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Throughout the present note, $A=\sum De_{ij}$ will represent a simple ring
( $\{e_{ij}’ s\}$ is a system of matrix units and $D=V_{A}(\{e_{ij}’ s\})$ a divisim ring), $B$ a
simple subring of $A$ containing the identity 1 of $A$ , and $\mathfrak{G}$ the group of all
the $B_{-}(ring)$ automorphisms of $A$ . And we set $V=V_{A}(B)$ and $H=V_{A}^{2}(B)$

$=V_{A}(V_{A}(B))$ . As to notations and terminologies used in this note, we follow
[3]1) and [4].

In [3], $A/B$ was called h-Galois if (1) $B$ is regular, (2) $A$ is Galois over
$B^{\prime}$ and $V_{A}^{l}(B^{\prime})$ is simple for every regular subring $B^{\prime}$ of $A$ left finite over $B$,
and if (3) $A^{\prime}=V_{A}^{2}(A^{\prime})$ and $[A^{\prime} : H]_{l}=[V:V_{A}(A^{\prime})]_{r}$ for every regular subring $A^{\prime}$

of $A$ left finite over $H$. Recently’ in his paper [1], T. Nagahara has obtained
the following theorem.

Theorem 1. (i) $A/B$ is h-Galois and left locally finite if and only if
any of the following conditions $(A_{l})-(B_{r})$ is satisfied:

$(A_{l})$ (1) $B$ is a regular subring of $A$ and $\mathfrak{G}A_{r}$ is dense in Hom$B_{l}(A, A)$ .
(2) $A/B$ is left locally finite.

$(A_{r})$ (1) $B$ is a regular subring of $A$ and $\mathfrak{G}A_{l}$ is dense in Hom$B_{r}(A, A)$ .
(2) $A/B$ is right locally finite.

$(B_{l})$ (1) $A/B$ is Galois and $A$ is BV-A-irreducible.
(2) $A/B$ is left locally finite.

$(B_{r})$ (1) $A/B$ is Galois and $A$ is A-BV-irreducible.
(2) $A/B$ is right locally finite.

(ii) If $A/B$ is h-Galois and left locally finite, then $[B^{\prime} : B]^{2)}\geq[V:V_{A}(B^{\prime}]$

$=[V_{A}^{2}(B^{\prime}):H]=[B^{\prime} : H\cap B^{\prime}]$ for every regular subring $B^{\prime}$ of A left finite
over $B$ .

And by the aid of Theorem 1, he has obtained also the next important
theorem.

Theorem 2. Let $A$ be h-Galois and left locally finite over B. If $\mathfrak{H}$

is a $(*f)$-regular subgroup of $\mathfrak{G}$ then $\mathfrak{H}$ is f-regular.
One of the purposes of this note is to give a rather direct proof to

Theorem 2. To this end, we shall prove first the following brief lemma.

1) Numbers in brackets refer to the references cited at the end of this note.
2) If [ $B^{\prime}$ : $B|_{l}=[B^{\prime} : B]_{r}$ , they are represented as $[B^{\prime} : B]$ .
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Lemma 1. Let $A$ be left locally finite over $B$, and $T$ an intermediate
ring of $A/B$ with $[T:B]_{l}<\infty$ such that $V_{A}(T)$ coincides with the center of
A. If there exists an automorphism group $\mathfrak{H}$ of $A$ such that $J(\mathfrak{H}, A)=T$

then $T$ is a simple ring.

Proof. If $B^{\prime}=T[\{e_{ij}’ s\}]$ then $(\mathfrak{H}|B^{\prime})A_{r}=\oplus_{1}^{m}(\sigma_{i}|B^{\prime})A_{r}$ with some $\sigma_{i}\in \mathfrak{H}$ .
By $[$3, Corollary 1. 1 $]^{}$ we have $\mathfrak{H}|B^{\prime}=\{\sigma_{1}|B^{\prime}, \cdots,\sigma_{m}|B^{\prime}\}$ . Accordingly, $B_{0}=$

$B^{\prime}[\cup B^{\prime}\sigma_{i}]$ is an $\mathfrak{H}$-invariant simple subring of $A$ left finite over $B$ and
$\#(\mathfrak{H}|B_{0})<\infty$ . Since $J(\mathfrak{H}|B_{0}, B_{0})=T$ and $V_{B_{0}}(T)=V_{B_{0}}(B_{0})$ , it is well-known that
$T$ is a simple ring.

