lambda}]x)$ .

$\rho$-functionals thus defined are sufficiently general to include known func-
tionals on semi-ordered linear spaces For instance, the following functionals
are all $\rho$-functionals respectively.

(i) a semi-continuous and complete norm or quasi-norm on $R$ ;
(ii) a monotone complete modular in the sense of Nakano [11] or of

Orlicz and Musielak [9], a concave modular of Nakano [10] and a quasi-
modular in $[2, 3]$ . We shall establish the following basic result on $R$ with
a $\rho$-functional and an $\mathcal{E}$-relation:

$r$

Theorem 2. Let $\rho$ functional be defined on $R$ with an $\mathcal{E}$-relation.
Then there exist positive numbers $\alpha,$

$\gamma,$ $\epsilon$ and a finite co-dimensional8)

normal manifold $N$ of $R$ such that

(3. 3) $\rho(x)\leqq\epsilon$ implies $\rho(\alpha y)\leqq\gamma$

8) A linear manifold $N\subset R$ is called a normal manifold, if each $x\in R$ is uniquely repre-
sented as $x=x_{1}+x_{2},$ $x_{1}\in N$ and $x_{2}\in NT$ . A normal manifold $N$ is called to be finite co-
dimensional if $N^{1}$. is of finite dimension.
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for any $x,$ $y\in N$ with $x\sim y$ .
For the proof of this theorem, we need to prove a number of auxiliary

lemmas whose proofs are based on the topological properties of the proper
space of semi-ordered linear spaces. In the sequel, $\mathfrak{E}$ denotes the proper space
of $R,$ $i.e$ . the Boolean lattice of all maximal ideals $\mathfrak{p}$ consisting of normal
manifolds $N\subset R$ , equipped with the topology generated by the neighbourhood
system $\{U_{[N]}\}_{N\subset R}$ , where $U_{[N]}$ is the set of all $\mathfrak{p}\in \mathfrak{E}$ such that $N\in \mathfrak{p}$ . $U_{[N]}$ is
both open and compact in $\mathfrak{E}$ for any normal manifold $N$, hence $\mathfrak{E}$ is itself
compact, because $\mathfrak{E}=U_{[R]}$ . An element $\mathfrak{p}\in \mathfrak{E}$ is called non-atomic, if for any
$N\in \mathfrak{p}$ , there exists $M_{-}\subset N$ such that $M\in \mathfrak{p}$ .

Lemma 6. Let $x,$ $y\in R$ satisfy $\rho(x)<+\infty,$ $\rho(y)<+\infty$ and $x\sim y$ . Then
for any non-atomic $\mathfrak{p}_{0},$ $\mathfrak{p}_{0}’\in \mathfrak{E}$ and $\epsilon>0$ , there exist two elements $x_{0},$ $y_{0}\in R$

such that (i) $\rho(x_{0})>\rho(x)-\epsilon,$ $\rho(y_{0})>\rho(y)-\epsilon;(ii)[x_{0}]R\epsilon \mathfrak{p}_{0},$ $[y_{0}]R\leq \mathfrak{p}_{0}^{J}$ ; and
(iii) $x_{0}\sim y_{0}$ hold.

Proof. It is sufficient to prove the lemma, when $[x]R\in \mathfrak{p}_{0}$ and $[y]R\in \mathfrak{p}_{0}^{\prime}$ .
Assume $x\sim y,$ $x,$

$y\in R^{+}$ and $\epsilon>0$ . In view of the conditions (R. 4) and $(\rho.4)$ ,
there exist elements $x^{\prime},$ $y^{\prime}$ of the D-manifold $M$ such that $0\leqq x^{\prime}\leqq x$ ,
$0\leqq y^{\prime}\leqq y$ and $\rho(x^{\prime})>\rho(x)-\epsilon,$ $\rho(y^{\prime})>\rho(y)-\epsilon$ with $x^{\prime}\sim y^{\prime}$ . Since $\mathfrak{p}_{0}$ is non-
atomic, we can find a system of mutually orthogonal projectors $\{[p_{r}]\}_{\gamma}\epsilon\Gamma$ with
$\bigcup_{\gamma\in\Gamma}[p_{\gamma}]=[x^{\prime}]$ and $[p_{\gamma}]R\leq \mathfrak{p}_{0}(\gamma\in\Gamma)\langle$ On account of (R.4 (ii)), there exists an

orthogonal system $\{[q_{\gamma}]\}_{\gamma\in\Gamma}$ such that $\bigcup_{r\epsilon r}[q_{\gamma}]=[y^{\prime}]$ and $[p_{\gamma}]x^{\prime}\sim[q_{\gamma}]y^{\prime}(\gamma\in\Gamma)$ hold.
By virtue of $(\rho.4)$ we have for suitable chosen $\gamma_{1},$ $\gamma_{2},$

$\cdots,$
$\gamma_{k}(7_{i}\in\Gamma)$

$\rho(\sum_{i=1}^{k}[p_{\gamma_{i}}]x^{\prime})>\rho(x)-\epsilon$ and $\rho(\sum_{i=1}^{k}[q_{\gamma_{i}}]y^{\prime})>\rho(y)-\epsilon$ .

