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§1. Let (E, 2, u) be a finite measure space with a countably additive

non-negative measure p defined on a o-field 2. Two real-valued g-measurable
functions f(#) and ¢(z) on E are called mutually equi-measurable [14], if p{t;
S@)>r} =p{t; g(t)>r} holds for each real number ». If we write f~g,
when f and ¢ are mutually equi-measurable, it is observed easily that the
relation ~ is an equivalence relation on the space I of all measurable
functions on E. As is shown in [14], the concept of equi-measurability plays
an important role in the theory of functions of real variables. Now let X be a
linear space consisting of real-valued measurable functions, which is semi-normal
in the sense of Nakano [11], i.e.

(1. 1) 0=feX, |g|=f, geI implies g€ X,

where 0 =< f means that 0 =< f(¢) holds almost everywhere. Evidently the
function space X is considered as a universally continuous semi-ordered linear
space” by this order.

We say that a function space X has the weak rearrangement invariant
property (w-RIP), if fe X, f~g always implies g€ X, i.e. X is closed under the
relation defined by equi-measurability. In the sequel, a function space X on
E is termed to be a Banach function space® on E, if it-is semi-normal and
has a complete norm satisfying

(1.2) AN = sup |£2ll ,  whenever 0= fitieaf-

A Banach function space X is said to have the strong rearrangement in-
variant property (s-RIP), if feX, f~g¢g implies g€ X and |g|| <Al f||, where
A is a fixed constant independent on f and g. L?(E) spaces with 1=<p, Orlicz
spaces L,(E) and /A (¢)-spaces established by G. G. Lorentz [5, 6] and I. Halperin

1) A semi-ordered linear space R is called universally continuous, if 0=<a, (A€ 4) implies

N a,ER, i.e. a conditionally complete vector lattice in Birkhoff’s sense or a K-space in the sense
€4

of Vulich [12]. o
~ 2) For the detailed properties of Banach function spaces see [7] or [13].
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[1] independently with much regard to- this property, have all. s-RIP with the
majorant 1 obviously. The subJect of thls note concerns Wlth 'RIP of function
spaces, but we deal with abstract semi-ordered linear spaces in the first place,
since the theory of semi-ordered linear spaces can throw light on this subject
by formalization and by use of representation theory of the spaces.

In §2 we generalize axiomatically the relation of equi-measurability on
function spaces, to an equivalence relation (called an E-relation) on abstract
semi-ordered linear spaces R. Theorem 1 shows, however, that in case the
space R is discrete, the equivalence relation generalized is essentially the same
one as is given by equi-measurability on R considered as a discrete measure
space. In the next section 3, we treat about a semi-ordered linear space R
which has a certain functional © together with an E-relation. . Utilizing some
topological ‘properties of the proper space € of R, we derive a result showing
that the functional f is uniformly bounded with respect to the &- relation in
a sense (Theorem 1). In §4 we return to function spaces and applying this
result, we show that if a Banach function space has w-RIP, then it must have
s-RIP, in case E is a non-atomic finite measure space (Theorem 3). Fur-
thermore, as another application of this, we state a theorem characterizing
Orlicz spaces among modulared function spaces Ly, (E) in terms of RIP, i.e.
we prove that if a modulared function space Ly (E) has w-RIP it reduces
to an Orlicz space L,(E) (Theorem 4).

At the end of this paper we extend the equi-measurablity. relatlon on finite
measure spaces to the relation between two integrable functions on pP-finite
measure spaces. It is then noted that for function spaces on O-finite measure
spaces, the above results concerning w-RIP and s-RIP hold all to be valid.

'§ 2. It will be assumed, in the sequel, that R is a umversally continuous
semi-ordered linear space and S* (SCR) denotes the set of all positive parts
of S, i.e. S'={xUO0; zeS}. A linear lattice manifold M of R is called
a Pmanifold, if [p]M c M for any projector [p]® (p€R). A Pmanifold M
is called full, if M|z implies x=0. It is obvious that if M is a full P

manifold, 0= x is represented as x= Ux;, where 1;€ M (2€4). A system {Z:}ses
€4

of elements of M is said to.be M-fundamental with respect to x€R, if x=Ux,
2€4

and [p]x=[plx, holds for each 1€/, whenever [plxeM. Now we introduce
an ‘equivalence relation on R which can be considered as a generalization of
that of equi-measurability in function spaces.

