ON NAGAHARA'S THEOREM

By

Hisao TOMINAGA

Throughout the present note, $A = \sum De_{ij}$ will represent a simple ring $(\{e_{ij};s\})$ is a system of matrix units and $D = V_A(\{e_{ij};s\})$ a division ring), B a simple subring of A containing the identity 1 of A, and \mathfrak{G} the group of all the B-(ring) automorphisms of A. And we set $V = V_A(B)$ and $H = V_A^2(B) = V_A(V_A(B))$. As to notations and terminologies used in this note, we follow [3]¹⁾ and [4].

In [3], A/B was called *h*-Galois if (1) *B* is regular, (2) *A* is Galois over *B'* and $V_A^2(B')$ is simple for every regular subring *B'* of *A* left finite over *B*, and if (3) $A' = V_A^2(A')$ and $[A': H]_i = [V: V_A(A')]_r$ for every regular subring *A'* of *A* left finite over *H*. Recently, in his paper [1], T. Nagahara has obtained the following theorem.

Theorem 1. (i) A/B is h-Galois and left locally finite if and only if any of the following conditions $(A_i)-(B_r)$ is satisfied:

- (A_i) (1) B is a regular subring of A and $\mathfrak{G}A_r$ is dense in $\operatorname{Hom}_{B_l}(A, A)$. (2) A/B is left locally finite.
- (A_r) (1) B is a regular subring of A and $\mathfrak{G}A_{\iota}$ is dense in $\operatorname{Hom}_{B_r}(A, A)$. (2) A/B is right locally finite.
- (B_i) (1) A/B is Galois and A is BV-A-irreducible.

(2) A/B is left locally finite.

- (B_r) (1) A/B is Galois and A is A-BV-irreducible.
 - (2) A/B is right locally finite.

(ii) If A/B is h-Galois and left locally finite, then $[B': B]^{2} \ge [V: V_A(B']] = [V_A^2(B'): H] = [B': H \cap B']$ for every regular subring B' of A left finite over B.

And by the aid of Theorem 1, he has obtained also the next important theorem.

Theorem 2. Let A be h-Galois and left locally finite over B. If \mathfrak{F} is a $(*_{\mathfrak{f}})$ -regular subgroup of \mathfrak{G} then \mathfrak{F} is f-regular.

One of the purposes of this note is to give a rather direct proof to Theorem 2. To this end, we shall prove first the following brief lemma.

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

²⁾ If $[B': B]_l = [B': B]_r$, they are represented as [B': B].

Lemma 1. Let A be left locally finite over B, and T an intermediate ring of A/B with $[T: B]_i < \infty$ such that $V_A(T)$ coincides with the center of A. If there exists an automorphism group \mathfrak{F} of A such that $J(\mathfrak{F}, A) = T$ then T is a simple ring.

Proof. If $B' = T[\{e_{ij}`s\}]$ then $(\mathfrak{F}|B')A_r = \bigoplus_{1}^{m} (\sigma_i|B')A_r$ with some $\sigma_i \in \mathfrak{F}$. By [3, Corollary 1.1],³⁾ we have $\mathfrak{F}|B' = \{\sigma_1|B', \dots, \sigma_m|B'\}$. Accordingly, $B_0 = B'[\cup B'\sigma_i]$ is an \mathfrak{F} -invariant simple subring of A left finite over B and $\mathfrak{F}(\mathfrak{F}|B_0) < \infty$. Since $J(\mathfrak{F}|B_0, B_0) = T$ and $V_{B_0}(T) = V_{B_0}(B_0)$, it is well-known that T is a simple ring.

Lemma 2. Let A be h-Galois and left locally finite over B, and \mathfrak{F} a $(*_{\mathfrak{f}})$ -regular subgroup of \mathfrak{G} . If $T = J(\mathfrak{F}, A)$ then $[T: H \cap T]_{\mathfrak{f}} < \infty$.