Lemma 2. Let $A$ be h-Galois and left locally finite over $B$, and $\mathfrak{H}a$

$(*f)$-regular subgroup of G. If $T=J(\mathfrak{H}, A)$ then $[T:H\cap T]_{l}<\infty$ .
Proof. Let $N$ be a $\mathfrak{G}(H/B)$-invariant shade of $\{d_{hk}’ s\}$ (a system of matrix

units of $H$ such that the centralizer of $\{d_{hk}’ s\}$ in $H$ is a division ring), $\mathfrak{H}^{*}=$

$\mathfrak{G}(N)\cap \mathfrak{H}=\mathfrak{H}(N),$ $T^{*}=J(\mathfrak{H}^{*}, A)(\supseteq T[N])$ , and $H^{*}=H\cap T^{*}$ . Then, $\mathfrak{H}^{*}$ is
an invariant subgroup of $\mathfrak{H}$ and $(\mathfrak{H}:\mathfrak{H}^{*})=i(\mathfrak{H}|N)\leq i\mathfrak{G}(N/B)=[N:B]<\infty$ .
As $H^{*}=H\cap T^{*}$ is an $\mathfrak{H}$-invariant simple $\grave{s}ubring$ of $H$ by [2, Theorem 1. 1],
$J(\mathfrak{H}|H^{*}, H^{*})=H^{*}\cap T=H\cap T$ and $\infty>(\mathfrak{H} : \mathfrak{H}^{*})\geq\#(\mathfrak{H}|H^{*})$ , we see that
$H^{*}/H\cap T$ is outer Galois and $[H^{*} : H\cap T]<\infty$ . On the other hand, in virtue
of [1, Lemma 2], there holds $[\tau* : H^{*}]_{l}=[H\cdot T^{*} : H]_{l}$ . And further, we can
see that $V_{\mathfrak{H}^{*}}=V_{\mathfrak{H}}=V_{A}(B[E])$ for some finite subset $E$ of $A$ . Now, let $B^{\prime}$ be
a regular subring of $A$ containing $B[E]$ such that $[B^{\prime} : B]_{l}<\infty$ . If $A^{\prime}=$

$V_{A}^{2}(B^{\prime})$ then $V_{\mathfrak{H}^{*}}=V_{A}(B[E])\supseteq V_{A}(B^{\prime})$ yields $H[T^{*}]\subseteq V_{A}(V_{\mathfrak{H}^{*}})\subseteq A^{\prime}$ , so that
$[H[T^{*}]:H]_{l}\leq[A^{\prime} : H]_{l}<\infty$ . Combining this with $[T^{*} : H^{*}]_{l}=[H\cdot T^{*} : H]_{l}$ ,
we obtain eventually $[T:H\cap T]_{l}\leq[T^{*} : H^{*}]_{l}\cdot[H^{*} : H\cap T]\leq[H[T^{*}]:H]_{l}$ .
$[H^{*} : H\cap T]<\infty$ .

The next lemma is proved essentially in [1, Lemma 3 (ii)]. However, for
the sake of completeness, we shall give here a slight simplified proof.

Lemma 3. Let $A$ be h-Galois and left locally finite over $B$, and $V^{\prime}$

a simple subring of $V$ with $[V: V^{\prime}]_{r}<\infty$ . If $V_{A}(V_{A}(V^{\prime})[E])\subseteq V^{\prime}$ for some
finite subset $E$ of $A$ , then $B^{\prime}=V_{A}(V^{\prime})$ is a simple ring.