" An equivalence relatlon ~ on R" is-called an E-relation, if it satlsﬁes the

3) A projector [p] is a projection operator on R onto the normal manifold {pl}L.
4) Mz means |x| N |y| =0 for all y€ M. We write x=x; @ zz, if x= 2+ xpand £ L xa.
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following conditions (R.1)—(R.4):

R.1) x~vy,x, yeR implies ax~ay for each a>0; . ,
(R.2) if 0=Zx,% i1 and 0Ly, % ses and x,~vy, for each A€/, then Ux,eR”
A€A
implies Uy,eR" with Uz~ U Yis

€4 €4 2€4 ’
(R.3) if z=x2.@8x;, y=v.Py. and x;~y, (i=1,2), then r~y;
(R.4) there exists a full Pmanifold M C R satisfying the following
properties : -
(i) if z~y, z, yeR", then there exists a pair of M-fundamental systems
{22} iea and {4} e with respect to x and y respectively such that x,~vy, holds
for each 2€4;
C(il) if x~y, r,yeM" and {[pl}in is a mutually orthogonal system
of projectors with er,:z[ pl=1x] there exists also a mutually orthogonal system

of projectors {[q;1}.ea such that
Slal=lv] and [ple~lgly  (1€4) hold.

The P-manifold M satisfying the conditions (i) and (ii) in (R.4) is called
the D-manifold of the &-relation ~.

It is clear that the &-relation on R’ can be extended to R canonically,
i.e. we now induce the relation ~ to be defined on R in such a way that for
any x, y€ R

(2.1) x~y if and only if x' ~y  and = ~y .

This extended E-relation ~ is called an &-relation on R, and R associated
with an E-relation is called shortly a space with an E-relation. It follows
from the condition (R.4) that if x~y, x, ye M and [p] is an arbitrary projector,
then we can find a projector [¢] for which [plx~[qly and (1—[p])z~(1—[q])¥

hold simultaneously, that is, we may say that the E-relation ~ is decomposable
on M.

In what follows, ~ stands for an &-relation on R always.

Lemma 1. x~0 implies x=0.

Proof. If x~0 and x€R’, then nx~0 for each natural number n by
(R.1). Putting x,=0 and y,=nx (n=1,2,--:), we obtain increasing sequences

{x,} and {y,} with £,~y, (n=1). Since 0= GanR+, we have GynERfon

account of (R.2), which implies x=0, because R is Archimedean®. i From the

\ 5) ‘Since R is umversally continuous, N —:—a O must hold for any aER™*.
v=1
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formula (2.1) it is now evident that Lemma 1 holds.
Lemma 2. If x~ax for some 0<ax1, then x~0.

Proof If 0L x~azx for some a W1th 1<a, then x~axr~dod’'x~ - - ~a"x

~---. Thus, from (R.2) again we have Ua »reR. Hence =0 must hold.

n=1

On account of (R.1) and (2.1) it is obvious that the lemma holds. Q.E.D.
' Lemma 3. If x~y and x is an atomic element,” then y is also such
a one. ,

Proof Assume that x~y, x, y€R" and x is an atomic element. If y is
decomposed into y=z,@z, with 2,50 (i=1,2), then for each M-fundamental
system {¥;}.s With respect to y, we can find an index 1€ 4 with [2,]v:>=0
(6=1,2). On the other hand, as M is full, ze M and also x~y,=[z.]y.®[z.]¥.-
This implies that one of the elements [2;]¥:-1,2, say [2.]¥, must be equivalent
to 0 by virtue of (R.4, (ii)) and the assumption that x is an atomic element.
It follows from Lemma 1 that [2,]y,=0 and it is a contradiction. Q.E.D.

Lemma 4. If x~vy and x is of finite dimension,” then y is also of
the same dimension.

Proof. Since P-manifold M is full, each atomic element, hence each element
of finite dimension belongs to M. Now the proof is easily derived similarly
from Lemma 3 and (R.4). '

Lemma 5. If x~vy, x,y€R and [plx is of finite dimension, then
there exists a projector [q] such that [plx~I[qly and (1—[p])x~(1—[ql)y hold
simultaneously.