Proof. Let N be a $\mathfrak{G}(H/B)$ -invariant shade of $\{d_{\lambda k}$'s} (a system of matrix units of H such that the centralizer of $\{d_{\lambda k}$'s} in H is a division ring), $\mathfrak{F}^* = \mathfrak{G}(N) \cap \mathfrak{F} = \mathfrak{F}(N), T^* = J(\mathfrak{F}^*, A) (\supseteq T[N]), \text{ and } H^* = H \cap T^*.$ Then, \mathfrak{F}^* is an invariant subgroup of \mathfrak{F} and $(\mathfrak{F}: \mathfrak{F}^*) = \sharp(\mathfrak{F}|N) \leq \sharp \mathfrak{G}(N/B) = [N:B] < \infty$. As $H^* = H \cap T^*$ is an \mathfrak{F} -invariant simple subring of H by [2, Theorem 1.1], $J(\mathfrak{F}|H^*, H^*) = H^* \cap T = H \cap T$ and $\infty > (\mathfrak{F}: \mathfrak{F}^*) \geq \sharp(\mathfrak{F}|H^*)$, we see that $H^*/H \cap T$ is outer Galois and $[H^*: H \cap T] < \infty$. On the other hand, in virtue of [1, Lemma 2], there holds $[T^*: H^*]_l = [H \cdot T^*: H]_l$. And further, we can see that $V_{\mathfrak{F}^*} = V_{\mathfrak{F}} = V_A(B[E])$ for some finite subset E of A. Now, let B' be a regular subring of A containing B[E] such that $[B': B]_l < \infty$. If $A' = V_A^2(B')$ then $V_{\mathfrak{F}^*} = V_A(B[E]) \supseteq V_A(B')$ yields $H[T^*] \subseteq V_A(V_{\mathfrak{F}^*}) \subseteq A'$, so that $[H[T^*]: H]_l \leq [A': H]_l < \infty$. Combining this with $[T^*: H^*]_l = [H \cdot T^*: H]_l$, we obtain eventually $[T: H \cap T]_l \leq [T^*: H^*]_l \cdot [H^*: H \cap T] \leq [H[T^*]: H]_l \cdot [H^*: H \cap T] < \infty$.

The next lemma is proved essentially in [1, Lemma 3 (ii)]. However, for the sake of completeness, we shall give here a slight simplified proof.

Lemma 3. Let A be h-Galois and left locally finite over B, and V' a simple subring of V with $[V: V']_r < \infty$. If $V_A(V_A(V')[E]) \subseteq V'$ for some finite subset E of A, then $B' = V_A(V')$ is a simple ring.

Proof. By the light of Theorem 1, we may assume that H=B. If $B=\sum Kd_{hk}$ with a system of matrix units $\{d_{hk}$'s} such that $K=V_B(\{d_{hk}\})$ is a division ring, then we have $BV=K\cdot\sum Vd_{hk}$, $V_A(K)=\sum Vd_{hk}$ (simple) and $V_A(\sum Vd_{hk})=K$. Hence, again by Theorem 1, we may assume further that B is a division ring. Since A is A-BV-irreducible, $[B':B]_l \leq [V:V']_r < \infty$ by [1, Lemma 1]. If $B''=B'[E, \{e_{ij}\}]$ and $V''=V_A(B'')(\subseteq V')$, then $V_A(V'')=B''$ and $\infty > [B'':B]=[V:V'']=[V:V_A^2(V'')\cap V]$ by Theorem 1. Noting here that

^{3) [3,} Corollary 1.1] is valid without the assumption that B is regular.