Putting $x^{\prime\prime}=\sum_{i=1}^{k}[p_{\gamma_{i}}]x^{\prime}$ and $y^{\prime\prime}=\sum_{i=1}^{l}[q_{v_{i}}Iy^{\prime}$ , we now have by (R. 3)

$x^{\prime\prime}\sim y^{\prime\prime}$ , $\rho(x^{\prime\prime})>\rho(x)-\epsilon$ , $\rho(y^{\prime\prime})>\rho(y)-\epsilon$

and $[x^{\prime\prime}]R\S \mathfrak{p}_{0}$ . If $[y^{\prime\prime}]R\in \mathfrak{p}_{0}^{r}$ , then applying the quite same argument (only
changing the r\^ole of $x^{\prime}$ and $y^{\prime}$ into $y^{\prime\prime}$ and $x^{\prime\prime}$ respectively), we can show that
we get two elements $x_{0},$ $y_{0}$ which fulfil the requirement of Lemma 6. Q. E. $D_{f}$

Lemma 7. For any non-atomic $\mathfrak{p},$ $\mathfrak{p}^{\prime}\in \mathfrak{E}$ there exist normal manifolds
$N.\in \mathfrak{p}$ and $N_{\mathfrak{p}\prime}\in \mathfrak{p}^{\prime}$ and positive numbers $\alpha,$

$\gamma,$ $\epsilon>0$ such that $x\in N_{p},$ $\rho(x)\leqq\epsilon$

implies

(3. 3) $\rho(\alpha y)\leqq\gamma$ for each $y\in N_{p}$ , with $x\sim y$ .

Proof. Assume that the lemma is not valid. Then for a pair of non-
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atomic maximal ideals $\mathfrak{p},$
$\mathfrak{p}^{\prime}\in \mathfrak{E}$ , there exists no pair of normal manifolds $(N_{p}$ ,

$N_{p^{J}})$ and positive numbers $\alpha,$
$7$ and $\epsilon$ which satisfies (3.3) above. Now we can

start with a pair of elements $(x^{\prime}, y^{\prime})$ with $x^{\prime}\sim y^{\prime},$ $\rho(x^{\prime})<\frac{1}{2}$ , $\rho(y^{\prime})>1,$ $[x^{\prime}]R\in \mathfrak{p}$

and $[y^{\prime}]R\in \mathfrak{p}^{\prime}$ . From Lemma 6 it follows that there exist elements $x_{1},$ $y_{1}$

$(x_{1}, y_{1}\in M)$ such that $p(x_{1})<\frac{1}{2},$ $\rho(y_{1})>1,$ $[x_{1}]R\leq \mathfrak{p},$ $[y_{1}]R$ re $\mathfrak{p}^{\prime}$ and $x_{1}\sim y_{1}$ .
Since $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ are maximal ideals of normal manifolds of $R,$ $(1-[x_{1}])R\in \mathfrak{p}$

and $(1-[y_{1}])R\in \mathfrak{p}^{\prime}$ stand. Again we can find also $x^{\prime\prime},$ $y^{\prime\prime}\in R$ with $x^{\prime\prime}\sim y^{\prime\prime}$ ,

$x^{\prime\prime}\in(1-[x_{1}])R$ and $y^{\prime\prime}\in(1-[y_{1}])R$ satisfying $\rho(x^{\prime\prime})<\frac{1}{2^{2}}$ together with $\rho(\frac{1}{2}y^{\prime\prime})>2$

by the assmuption. In view of Lemma 6 again, there exists a pair of elements
$(x_{2}, y_{z})$ such that $\rho(x_{2})<\frac{1}{2^{2}},$ $\rho(\frac{1}{2}y_{2})>2,$ $[x_{2}]R\epsilon \mathfrak{p},$ $[y_{2}]R\leq \mathfrak{p}$ and $x_{2}\sim y_{2}$ .

Proceeding this argument, we obtain two sequences of mutually orthogonal
positive elements $\{x_{\nu}\}_{\nu=1}^{\infty}$ and $\{y_{\nu}\}_{\nu=1}^{\infty}$ , for which $x_{\nu}\sim y_{\nu},$ $[x_{\nu}]R\in \mathfrak{p},$ $[y_{\nu}]R\epsilon \mathfrak{p}^{\prime}$ ,

$\rho(x_{\nu})\leqq\frac{1}{2^{\nu}}$ and $\rho(\div y)\geqq\nu$ hold for each $\nu\geqq 1$ . From $(\rho. 4)$ it follows

$\bigcup_{\nu=1}x_{\nu}\in R$ ,

which implies $\bigcup_{\nu=1}y_{\nu}\in R$ on account of (R.2). This is, however, a contradiction,

since $\rho(\frac{1}{n}\bigcup_{\nu=1}^{\infty}y_{\nu})\geqq\rho(\frac{1}{n}y_{n})\geqq n$ holds and it is inconsistent with $(\rho.3)$ .
Q. E. D.