Proof. First suppose that x, y€R and [p]x is an atomic element. Then
in view of (R.4), we can find a pair of M-fundamental systems {z;}cs, {¥:}1ea
with respect to x and y and a system of projectors {[g.]}.cs such that [¢.]=[v:],
[plx=[plz:~[g.]y, and (1—[p])x:~(1—[q:])y; hold for all 2€4. By Lemma 3
[¢.]v. is an atomic element, hence [¢;]¥ is also such a one, and 4 fortiori
[¢.lyeM and [¢.]v=[q.]y. for all 2e4. If [g;]#[q,] holds for a fixed 4€4,
we have by (R.3)

A-[p)x~1—[q:))y,=(1— [‘111] —[@:)y.+ [QA,] Y~
(1— [qh] —[g:)v:+lgdy, = (1— [q;l]) Y.

and [plx,~I[q:]y,. Consequently both [plx~I[g;]v. and (1—[pl)x,~(1—

6) An element xE€R is called an atomic element, if x=y@®@z=, implies always y=0 or z=0.

7) An element x€R is called to be of finite dimension, if it is represented as r= ZE,e,,

y=1

where e, is an atomic element for each 1<y=<n.
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[¢:])v: hold for all 2€e4. Then from (R.2) it follows that (1—[p])x=
Li(l —[p]) x,~ UA(l —[g:,))vi=(01—[q;Dy. In case x is n-dimensional, the proof
i€ i€ . .

is similarly obtained by use of induction and the condition (R.3). Q.E.D.

Now we establish a theorem which reveals the structure of an &-relation
in the case of discrete spaces. Suppose that R is discrete. Then there exists
a mutually orthogonal system of positive atomic elements {e,},r such that each

element x€R" is uniquely represented as x= Y &,e,, where £,=0. We call the
. rel ! .

system {e,},, above the natural basis of R. We put further I(x, &)= {7;71el,
§,=¢&}. For any subset JCI' we denote by 7n(J) the'number of elements be-
longing to J, that is, n(J)=% (k=0,1,2,--:) or +oo if J contains an infinite
number of elements. ' o = o
Theorem 1. Let R be a discrete »space with an E-relation ~, Then

there exists a natural basis {d,},.r and a partition of the index set I' =3r.,
. aedl

I'.NT, =¢ for axd', such that x= Y, &d, and y= 3, n,d, stand in the relation
rer rel’ -
if and only if n([',~I(x, &)=n([",~I(y, &) for all real number & and ac?.

Proof. Let {e,},r be an arbitrary natural basis. Since ~ is an equivalence

relation, we can classfy I" as I'=3I",, I'./~I..=¢ for a=a’ in such a way
a€ Y

that for any 7, 7'el’,, e,~&e, holds with some £>0, and there exists no real
number £>0 for which e,~&e, holds, whenever 7 and 77 do not belong to thé
same class. Then, by Choice Axiom, we can find a subsystem {e, }.cq oOf
{e;}rer with e, €I, for every acA. Here for any fixed a, we define d, (rel’,) by

(2.2) d, = ¢&e,,

where & is a positive number satisfying e, ~%e,. d, is atomic and uniquely
determined for each 7€l’, on account of Lemma 2 and the construction of I,.
Repeating this process to whole a € I', we obtain a natural basis {d,},., for which

d,~d,. stands if and only if 7 and 7" belong to the same class I',. Assume now

x=Zr$,d,, y=2nd, and x~y. For any fixed a,€¥, [{d,.4,, -, d,, }]xeM

7€ rel’ . . T

(r.€l’,,, 1<i<k; £=1,2,---), and furthermore there exists a collection of ele-
. k k

ments of I, : 73,73, -+-, 7% such that both ,;Z::fs’id’iNz;n’édfi and (1-[{d,,---,d;}])x

~(1%[{d,;,---,d,/;}])y hold at the same time in accordance with Lemmas 4

and 5. Then, on account of the construction of the basis {d,}., We can infer
from Lemma 4 that »(I", ~I(x, &) = n(I",,~I(y,&)) holds for each real number
& and acU. Q.E.D.
Conversely suppose that a partition of I" exists. We obtain an equivalence
relation ~ on R in such a way that x= ,ez,:ﬁrdr' and y= T%:J)rdr stand in 'th;e
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relation ~ if and only if n(l".~I(x, &)=n(l".~I(y, &) for each & and ac?.
For the D-manifold we take a linear subset .S of all elements of finite dimension.
Now it is evident that the equivalence relation thus defined is an &-relation with
the D-manifold S, i.e. it satisfies the conditions (R.1)-(R.4).