Proof. By the light of Theorem 1, we may assume that $H=B$ . If $B=$

$\sum Kd_{hk}$ with a system of matrix units $\{d_{hk}’ s\}$ such that $K=V_{B}(\{d_{hk}’ s\})$ is
a division ring, then we have $BV=K\cdot\sum Vd_{hk}$ , $V_{A}(K)=\sum Vd_{h3}$ (simple) and
$V_{A}(\sum Vd_{hk})=K$ . Hence, again by Theorem 1, we may assume further that $B$

is a division ring. Since $A$ is A-BV-irreducible, $[B^{\prime} : B]_{l}\leq[V:V^{\prime}]_{r}<\infty$ by
[1, Lemma 1]. If $B^{\prime\prime}=B^{\prime}[E, \{e_{ij}’ s\}]$ and $V^{\prime\prime}=V_{A}(B^{\prime\prime})(\subseteq V^{\prime})$ , then $V_{A}(V^{\prime\prime})=B^{\prime\prime}$

and $\infty>[B^{\prime\prime} : B]=[V:V^{\prime\prime}]=[V:V_{A}^{2}(V^{\prime\prime})\cap V]$ by Theorem 1. Noting here that
3) [3, Corollary 1.1] is valid without the assumption that $B$ is regular.
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$A$ is V-A-irreducible\sim by [1, Lemma 1], we obtain $Hom_{V_{l}},$
$(V, A)=(B^{\prime\prime}|V)A_{r}\sim$

$=\oplus_{1}^{t}(\sigma_{i}|V)A_{r}(\sigma_{i}\in B^{\prime\prime})$ by [3, Lemma 3.1], where each $(\sigma_{i}|V)A_{r}$ is $V_{r^{-}}A_{r^{-}}$

irreducible and $\sigma_{i}|V$ is linearly independent over $A_{r}$ . And then, Hom $V_{l}(V, A)$

being a $V_{r}- A_{r}$-submodule of the completely reducible Hom $V_{l}’(V, A)$ , there holds
Hom $V_{l}^{\prime}(V, A)=\oplus_{1}^{s}\mathfrak{M}_{j}$ with $V_{r^{-}}A_{r}$-irreducible $\mathfrak{M}_{j}$ . To be easily verified, each
$\mathfrak{M}_{j}$ is then of the form (au, $|V$) $A_{r}$ with som $\sigma$ in $\{\sigma_{i}’ s\}(\subseteq B^{\prime\prime})\sim$ and non-zero
$u$ , and so we may set $\mathfrak{M}_{j}=(b_{jl}|V)A_{r}$ with some non-zero $b_{j}$ . Noting here
that $b_{jl}|V$ is contained in $Hom_{\nabla_{l}},$ $(V, A)$ , it will be easy to see that $b_{j}$ is con-
tained in $B^{\prime}$ . Now, let $M=V^{\prime}vA(v\in V)$ be a $V^{\prime}- A$-submodule of $A$ such
that the length $[M|A_{r}]$ of the composition series of $M$ as right A-module is
minial among non-zero $V^{\prime}- A$-submodules of $A$ of the form $V^{\prime}xA(x\in V)$ .
Evidently’, $M$ is $BV^{\prime}- A- admissible$ . If $M^{\prime}$ is a minimal $BV^{\prime}- A$-submodule of
$M$ then $M^{\prime}=uA$ with some $u\in V$ as a direct summand of the completely redu-
cible B-A-module $A$ (cf. [1, Lemma 1]), and so $M\supseteq M=V^{\prime}uA$ . Hence, by
the minimality of $[M|A_{r}]$ , it follows that $M=M^{\prime}$ , that is, $M$ is BV’-A-
irreducible. Consequently, for an arbitrary $V^{\prime}- A$-minimal submodule VxA of
$M$, there holds $M=BV^{\prime}xA=\sum_{b\in B}V^{\prime}bxA=\oplus_{1}^{q}V^{\prime}x_{i}A$ , where each $V^{\prime}x_{i}A$ is
$t^{7^{\prime}}- A$-isomorphic to the $V^{\prime}- A$-irreducible $V^{\prime}xA$ . Since $V^{\prime}v\subseteq V$ and $A$ is $V_{l}^{\prime}$ .
$Hom_{V_{l}}(A, A)$-irreducible, it follows that $A=v$ ( $ V_{l}^{\prime}\cdot$ Hom $V_{l}^{\prime}(A,$

$A)$ ) $=(V^{\prime}v)Hom_{\nabla_{l}^{\prime}}$

(V, $A$) $=\sum_{j}V^{\prime}v\mathfrak{M}_{j}=\sum_{i,j}b_{j}(V^{\prime}x_{i}A)$ . Now, $b_{j}$ being contained in $B^{\prime}$ , each $b_{j}$

$(V^{\prime}xA)$ is $V^{\prime}- A$-homomorphic to $V^{\prime}x_{i}A\cong V^{\prime}xA$ . Hence, $A$ is homogeneously
$V^{\prime}- A$-completely reducible, and consequently $B^{\prime}$ is a simple ring.