Lemma 8. For any non-atomic $\mathfrak{p}_{0}\in \mathfrak{E}$ , there exists a finite number of
normal manzfolds $N_{0},$ $N_{1},$

$\cdots,$
$N_{k},$ $N^{\prime}$ such that $N_{0}\in \mathfrak{p}_{0},$ $R=N_{1}\oplus N_{2}\oplus\cdots N_{k}\oplus N^{\prime}$ ,

$N^{\prime}$ is of finite dimension and for any $x\in N_{0}$ with $\rho(x)\leqq\epsilon$

(3. 4) ${\rm Max}\{\sup_{x\sim y,y\epsilon N_{i}}\rho(\alpha y)\}\leqq\gamma 1\leqq i\leq-\cdot b$

holds, where $\alpha,$
$7$ and $\epsilon$ are all fixed positive constants.

Proof. Let $N_{\mathfrak{p}_{0},p}$ and $N_{p}$ be two normal manifolds and $\alpha_{p},$
$\gamma_{p}$ and $\epsilon_{\theta}>0$

be positive numbers which satisfy the formula (3.3) corresponding to non-
atomic maximal ideals $\mathfrak{p}_{0}$ and $\mathfrak{p}$ . Let $\mathfrak{E}$ denote the set of all non-atomic
elements of $\mathfrak{E}$ . As the set $(\sum_{\iota_{J}\epsilon \mathfrak{C}}U_{[N]}\mathfrak{p})^{-}$ is both open and compact in $\mathfrak{E}$ ,

$(\sum_{p\in \mathfrak{C}}U_{[N_{\theta}]})^{-}=U_{[N]}$ holds for a normal manifold $N\subset R$ and clearly $(1-[N])R$

is of finite dimension.
On the other hand, if $\mathfrak{p}$ belongs to the set $U_{[N]}-\sum_{\mathfrak{p}\epsilon_{\mathfrak{C}}}U_{[N\mathfrak{p}]}$ it must be non-



On an Equivalence $Relat\iota on$ on Semi-Ordered Linear Spaces 49

atomic as easily seen, whence it follows $U_{[N]}=\sum_{p\epsilon \mathfrak{C}}U_{[N\mathfrak{h}]}$ . Thus we can find

a finite number of $\mathfrak{p}\in \mathfrak{E}$ , say $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$
$\mathfrak{p}_{k}$ , such that $U_{[N]}=\sum_{\nu- J}^{k}U_{INJ}$ holds. Now

we put $N_{0}=\cap N_{p_{0},p_{\nu}}k$ $N^{\prime}=(1-[N])R,$
$\epsilon=1\leqq\nu\leqq kMin\{\epsilon_{p_{\nu}}\},$ $\alpha=1\leqq\nu\leqq kMin\{\alpha_{p_{\nu}}\}$ and $r=$

$\nu=1$

Max $\{7_{p_{\nu}}\}$ , and also we choose a set of mutually orthogonal normal manifolds:
$1\leqq\nu\leq k\{\overline{N}_{\nu}\}_{\nu=1}^{k^{\prime}}$ such that $N=N_{1}\oplus N_{2}\oplus\cdots\oplus N_{k^{\prime}}$ and $N.\subset N_{p_{\nu}}$ for each $\nu$ with $ 1\leqq\nu$

$\leqq k^{\prime}\leqq k$ , by use of the usual orthogonalization method. It is now clear that
(3.4) is valid for normal manifolds and the positive numbers thus constructed.

Q. E. D.
Lemma 9. For any non-atomic $\mathfrak{p}_{0}\in \mathfrak{E}$ there exists a normal manzfold

$N_{p}$ , a finite co-dimensional normal mamfold $N_{p}^{\prime}$ and positive numbers $\alpha,$ $7,$ $\epsilon$

such that $x\in N_{p},$ $\rho(x)\leqq\epsilon$ implies

(3. 5)
$x\sim y,y\in N’\sup_{p}\rho(\alpha y)\leqq 7^{\prime}$

Proof. Let $N_{0},N_{1},$
$\cdots,$

$N_{k},$ $N^{\prime}$ be normal manifolds and $\alpha,$
$\gamma$ and $\epsilon$ be

positive numbers which statisfy (3.4) in the preceding lemma. Suppose $x\sim y$ ,
$x\in[N_{0}]M,$ $y\in[N^{J\perp}]M$ and $\rho(x)\leqq\epsilon$ . Then, on account of (R.4), we can find
a mutually orthogonal set of projectors $\{[p_{\nu}]\}_{\nu=1}^{k}$ for which $[p_{\nu}]x\sim[N_{\nu}]y$ holds
$(1\leqq\nu\leqq k)$ . Since $\rho([p_{\nu}]x)\leqq\epsilon$ for all $1\leqq\nu\leqq k$ , we have $\rho(\alpha[N_{\nu}]y)\leqq\gamma$ and

$\rho(\alpha y)\leqq\sum_{\nu-1}^{k}\rho([N_{v}]y)\leqq k\cdot 7$ .