§ 3. Here we deal with R which has a certain functional © together with
an &E-relation ~. The end of this section is to show, in a sense, uniform
boundedness of a P-functional with respect to an &-relation (Theorem 2).

A functional ¢ defined on R is called a O-functional, if it satisfies

(0.1) 0=ZP(x)=0(lx|)< +00 for all xeR;

(0.2) Plx+y)=P(x)+0(y), o xly;
(0.3) infP(ax)< +oo for every x€R;
, w0
(0.4) 0=z, bz implies P(x)=sup P(x,);
2€4
" (0.5) if {x}2. is a mutually orthogonal sequence with

i Plx,)< + o0, then x,= ix belongs to R.

From the definition it follows immediately

(3. 1) o([p]2) < (=) for every x, peR;
and | v
3.2)- = [Pz] 1 ze4 [P] implies p([P] .ZC)=S;élAp p([Px] x) . ‘

P-functionals thus defined are sufficiently general to include known func-
tionals on semi-ordered linear spaces For instance, the following functionals
are all o-functionals respectively. | ’

(i) a semi-continuous and complete norm or quasi-norm on R;

(ii) a monotone complete modular in the sense of Nakano [11] or of
Orlicz and Musielak [9], a concave modular of Nakano [10] and a quasi-
modular in [2, 3]. We shall establish the following basic result on R with
a P-functional and an &E-relation: '

' " Theorem 2. Let O-functional be defined on R with an E-relation.
Then there exist positive numbers a,7,¢ and a finite co-dimensional®
normal manifold N of R such that

(3.3) o(x)<e implies Play) <7

8) A linear manifold NCR is called a normal manifold, if each £€R is uniquely repre-
sented as x=x;+ o2, ©;EN and 2, €ENT. A normal manifold N is called to be finite co-
dimensional if N1 is of finite dimension. '
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SJor any x,y e N with x~vy.

For the proof of this theorem, we need to prove a number of auxiliary
lemmas whose proofs are based on the topological properties of the proper
space of semi-ordered linear spaces. In the sequel, & denotes the proper space
of R, i.e. the Boolean lattice of all maximal ideals p consisting of normal
manifolds N C'R, equipped with the topology generated by the neighbourhood
system {Uixi} yvcr, Where Uy is the set of all pe € such that Nep. Uy, is
both open and compact in & for any normal manifold N, hence @ is itself
compact, because &= Uz;. An element pe € is called 7non- atomzc if for any

Nep, there exists M< N such that Mebp.

Lemma 6. Let x,y€R satisfy 0(x)< + oo, P(y)< + oo and x~vy. . Then
Sfor any non-atomic bp,, poe@ and ¢>0, there exist two elements Zy, Yo€ R
such that (i) P(x)>P(x)—e, O(y)>P(y)—e; (ii) [xo]REpo, [yo]R"ipo, and
(iil) xo~y, hold.

Proof. 1t is sufficient to prove the lemma, when [x]Rep, and- ['y]RGpo
Assume x~y, x,y€R" and ¢>0. In view of the conditions (R.4) and (0. 4),
there exist elements ', y’ of the D-manifold M such that 0<z' <z,
O0=<y'=y and o(')>0(x)—e, P(¥')>P(y)—e with x'~y’. Since p, is non-
atomic, we can find a system of mutually orthogonal projectors {[p,]},.r with
LéJF[p,]=[x'] and [p]R&D, (rel’). On account of (R.4 (ii)), there exists an
orthogonal system {[q,]},r such that rg [¢,]=[%']1 and [p,]2'~[q,]¥’ (rel) hold.

By virtue of (0.4) we have for suitable chosen 7,,7,, ---, 7. (¥,€I)
' k k
P(4L[#,)a)>p(x)—¢ and P(X gy )>e(y) -
Putting x"=Zk] [pm]x’ and y"=Zk:[qrz_] y', we now have by (R.3)
i=1 i=1

al~y"”, P(x)>P(x)—e, Py")>P(y)—

and [2"]R&Yp,. If [y" ]Repo, then applying the quite same argument (only
changing the role of 2/ and ¥’ into y" and " respectively), we can show that
we get two elements Z,, yo which fulfil the requirement of Lemma 6. Q.E. D;

Lemma 7. For any non-atomic p,p'e € there exist normal mamfolds
N.€p and N,.€p' and positive numbers a, 7, e>0 such that xeN,, P(x)<s
implies

(3.3) Clay)=T for each yeN,. with x~y.