A is V-A-irreducible by [1, Lemma 1], we obtain $\operatorname{Hom}_{V'}(V, A) = (\widetilde{B''}|V)A_r$ $= \bigoplus_{i=1}^{t} (\sigma_i | V) A_r (\sigma_i \in \widetilde{B''})$ by [3, Lemma 3.1], where each $(\sigma_i | V) A_r$ is $V_r \cdot A_r \cdot V_r$ irreducible and $\sigma_i | V$ is linearly independent over A_r . And then, $\operatorname{Hom}_{V_r}(V, A)$ being a V_r - A_r -submodule of the completely reducible $\operatorname{Hom}_{V'_r}(V, A)$, there holds $\operatorname{Hom}_{V_{r}}(V, A) = \bigoplus_{i=1}^{s} \mathfrak{M}_{j}$ with $V_{r} \cdot A_{r}$ -irreducible \mathfrak{M}_{j} . To be easily verified, each \mathfrak{M}_{j} is then of the form $(\sigma u_{l} | V)A_{r}$ with som σ in $\{\sigma_{i} i\} (\subseteq \widetilde{B''})$ and non-zero u, and so we may set $\mathfrak{M}_j = (b_{ji} | V) A_r$ with some non-zero b_j . Noting here that $b_{jl}|V$ is contained in Hom_{v'} (V, A), it will be easy to see that b_j is con-Now, let M = V'vA ($v \in V$) be a V'-A-submodule of A such tained in B'. that the length $[M|A_r]$ of the composition series of M as right A-module is minial among non-zero V'-A-submodules of A of the form V'xA ($x \in V$). Evidently, M is BV'-A-admissible. If M' is a minimal BV'-A-submodule of M then M' = uA with some $u \in V$ as a direct summand of the completely reducible B-A-module A (cf. [1, Lemma 1]), and so $M \supseteq M' = V' u A$. Hence, by the minimality of $[M|A_r]$, it follows that M=M', that is, M is BV'-A-Consequently, for an arbitrary V'-A-minimal submodule VxA of irreducible. M, there holds $M = BV'xA = \sum_{b \in B} V'bxA = \bigoplus_{i=1}^{q} V'x_iA$, where each $V'x_iA$ is V'-A-isomorphic to the V'-A-irreducible V'xA. Since $V'v \subseteq V$ and A is V'_t . Hom_{v'_{t}} (A, A)-irreducible, it follows that $A = v(V'_{t} \cdot \operatorname{Hom}_{v'_{t}}(A, A)) = (V'v) \operatorname{Hom}_{v'_{t}}(A, A)$ $(V, A) = \sum_{j} V' v \mathfrak{M}_{j} = \sum_{i,j} b_{j} (V' x_{i} A)$. Now, b_{j} being contained in B', each b_{j} $(V'x_iA)$ is V'-A-homomorphic to $V'x_iA \cong V'xA$. Hence, A is homogeneously V'-A-completely reducible, and consequently B' is a simple ring.

Now, combining Lemmas 1, 2 and 3, the proof of Theorem 2 will be completed at once.

Proof of Theorem 2. We set $T=J(\mathfrak{H}, A)$. As $[V: V_{\mathfrak{H}}]_r < \infty$ and $V_{\mathfrak{H}} = V_A^2(V_{\mathfrak{H}}), \ V_A^2(T) = V_A(V_{\mathfrak{H}})$ is simple by Lemma 3. Further, by Lemma 2, there holds $[T: H \cap T]_l < \infty$. Since $A/H \cap T$ is locally finite by [1, Corollary 4], $V_{V_A^2(T)}(T)$ coincides with the center of $V_A^2(T)$ and $J(\mathfrak{H}|V_A^2(T), V_A^2(T)) = T$, Lemma 1 proves that T is a simple ring.

Next, concerning [1, Lemma 3 (i)], the method used in the proof of Lemma 3 enables us to see the following improvement.

Theorem 3. Let A be h-Galois and left locally finite over B. If A' is a simple intermediate ring of A/H with $[A':H]_l < \infty$, then $V' = V_A(A')$ is simple and [A':H] = [V:V'].