Since $\rho$ is semi-continuous and $M$ is full, putting $7^{\prime}=k\gamma$ and $N_{\mathfrak{p}}^{\prime}=(N^{\prime})^{\perp}$ , we
obtain the proof. Q. E. D.

Proof of Theorem 2. For any $\mathfrak{p}\in \mathfrak{E}$ , we denote by $N_{\mathfrak{p}},$ $N_{\mathfrak{p}}^{\prime},$
$\alpha_{p},$

$7_{\mathfrak{p}}$ and
$\epsilon_{p}$ be the same as in Lemma 9, corresponding with $\mathfrak{p}$ . Then, as above, there
exists a finite co-dimensional normal manifold $N_{0}$ satisfying $ U_{[N_{0}]}=\sum_{p\epsilon \mathfrak{C}}U_{[N]}\emptyset$ .
Hence we can find a finite number of $N_{p_{\nu}},$ $\mathfrak{p}_{\nu}\in \mathfrak{C}(\nu=1,2, \cdots, k)$ for which
$U_{[N_{0}]}=\sum_{\nu-- 1}^{k}U_{[N_{D_{\nu}}]}$ hold. Now we put $N=N_{0^{\cap}}\bigcap_{\nu=1}^{k}N_{p_{\nu}}^{\prime},$

$\alpha_{1<\approx^{\nu Sk}}^{=}{\rm Min}\{\alpha_{\theta_{\nu}}\},$

$7=\sum_{\nu\Rightarrow 1}^{k}7_{P_{\nu}}$

and $\epsilon={\rm Min} 1\leqq\nu\leqq k\{\epsilon_{\mathfrak{H}_{\nu}}\}$ respectively. It is evident that $N$ is a finite co-dimensional
normal manifold, and we can find again normal manifolds $M_{1},$ $M_{2},$

$\cdots,$
$M_{k^{\prime}}$ such

that $N=M_{1}\oplus M_{2}\oplus\cdots\oplus M_{k^{\prime}}$ , $M.\subset N_{p_{\nu}}$ and $M_{\nu}\rightarrow M_{\ell}=\{0\}$ for $\nu\neq\mu$ Now sup-
pose that $x\sim y,$ $x,$ $y\in[N]M$ and $\rho(x)\leqq\epsilon$ . Since $x=\sum_{\nu=1}^{t^{J}}[M_{\nu}]x$ and $[M_{\nu}]x\in N_{p_{\nu}}$ ,

there exists mutually orthogonal projectors $\{[p_{\nu}]\}_{\nu=1}^{k^{\prime}}$ such that $[M_{\nu}]x\sim[p_{\nu}]y$ ,
$\sum_{\nu=1}^{k^{\prime}}[p_{\nu}]=[y]$ . As $[M_{\nu}]x\in N_{p_{\nu}}$ and $[p_{\nu}]y\in N_{p_{\nu}}^{\prime}$ , we have by the preceding lemma
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$\rho(\alpha[p_{\nu}]y)\leqq\rho(\alpha_{j1_{\nu}}[p_{\nu}]y)\leqq\gamma_{\mathfrak{p}_{\nu}}$ $(1\leqq\nu\leqq k^{\prime})$ .

Therefore we get

$\rho(\alpha y)\leqq$ $\sum_{-,\nu- 1}^{k^{\prime}}\rho(\alpha_{p_{\nu}}[p_{\nu}]y)\leqq\sum_{\nu=1}^{l^{\prime}}\gamma_{\mathfrak{p}_{\iota}}\leqq\gamma$

which implies (3.3), because of the semi-continuity of $\rho$ . Q. E. D.

Remark 1. If $R$ is non-atumic,9) there is no finite dimensional normal
manifold. Hence the formula (3.3) in Theorem 2 holds valid in the whole
space $R$ in this case.