Proof. Assume that the lemma is not valid.. Then for a pair of non-
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atomic maximal ideals p, p’€ &, there exists no pair of normal manifolds (N,,

N,.) and positive numbers «, 7 and ¢ which satisfies (3.3) above. Now we can

start with a pair of elements (x', ') with x’'~v/’, P(x’)<—21—, e(y")>1, [£']Rep

and [y’]Rep’. From Lemma 6 it. follows that there exist elementé Zy, Ys

(x1, y,€ M) such that P(x1)<%, P(y)>1, [m]R&EP, [y.]JREY and z~vy,.

Since kp and p’ are maximal ideals of normal manifolds of R, 1—[x])Rep

and (1—[y,])Rep’ stand. Again we can find also x”,y”e€R with x"~y",
x2'"e(l—[x]))Rand y"’ €(1 —[y.])R satisfying £ (x") <%together with 0 (__é_ y"> >2

by the assmuption. In view of Lemma 6 again, there exists a pair of elements

(xz, yz) SuCh that P(xz) <%a p(—;’“yz) >2, [xz]REtp> [yz]REp and X2~Y,.

Proceeding this argument, we obtain two sequences of mutually orthogonal

©o

positive elements {x,};>, and {v.}:%,, for which x,~y,, [©.]JR&D, [y.]R&EY,

p(x;)g-z% and P(Ly> =>v hold for each v=1. From (0. 4) it follows
, Y

nyER’
v=1

which implies U y,€R on account of (R.2). This is, however, a contradiction,
. »=1

since £ (—L G y,) =p (L y,,) =7 holds and it is inconsistent with (0.3).
4 n

n =1
Q.E.D.
Lemma 8. For any non-atomic p,€ &, there exists a finite number of
normal manifolds N,, N, ---, N, N' such that N,€p,, R=NDN,D--- N;®ON’,
N’ is of finite dimension and for any x€N, with P(x)<e

(3. 4) Max{ sup P(ay)} =7

12424 ‘z~y, ¥EN;

holds, where a, v and ¢ are all fixed positive constants.

- Proof. Let N,,.» and N, be two normal manifolds and a,, 7' and ¢, >0
be positive numbers which satisfy the formula (3.3) corresponding to non-
atomic maximal ideals p, and p. Let € denote the set of all non-atomic

elements of €. As the set (3 Uwy,)” is both open and compact in &,
hes

(22 Urnp)” = Urw; holds for a normal manifold NCR and clearly (1—-[N])R
P

T
is of finite dimension.

On the other hand, if p belongs to the set Upy;— 23 Upw,; it must be non-
heg -



On an Equivalence Relation on Semi-Ordered Linear Spaces 49

atomic as easily seen, whence it follows Uiy;= X Uryp;- Thus we can find
beg
k
a finite number of pe€, say p,, p,, -+, s, such that Uiy= Z Ulw, 3 holds. Now
k
we put N,= ﬂN 5, N'=(1—[N]R, S—Mln{Sp} a—Mln{ap} and 7=

1Svgk 1Sv<k

Max {7, }, and also we choose a set of mutually orthogonal normal manifolds :

1<u<sk

{N}£, such that N=N,®N,®---® N, and N,CN,, for each v with 1=y
<k'<k, by use of the usual orthogonalization method. It is now clear that
(3.4) is valid for normal manifolds and the positive numbers thus constructed.
Q.E.D.

Lemma 9. For any non-atomic p,€ § there exists a normal manifold
Ny, a finite co-dimensional normal manifold N, and positive numbers a, 7, ¢
such that xeN,, P(x)<e¢ implies

(3.5) sup Play) =7 .

z’?/:?/ENIp-

Proof. Let N, N, ---,N,, N' be normal manifolds and «,7 and ¢ be
positive numbers which statisfy (3.4) in the preceding lemma. Suppose x~v,
x€[N,JM, ye[N'*]M and o(x)<e. Then, on account of (R.4), we can find

a mutually orthogonal set of projectors {[p,]}%, for which [p,]x~[N,]¥ holds
(1=v=<k). Since P([p,]x)=<e¢ for all 1=v=k, we have P(a[N,]y)<7 and

olay) < 2PNy S &7

Since © is semi-continuous and M is full, putting 7’=4kr and N, =(N')t, we
obtain the proof. Q.E.D.
Proof of Theorem 2. For any pe€, we denote by N,, N,, ap, 7, and
¢, be the same as in Lemma 9, corresponding with p. Then, as above, there
exists a finite co-dimensional normal manifold N, satisfying ULy, = §@(][ND]'