Proof. By Theorem 1, without loss of generality, we may assume that B=H. And so, by [3, Lemma 3.1], $\tilde{V}A_r$ is dense in $\operatorname{Hom}_{B_l}(A, A)$. Now, let M be an arbitrary minimal A'-A-submodule of A. Then, M=eA(=A'eA)

with some non-zero idempotent e. We set here $A'' = A'[e, \{e_{ij}\}]$, which is a regular subring of A left finite over B. And, as A is A''-A-irreducible, Hom_{B₁} $(A'', A) = (\widetilde{V} | A'') A_r$ is $A''_r - A_r$ -completely reducible. Accordingly, the $A''_r - A_r$ -submodule $\operatorname{Hom}_{A'_r}(A'', A)$ is completely reducible : $\operatorname{Hom}_{A'_r}(A'', A) = \bigoplus_i \mathfrak{M}_i$ with $A''_r \cdot A_r$ -irreducible \mathfrak{M}_j . To be easily seen, each $\mathfrak{M}_i = (\tilde{v}_i u_{ii} | A'') A_r$ with some $\tilde{v}_j \in \tilde{V}$ and non-zero u_j , so that we may set $\mathfrak{M}_j = (a_{jl}|A'')A_r$. Recalling here that $a_{jl}|A''$ is contained in $\operatorname{Hom}_{A'_{j}}(A'', A)$, it will be easy to see that a_{j} has to be contained in V'. Since A is $A'_{i} \cdot \operatorname{Hom}_{A'_{i}}(A, A)$ -irreducible and $A'e \subseteq A''$, it follows $A = e(A'_{\iota} \cdot \operatorname{Hom}_{A'_{\iota}}(A, A)) = (A'e) \operatorname{Hom}_{A'_{\iota}}(A'', A) = \sum_{j} (A'e) \mathfrak{M}_{j}$ $=\sum_{j}a_{j}M$. Evidently, a_{j} being contained in V', each $a_{j}M$ is A'-A-homomo-We have proved therefore that A is homogeneously A'-Arphic to M. completely reducible, and consequently V' is simple. The final assertion is then a consequence of Theorem 1.

Now, combining Theorems 2, 3 with [3, Corollary 3.3], one will readily see that if A is h-Galois and left locally finite over B with $B = V_A^2(B)$, then there exists a 1-1 dual correspondence between simple subrings of A left finite over B and closed $(*_f)$ -regular subgroups of \mathfrak{G} . Further, as another corollary to Theorem 3, we can prove the next:

Corollary. Let A be inner Galois and locally finite over B, and V finite over the center of V. And let B' be a simple intermediate ring of A/B with $[B':B]_t < \infty$. If B'/B is inner Galois then the center Z' of B' is contained in the center Z of B, and conversely.

Proof. If B'/B is inner Galois then $V_{B'}^2(B) = B$ yields at once $Z' \subseteq B \cap V$ =Z. Now, assume conversely $Z' \subseteq Z$. Then, V is evidently an algebra over Z'. Since A/B is h-Galois by [3, Theorems 2.2, 2.4], Theorem 3 yields $V_A(B') \cap V_A^2(B') = V_A(B') \cap B' = Z'$, so that $V_A(B')$ is a central simple algebra of finite rank over Z' by [5, Lemma]. Hence, by Wedderburn's theorem, we obtain $V = V_A(B') \otimes_{Z'} V_V(V_A(B')) = V_A(B') \otimes_{Z'} V_{B'}(B)$. From the last relation, we see that $V_{B'}(B)$ is a simple ring. And finally, $J(V_{B'}(B)|B', B') = V_A(V_{B'}(B)) \cap$ $V_A^2(B') = V_A(V) = B$.

References

- T. NAGAHARA: On Galois conditions and Galois groups of simple rings, Trans, Amer. Math. Soc., to appear.
- [2] T. NAGAHARA and H. TOMINAGA: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961), 143-166.

- [3] T. NAGAHARA and H. TOMINAGA: On Galois theory of simple rings, Math. J. Okayama Univ., 11 (1963), 79-117.
- [4] T. NAGAHARA and H. TOMINAGA: Some theorems on Galois theory of simple rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 17 (1963), 1-13.
- [5] H. TOMINAGA: On a theorem of N. Jacobson, Proc. Japan Acad., 31 (1955), 653– 654.

Department of Mathematics, Hokkaido University

(Received October 3, 1964)