Corollary 1. Let $R$ have a complete $semi- continuous^{1)}$ norm $\Vert\cdot\Vert$ together
with an $\mathcal{E}$-relation. Then there exists a positive number $\gamma$ such that

(3. 6) $\div$ } $|y\Vert\leqq\Vert x\Vert\leqq 7\Vert y\Vert$

halds for each pair of elements $x,$ $y\in R$ with $x\sim y$ .
Proof. A complete semi-continuous norm $\Vert\cdot\Vert$ is a $\rho$-functional, hence by

virtue of Theorem 2 there exist a finite co-dimensional normal manifold $N$ and

a positive number $7_{1}$ , for which $\frac{1}{7_{1}}\Vert y\Vert\leqq\Vert x\Vert\leqq\gamma_{1}\Vert y\Vert$ holds for $x,$ $y\in N$ with

$x\sim y$ . On the other hand, $N^{\perp}$ being of finite dimension, there exists also

$7_{2}>0$ such that $\underline{1}\Vert y\Vert\leqq\Vert x\Vert\leqq 7_{2}\Vert y\Vert$ holds for $x,$ $y\in N^{\perp}$ with $x\sim y$ . Let
$7_{2}$

$\{e_{1}, \cdots, e_{n}\}$ be a natural basis of $N^{\perp}$ with $\Vert e_{\nu}\Vert=1(1\leqq\nu\leqq n)$ . We put now
$\alpha_{\nu}=$ $inf\Vert x\Vert$ , and $\beta_{\nu}=$ $sup\Vert x\Vert$ . It is evident that both $\alpha_{\nu}>0$ and $\beta_{\nu}<+\infty$

$holdforall\in N\sim e\nu(1\leqq v\leqq n)fromabovex\epsilon N,x\sim e$ . If $x\sim y,$
$x\in N^{\perp}$ and $y\in N$, we can verify

easily that $\frac{1}{7_{3}}\Vert y\Vert\leqq\Vert x\Vert\leqq\gamma_{3}\Vert y\Vert$ holds, where $7_{3}=n\cdot{\rm Max} 1\leqq\nu\leqq n\{\frac{1}{\alpha_{\nu}},$ $\beta_{\nu}\}$ . From these

facts it follows immediately that there exists $7>0$ which satisfies (3.6) in the
whole space. Q. E. D.

Corollary 2. Let $R$ be a modulared (quasi-modulared) semi-ordered
linear space with a monotone complete modular11) (quasi-modular) $m$ . If $R$

is non-atomic and has an $\mathcal{E}$-relation, then we can find positive numbers $\alpha$ ,
$7^{\prime}$ and $\epsilon$ such that

9) $R$ is called to be non-atomic, if $R$ has no atomic element.
10) A norm $\Vert\cdot\Vert$ on $R$ is called semi-continuous, if $0\leqq x_{\lambda}\uparrow\lambda\in AX$ implies $\Vert x\Vert=\sup_{\lambda\in\Lambda}||x_{\lambda}\Vert$ .
11) For the definition of a modular see [11]. Here we use the term of modular in the

sense of Nakano.
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(3. 7) $ m(x)>\epsilon$ implies $m(\alpha y)\leqq r^{\prime}m(x)$

for any pair of elements $x,$ $y\in R$ with $x\sim y$ .
Proof. Since a monotone complete modular (or quasi-modular) $m$ satisfies

the conditions $(\rho.1)-(\rho.5)[11,3]$ , it is a $\rho$-functional. Thus there exist positive
numbers $\alpha,$

$\gamma$ and $\epsilon$ such that $m(x)\leqq\epsilon,$ $x\sim y$ yields $m(\alpha x)\leqq 7$ . If $x\sim y$ ,
$x,$ $y\in M$ and $ m(x)>\epsilon$ , then we can find two sets of mutually orthogonal pro-
jectors $\{[p_{\nu}]\}_{\nu=1}^{k+1},$ $\{[q_{\nu}]\}_{\nu=1}^{k+1}$ such that $\sum_{\nu=1}^{k+1}[p_{\nu}]=[x],$ $\sum_{\nu=1}^{k+1}[q_{\nu}]=[y],$ $[p_{\nu}]x\sim[q_{\nu}]y$

$(1\leqq\nu\leqq k+1),$ $m([p_{\nu}]x)=\epsilon(1\leqq\nu\leqq k)$ and $ m([p_{k+1}]x)<\epsilon$ on account of the non-
atomicity of $R$ and the condition (R. 4, (ii)). Hence we get

$m(\alpha y)=\sum_{\nu=1}^{k+1}m(\alpha[q_{\nu}]y)\leqq 7(k+1)\leqq 2\div m(x)$ ,

which yields (3.7), since a, modular (or quasi-modular) is semi-continuous.
Q. E. D.

\S 4. Throughout this section let $E$ be a non-atomic finite measure space
and $X(E)$ be a Banach function space with a semi-continuous norm $\Vert\cdot\Vert$ . It is
well known that $X$ constitutes a superuniversally continuous semi-ordered linear
space1) by the usual order and addition of measurable functions. When $X$ has
w-RIP, the relation of equi-measurability between two functions belonging to
$X$ can be regarded as an $\mathcal{E}$-relation on the space $X$. Indeed, the conditions
(R. 1) and (R.3) are evidently satisfied. Since $\mu$ is assumed to be countably
additve and $X$ has w-RIP, the condition (R.2) is fulfilled. As a D-manifold
$M$, we can take the set of all simple functions13) on $E$ and it is now clear that
the relation of equi-measurability satisfies also (R.4), hence an $\mathcal{E}$-relation on $X$.