Hence we can find a finite number of N,, p €€ (v=1,2,---,k) for which
k
Uya= Z U, E hold. Now we put N—Nﬂﬂ N, , a=Min {a, }, 7= ZT,,

1€vsk

and e—Mln {sﬁ} respectively. It is evident that N is a finite co- dlmensmnal

12v<s%k

normal manifold, and we can find again normal manifolds M,, M,, ---, M. such

that N=M,®M.® ---®M,,, M,C N, and M,~M,={0} for v#=x. Now sup-
pose that x~y, x, y € [N]M and °(x)<e. Since x= ﬁ [M,]x and [M,]xz€e N, ,
there exists mutually orthogonal projectors {[ py]}f;lv:sluch that [M,]x~[p.]v,
’g[ pl=Ilyl. As[M)]xeN, and [p]yec Ni , we have by the preceding lemma
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Plalply) = Pl lply) =75, (1=<v=<Fk).

Therefore we get

Play) < 1P lan, [p1U) S 2T, <7

which implies (3.3), because of the semi-continuity of 0. Q.E.D.

Remark 1. If R is non-atumic,” there is no finite dimensional normal
manifold. Hence the formula (3.3) in Theorem 2 holds valid in the whole
space R in this case.

Corollary 1. Let R have a complete semi-continuous'® norm || - || together
with an E-relation. Then there exists a positive number T such that

(3.6) vl <l = 7wl

halds for each pair of elements x,y € R with x~vy.

Proof. A complete semi-continuous norm | -|| is a @-functional, hence by
virtue of Theorem 2 there exist a finite co-dimensional normal manifold N and

lyll<llzl|£7.]lyll holds for x, y€ N with

a positive number 7,, for which
1

x~7y. On the other hand, N* being of finite dimension, there exists also

7,>0 such that L ||ly|| < |zl <7.]ly| holds for z, ye N* with z~y. Let

2

{el,.--,en} be a natural basis of N*' with |le,|=1 (1=v=<n). We put now
a, = inf |z||, and 8, = sup ||x||. It is evident that both a,>0 and 8,< + oo
N,z~e, Z€EN,z~e

hold for all v (1<v<n) from above. If x~y, xe N' and yeN, we can verify

, Where 7;=n- Max{ 1. , B } From these
1SvER (4
facts it follows immediately that there exists 7>0 which satisfies (3.6) in the
Whole space. Q.E.D.

Corollary 2. Let R be a modulared (quasi-modulared) semi-ordered
linear space with a monotone complete modular'’ (quasi-modular) m. If R
is non-atomic and has an E-relation, then we can find positive numbers a,
7" and e such that =

‘9) R is called to be non-atomic, if R has no atomic element.
10) A norm | <] on R is called semi-continuous, if 0=x1tesx implies [jxf|=sup |lxi.
' 1€

11) For the definition of a modular see [11]. Here we use the term of modular in the
sense of Nakano. ' ' '
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(3.7) m(x)>e implies mlay) < V'm(x)

Jor any pair of elements x,yeR with x~vy.

Proof. Since a monotone complete modular (or quasi-modular) 7 satisfies
the conditions (0.1)—(0.5) [11, 3], it is a O-functional. Thus there exist positive
numbers «, 7 and ¢ such that m(x)<e, z~y yields m (ax)<7. I z~vy,
x, yeM and m(x)>e, then we can find two sets of mutually orthogonal pro-
. k+1 k+1
jectors {[p]})2, {[g.]}2' such that Llpl=l=zl, Xlel=M], [plx~Ialy
(I=v=k+1), m([plx)=c (1=v=k) and m ([ p;..]x)<e on account of the non-
atomicity of R and the condition (R.4, (ii)). Hence we get

mlay) = Zmlalag]y) ST(k+1) S 2-Tm(a),

which yields (3.7), since a modular (or quasi-modular) is semi-continuous.