Consequently, in view of Corollary 1 we have
Theorem 3. In order that a Banach function space $X(E)$ on a finite

non-atomic measure space $E$ has w-RIP, it is necessary and sufficient that
$X^{\cdot}(E)$ has s-RIP, that is,

(4. 1) $\div\Vert g\Vert\leqq|If\Vert\leqq 7\Vert g\Vert$

for any two mutually equi-measurable functions $f$ and $g\in X$, where $\gamma$ is a
12) $R$ is called superuniversally continuous, if for any system of positive elements $\{a_{\lambda}\}_{\lambda\in A}$

there exists a sequence of elements: $\{a_{\lambda_{\nu}}\}\subset\{a_{\lambda}\}_{\lambda\in\Lambda}\nu=1\infty$ such that $\mu=1\infty|1a_{\lambda_{\nu}}=\bigcap_{\lambda\in A}a_{\lambda}$ holds.

13) A function on $E$ is called a simple function if it is represented as $\sum_{\nu=1}^{n}\xi_{\nu}x_{e_{\nu}}$ . where
$x_{e_{\mu}}$ is the characteristic function of a measurable set $e_{\nu}\subset E$ for each $\nu$ with $1\leqq\nu\leqq n$ .
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positive number.
Corollary 3. If a Banach function space $X(E)$ has w-RIP, there exists

an equivalent norm $\Vert\Vert_{1}$ on $X(E)$ having the rearrangement majorant 1, $i.e$ .
$\Vert f\Vert_{1}=\Vert g\Vert_{1}$ for $f,$ $q\in X$ with $f\sim g$ .

Proof. On account of Theorem above, we can define a finite valued
functional $\Vert\cdot\Vert_{1}$ as

(4. 2) $\Vert f\Vert_{1}=\sup_{f\sim g}\Vert g\Vert$
$(f\in X)-$

It is now evident from the definition that the functional $\Vert\cdot\Vert_{1}$ satisfies all
the conditions of semi-continuous norm except for the subadditivity. For any

simple functions $f,$ $g:f=\sum_{-,\nu- 1}^{k}\xi_{\nu}\chi_{e_{\nu}},$ $g=\sum_{\nu=1}^{k}\eta_{\nu}x_{e_{\nu}}$ with $ e_{\nu^{\cap}}e_{\mu}=\phi$ for $\nu\neq\mu$ , we have

$\Vert f+g\Vert_{1}=\sup$ $\Vert\sum_{\nu=1}^{k}(\xi_{\nu}+\eta_{\nu})\chi_{e_{\nu}^{\prime}}\Vert$ .
$e_{1}^{\prime}\oplus\cdots\oplus e_{k}^{f}=E,$ $\mu(e_{i})=\mu(e_{i}^{\prime})$ $(1\leqq\nu\leqq k)$

Let $h$ be a simple function such that $h=\sum_{\nu=1}^{k}(\xi_{\nu}+\eta_{\nu})\chi_{e_{\nu}^{\prime}}$ and $\mu(e_{\nu}^{\prime})=\mu(e_{\nu}),$ $ e_{\nu}^{\prime}\cap e_{\mu}^{\prime}=\phi$

for $\nu\neq\mu$ . Then $|h|\leqq\sum_{\nu=1}^{k}|\xi_{\nu}|x_{e_{\nu}^{\prime}}+\sum_{\nu--1}^{l}|\eta_{\nu}|\chi_{e_{\nu}^{\prime}}$ and $|f|\sim\sum_{\nu=1}^{k}|\xi_{\nu}|\chi_{e_{\nu}^{\prime}},$ $|g|\sim\sum_{\nu=1}^{k}|\eta_{\nu}|\chi_{e_{\nu}^{\prime}}$ ,

which imples

$\Vert h\Vert_{1}\leqq\Vert f\Vert_{1}+\Vert g\Vert_{1}$ .

Consequently we have $\Vert f+g\Vert_{1}\leqq\Vert f\Vert_{1}+\Vert g\Vert_{1}$ for arbitrary $f,$ $g\in X$ on account
of the semi-continuity of $\Vert\cdot\Vert_{1}$ . Q. E. D.

Next we tum to prove a theorem conceming characterization of Orlicz
spaces among the classes of modulared function spaces.