Q.E.D.
§ 4. Throughout this section let £ be a non-atomic finite measure space
and X(E) be a Banach function space with a semi-continuous norm ||-|[. It is

well known that X constitutes a superuniversally continuous semi-ordered linear
space’™ by the usual order and addition of measurable functions. 'When X has
w-RIP, the relation of equi-measurability between two functions belonging to
X can be regarded as an E-relation on the space X. Indeed, the conditions
(R.1) and (R.3) are evidently satisfied. Since g is assumed to be countably
additve and X has w-RIP, the condition (R.2) is fulfilled. As a D-manifold
M, we can take the set of all simple functions' on E and it is now clear that
the relation of equi-measurability satisfies also (R.4), hence an &-relation on X.
Consequently, in view of Corollary 1 we have

Theorem 3. In order that a Banach function space X(Ej on a JSinite
non-atomic measure space E has w-RIP, it is necessary and sufficient that
X(E) has s-RIP, that is,

B a 1
(4.1) — ol =llsT =719l

Jfor any two mutually equi-measurable functions f and g€ X, where 7 is «

12) R is called superuniversally continuous, if for any system of positive elements {a:}ies

there exists a sequence of elements: {a; } C{az};,eA such that n a;,= ﬂ a; holds.
u=1

13) A function on E is called a szmple functzon if it is represented as Z pre. where

‘xe, is the characteristic function of a measurable set e,CE for each v with. 1§u§n.
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positive number.

Corollary 3. If a Banach function space X(E) has w-RIP, there exists
an equivalent norm || - ||, on X(E) having the rearrangement majorant 1, 1i.e.

llfll1=1lgl|1 Sfor f, ge X with f""g-

Proof. On account of Theorem above, we can define a finite valued
functional ||-||, as

(4.2) 171 = supllgll (fe X)-
It is now evident from the definition that the functional | .||, satisfies all

the conditions of semi-continuous norm except for the subadditivity. For any

k k
simple functions f, ¢: f=2XéX., g=2nX., with e,~e,=¢ for vxp, we have
v=1 v=1

If+alli=sup 1| 5 (&) %l
eP---Der =E, ule) = pler) (1=v=k)

%
Let & be a simple function such that 2= 3] (§,+7.,) X.; and p(e)=ple), e~e,=¢

E & k ' &
for v x. Then 1h|§§115v|xe;+v§ I7.|1%.; and lf]~§l$lee;7 IglN,‘j—‘l |7 | Xezs

which imples

Al = A1+ llgll -

Consequently we have || f+g¢g|:=||fll.+]lg]l. for arbitrary f, g€ X on account
of the semi-continuity of | -|,. : Q.E.D.

Next we turn to prove a theorem concerning characterization of Orlicz
spaces among the classes of modulared function spaces.

Now let M(&,t) be a modular function, i.e. M(£,t) be a real-valued
function on [0, + o) x E satisfying (i) it is a non-decreasing convex function
of £=0 which is left hand continuous for each z€E; (ii) it is measurable on
E for each £€=0; (i) lfll’? Mg, t)=0, sup M(E, t)= + oo and M(0, £)=0 for all

te E. Then a modulared function space Ly, is the set of all measurable
functions f on E such that j M(&| f(2)], 8)dp(t) < + oo for some £>0. Ly,
E

is a modulared space with the modular »::

. 3) m(f)= | MUS@)0dpe)  (f€ Lo,

hence, as is well known, it is a Banach function space with the norm:
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| fll= inf lTll (f'€ Ly,s). Evidently Orlicz spaces® constitute a special
m(£f) <1

class in the modulared function spaces.
Now we have

Theorem 4. If a modulared function space Ly . (E) on a non-atomic

finite measure space E has w-RIP, then it reduces to an Orlicz space L,(E).

Proof. Tt is obvious that we may assume p(E)=1, without loss of gener-

ality. Putting @ (§)=m(&yz) for £=0, we obtain a non-decreasing left hand con-

tinuous convex function @ (£) on [0, + oo) satisfying lim @ (&)= + oo, inf @ (£)=0
0<e

§-»+4o0

and @(0)=0. Here we shall show that I, ,, coincides with the Orlicz space™
L, defined by the function @ as a Banach function space. )

By virtue of Theorem 2 and Corollary 2 (3.7), we can find positive numbers
7, 7. and «a satisfying both the conditions :

(1) m(f)=<e, f~g implies m(ag)<7,;
(i) m(f)>e, f~g implies m(ag)<7,m(f).
We put further for any f€ L.,

m*(f)=supm(g) and m(f)=infm(g).

f~g f~g

It follows from above that for each f€ L.,

(4. 4) my(af) = m(af) = m*(af) < omy(f)+7,

holds. Let 9, be the set of all simple functions A= Zli]{:,,xey such that

(4. 5) e €. =¢ for vy, E=le,'e, and ,u(e,,)————é—— for all v=1.