Now let $M(\xi, t)$ be a modular function, $i.e$ . $M(\xi, t)$ be a real-valued
function on $[0, +\infty$ ) $\times E$ satisfying (i) it is a non-decreasing convex function
of $\xi\geqq 0$ which is left hand $continuo\dot{u}s$ for each $t\in E$ ; (ii) it is measurable on
$E$ for each $\xi\geqq 0$ ; (iii) $\lim_{\xi\rightarrow 0}M(\xi, t)=0,\sup_{0\leqq\text{\’{e}}}M(\xi, t)=+\infty$ and $M(O, t)=0$ for all
$t\in E$ . Then a modulared function space $L_{M(\xi,t)}$ is the set of all measurable

functions $f$ on $E$ such that $\int_{E}M(\xi|f(t)|, t)d\mu(t)<+\infty$ for some $\xi>0$ . $L_{M(\xi,t)}$

is a modulared space with the modular $m$ :

(4. 3) $m(f)=\int_{E}M(|f(t)|, t)d\mu(t)$ $(f\in L_{M(\xi,t)})$ ,

hence, as is well known, it is a Banach function space with the norm:
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$||f\Vert=\inf_{m(\xi f)\leq 1}\frac{1}{|\xi|}(f\in L_{JI(\xi,t)})$ . Evidently Orlicz spaces’4) constitute a special

class in the modulared function spaces.
Now we have
Theorem 4. If a modulared function space $L_{M(\xi,t)}(E)$ on a non-atomic

finite measure space $E$ has w-RIP, then it reduces to an Orlicz space $L_{\Phi}(E)$ .
Proof. It is obvious that we may assume $\mu(E)=1$ , without loss of gener-

ality. Putting $\Phi(\xi)=m(\xi\chi_{E})$ for $\xi\geqq 0$ , we obtain a non-decreasing left hand con-
tinuous convex function $\Phi(\xi)$ on $[0, +\infty$ ) satisfying $\lim_{\text{\’{e}}\rightarrow+\infty}\Phi(s\epsilon)=+\infty,$ $\inf_{0<\text{\’{e}}}\Phi(\xi)=0$

and $\Phi(0)=0$ . Here we shall show that $L_{M(\xi.t)}$ coincides with the Orlicz space15)
$L_{\Phi}$ defined by the function $\Phi$ as a Banach function space.

By virtue of Theorem 2 and Corollary 2 (3.7), we can find positive numbers
$r_{1},$ $r_{2}$ and $\alpha$ satisfying both the conditions:

(i) $m(f)\leqq\epsilon,$ $f\sim g$ implies $m(\alpha g)\leqq\gamma_{1}$ ;
(ii) $m(f)>\epsilon,$ $f\sim g$ implies $m(\alpha g)\leqq\gamma_{2}m(f)$ .

We put further for any $f\in L_{M(\xi,t)}$

$m^{*}(f)=\sup_{f\sim g}m(g)$ and $m_{*}(f)=\inf_{f\sim q}m(g)$ .

It follows from above that for each $f\in L_{M(\xi,t)}$

(4. 4) $m_{*}(\alpha f)\leqq m(\alpha f)\leqq m^{*}(\alpha f)\leqq 7_{2}m_{*}(f)+\gamma_{1}$

holds. Let $\mathfrak{M}_{0}$ be the set of all simple functions $h=\sum_{\nu=1}^{k}\xi_{\nu}\chi_{e_{\nu}}$ such that

(4. 5) $ e_{\nu\cap}e_{\mu}=\phi$ for $\nu\neq\mu$ , $E=\sum_{\nu=1}^{k}e_{\nu}$ and $\mu(e_{\nu})=\frac{1}{k}$ for all $\nu\geqq 1$ .
Here we denote by $P_{n}(\nu)$ a permutation of the set: $\{1, 2, \cdots, k\}$ defined by
$P_{n}(\nu)=\nu+n(mod. k)$ for each $n$ . Then, for any $h\in \mathfrak{M}_{0}$ we put $ h^{(n)}=\sum_{\nu=l}^{k}s\nu\chi_{e_{\nu}^{n}}\xi$

$(0\leqq n\leqq k-1)$ , where $e_{\nu}^{n}=e_{P_{n}(\nu)}$ . Evidently we have $h=h^{(0)}\sim h^{(1)}\sim\cdots\sim h^{(k-1)}$

and $\sum_{n=0}^{k-1}m(h^{(n)})=\sum_{n=0}^{k-1}\sum_{\nu=1}^{k}m(b\xi\nu\chi_{e_{\nu}^{n}})=\sum_{\nu=I}^{k}\sum_{n=0}^{k-1}m(\xi_{\nu}\chi_{e_{\nu}^{n}})=\sum_{\nu=1}^{k}m(\xi_{\nu}\chi_{E})=\sum_{\nu=1}^{k}\Phi(\xi_{\nu})=k\cdot m_{\Phi}(h)$ .
Therefore there exists at least a pair of integers $(m_{0}, n_{0})(0\leqq m_{0}, n_{0}\leqq k-1)$ such
that

$m(h^{(m_{0})})\leqq m_{\Phi}(h)\leqq m(h^{(n_{0})})$ ,

14) For the details of Orlicz spaces see [4], [7] or [13].