Here we denote by P,(v) a permutation of the set: {1,2,---,%} defined by
I3
P,(v)=v+n (mod. k) for each n. Then, for any AcIR, we put A™ = S

v=1

0=n=<k—1), where e=ep - Evidently we have h=hQ~apD~...~cp*-»

and Lom(h®) =3 % mEra)= 5 Zm Eag) = m Exn = 3 0E) = & - mo ()

n=0y=1 v=17n=0
Therefore there exists at least a pair of integers (m,, n,) (0=<m,, n,<k—1) such
that

m(h'™) < my(h) < m(h™),

14) For the details of Orlicz spaces see [4], [7] or [13].
15) mo(f) denotes the modular of the space Lo, i.e. for f€ Lo qu(f)=Sm(|f(t)|) du(z).
E
Since Lae,2) has w-RIP, 1 € Ly, y).
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which implies

my (h) < mo (h) = m* (h) .

From this and (4.4) it follows that
(4. 6) mlah) S T,me(h)+T, and molah)<Tam (B)+ 7. -

Since E is non-atomic, for any f€Lye. there exists a sequence {h,};., of
elements of I, such that A,1=_;|f] holds. Consequently, by the semi-continuity
of m and m,, (4.6) implies ' ' -

mlaf) < Vimo(f)+T1, and  molaf) < r;m(f)+n

(4. 7)

for any f€ULuern- It is now evident that the Banach function spaces L,
and L, coincide. ‘ Q.E.D.

Remark 2. As this proof shows, the convexity of modular 7 and 7,
is not used. Therefore, it is verified in the quite same way, that if a (non-
convex) quasi-modular function space Ly [2] has w-RIP, then it reduces to
a generalized Orlicz space Ly considered by S. Mazur and W. Orlicz in [8].

Lastly let E be a o-finite (or locally finite) measure space with a countably
additive measure p. The relation defined by equi-measurability has essentially
the sense on the set of finite measure only, in fact, it can not be extended
naturally to the whole space of all measurable functions on K without loss of
the original significance. Only we can define an equivalence relation ~ on the
set & of all integrable functions on E in . the following way. Two positive
functions f, g belonging to I are called equi-measurable if g {t; f)>r}=
p{t, g(&)>r} holds for every positive number . Next two functions f. g of
X is called equi-measurable (in the extended sense) and written as f~g, if both
f" and f ' are equi-measurable to g~ and ¢~ respectively. Then the relation
~ comes to be an equivalence relation on the space . Thus, if a Banach
function space X consisting of integrable functions on E has w-RIP with respect
to the relation ~ of equi-measurability in the extended sense, the relation ~ is
an E-relation on X as is easily seen. Hence, ‘on account of Theorem 2, we
have as similarly as Theorem 3 :

Theorem 3'. If a Banach function space X consisting of integrable
functions on a o-finite (or locally finite) measure space E has w-RIF, then
it has s-RIP.

We obtain also

. Theorem 4. Let Ly, (E) be a modulared function space consisting

16) f*(t)=Max(f(2),0) and f~ (t)=Max(— f1),0) for all t€E.
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of integrable functions on a non-atomic o-finite measure space E. If Lye.n)
has w-RIP, then it reduces to an Orlicz space L,.

Proof. Let {E}=, be a sequence of measurable sets of finite measure
such that E,132.E holds. Now we put

O* (€)= sup Tm 278)  and @, (g) = lim " Cxn) |
st som p(E) H T R (E)

Then, by virtue of Corollary 2 in §3 and the non-atomicity of E, we can find
positive numbers a and 7 for which @, (a8)<@*(ag)<7®,(¢) holds for each

£=0. From this we can verify as similarly as in Theorem 4 that L, ,, coincides
with the Orlicz space L,.. Q.E.D.
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