15) $mo(f)$ denotes the modular of the space $L_{\Phi},$ $i.e$. for $f\in L_{\Phi}m_{\Phi}(f)=\int_{E}\Phi(|f(t)|)d\mu(t)$ .
Since $L_{M(\xi,t)}$ has w-RIP, $1\in L_{M(\xi,t)}$ .
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which implies
$m_{*}(h)\leqq m_{\Phi}(h)\leqq m^{*}(h)$ .

From this and (4.4) it follows that

(4. 6) $m(\alpha h)\leqq 7_{2}m_{\Phi}(h)+\gamma_{1}$ and $m_{\Phi}(\alpha h)\leqq 7_{2}m(h)+\gamma_{1}$ .

Since $E$ is non-atomic, for any $f\in L_{M(\xi,t)}$ there exists a sequence $\{h_{n}\}_{n=1}^{\infty}$ of‘
elements of $\mathfrak{M}_{0}$ such that $h_{n}\uparrow_{n=1}^{\infty}|f|$ holds. Consequently, by the semi-continuity
of $m$ and $m_{\Phi},$ $(4.6)$ implies

(4. 7) $m(\alpha f)\leqq\subset 7_{2}m_{\Phi}(f)+7_{1}$ and $m_{\Phi}(\alpha f)\leqq\gamma_{2}m(f)+7_{1}$

for any $f\in L_{M(\xi,t)}$ . It is now evident that the Banach function spaces $L_{M(\xi,t)}$

and $L_{\Phi}$ coincide. Q. E. D.

Remark 2. As this proof shows, the convexity of modular $m$ and $m_{\Phi}$

is not used. Therefore, it is verified in the quite same way, that if a (non-

convex) quasi-modular function space $L_{N(\xi,t)}[2]$ has w-RIP, then it reduces to

a generalized Orlicz space $L_{N}$ considered by S. Mazur and W. Orlicz in [8].

Lastly let $E$ be a a-finite (or locally finite) measure space with a countably

additive measure $\mu$ The relation defined by equi-measurability has essentially

the sense on the set of finite measure only, in fact, it can not be extended
naturally to the whole space of all measurable functions on $E$ without loss of

the original significance. Only we can define an equivalence $relation\sim on$ the
set $\mathfrak{J}$ of all integrable functions on $E$ in the following way. Two positive
functions $f,$ $g$ belonging to $\mathfrak{J}$ are called equi-measurable if $\mu\{t;f(t)>r\}=$

$\mu\{t, q(t)>r\}$ holds for every positive number $r$. Next two functions $fg$ of
$\mathfrak{J}$ is called equi-measurable (in the extended sense) and written as $f\sim g$ , if both
$f^{+}$ and $f^{-J6)}$ are equi-measurable to $q^{+}$ and $g^{-}$ respectively. Then the relation
$\sim comes$ to be an equivalence relation on the space $\mathfrak{J}$ . Thus, if a Banach
function space $X$ consisting of integrable functions on $E$ has w-RIP with respect

to the $relation\sim of$ equi-measurability in the extended sense, the $relation\sim is$

an $\mathcal{E}$-relation on $X$ as is easily seen. Hence, on account of Theorem 2, we

have as similarly as Theorem 3

Theorem 3‘. If a Banach function space $X$ consisting of integrable

functions on a $\sigma- finite$ (or locally finite) measure space $E$ has w-RIP, then
it has s-RIP.

We obtain also

Theorem 4’. Let $L_{M(\xi,t)}(E)$ be a modulared function space consisting

$\leftarrow$
16) $f^{\neq}(t)={\rm Max}(f(t),0)$ and $f^{-}(t)={\rm Max}(-f(t),0)$ for all $t\in E$.
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of integrable functions on a non-atomic $\sigma- finite$ measure space E. If $L_{M(\xi,t)}$

has w-RIP, then it reduces to an Orlicz space $L_{\Phi}$ .
Proof. Let $\{E_{\nu}\}_{\nu=1}^{\infty}$ be a sequence of measurable sets of finite measure

such that $E_{\nu}\uparrow_{\nu=1}^{\infty}E$ holds. Now we put

$\Phi^{*}(\xi)=\sup_{0\leqq\eta<\xi}\varlimsup_{\nu\rightarrow\infty}\frac{m(\eta\chi_{E_{\nu}})}{\mu(E_{\nu})}$ and $\Phi_{*}(\xi)=\varliminf_{\nu\rightarrow\infty}\frac{m(\xi\chi_{E_{\nu}})}{\mu(E_{\nu})}$ .

Then, by virtue of Corollary 2 in \S 3 and the non-atomicity of $E$, we can find
positive numbers $\alpha$ and 7 for which $\Phi_{*}(\alpha\xi)\leqq\Phi^{*}(\alpha\xi)\leqq 7\Phi_{*}(\xi)$ holds for each
$\xi\geqq 0$ . From this we can verify as similarly as in Theorem 4 that $L_{M(\xi,t)}$ coincides
with the Orlicz space $L_{\Phi^{*}}$ . Q. E. D.
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