Now, combining Lemmas 1, 2 and 3, the proof of Theorem 2 will be
completed at once.

Proof of Theorem 2. We set $T=J(\mathfrak{H}, A)$ . As $[V: V_{\mathfrak{H}}]_{r}<\infty$ and
$V_{\mathfrak{H}}=V_{A}^{2}(V_{\mathfrak{H}}),$ $V_{A}^{2}(T)=V_{A}(V_{\mathfrak{H}})$ is simple by Lemma 3. Further, by Lemma 2,
there holds $[T:H\cap T]_{l}<\infty$ . Since $A/H\cap T$ is locally finite by [1, Corollary
4], $V_{V_{A}^{2}(T)}(T)$ coincides with the center of $V_{A}^{2}(T)$ and $J(\mathfrak{H}|V_{A}^{2}(T), V_{A}^{2}(T))=T$,

Lemma 1 proves that $T$ is a simple ring.
Next, concerning [1, Lemma 3 $(i)$ ], the method used in the proof of Lemma

3 enables us to see the following improvement.

Theorem 3. Let $A$ be h-Galois and left locally finite over B. If $A^{\prime}$

is a simple intermediate ring of $A/H$ with $[A^{\prime} : H]_{l}<\infty$ , then $V^{\prime}=V_{A}(A^{\prime})$ is
simple and $[A^{\prime} : H]=[V:V^{\prime}]$ .

Proof. By Theorem 1, without loss of generality, we may assume that
$B=H$. And so, by [3, Lemma 3.1], $\hat{\acute{V}}A_{r}$ is dense in Hom$B_{l}(A, A)$ . Now,
let $M$ be an arbitrary minimal $A^{\prime}- A$-submodule of $A$ . Then, $M=eA(=A^{\prime}eA)$
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with some non-zero idempotent $e$ . We set here $A^{\prime\prime}=A^{\prime}[e, \{e_{ij}’ s\}]$ , which is
a regular subring of $A$ left finite over $B$ . And, as $A$ is $A^{\prime\prime}- A$-irreducible,
Hom $B_{l}(A^{\prime\prime}, A)=(\overline{V}|A^{\prime})A_{r}$ is $A_{r}^{\prime}’- A_{r}$-completely reducible. Accordingly, the
$A_{r}^{\prime\prime}- A_{r}$-submodule $Hom_{A_{l}^{\prime}}(A^{\prime}, A)$ is completely reducible: $Hom_{A_{l}},(A^{\prime\prime}, A)=\oplus_{1}^{t}\mathfrak{U}t_{j}$

with $A_{r}^{\prime/}- A_{r}$-irreducible $\mathfrak{M}_{j}$ . To be easily seen, each $\mathfrak{M}_{j}=(\tilde{v}_{j}u_{jl}|A^{\prime})A_{r}$ with
some $\tilde{v}_{j}\in\hat{\acute{V}}$ and non-zero $u_{j}$ , so that we may set $\mathfrak{M}_{j}=(a_{jl}|A^{\prime\prime})A_{r}$ . Recalling
here that $a_{jl}|A^{\prime\prime}$ is contained in $Hom_{A_{l}},$

$(A^{\prime\prime}, A)$ , it will be easy to see that $a_{j}$

has to be contained in $V^{\prime}$ . Since $A$ is $A_{l}^{\prime}\cdot Hom_{A_{l}},$ $(A, A)$-irreducible and
$A^{\prime}e\subseteq A^{\prime\prime}$ , it follows $A=e(A_{l}^{\prime}\cdot Hom_{A_{l}}, (A, A))=(A^{\prime}e)Hom_{A_{l}^{\prime}}(A^{\prime}, A)=\Sigma_{j}(A^{\prime}e)\mathfrak{U}l_{j}$

$=\sum_{j}a_{j}M$. Evidently, $a_{j}$ being contained in $V^{\prime}$ , each $a_{j}M$ is $A^{\prime}- A$-homomo-
rphic to $M$. We have proved therefore that $A$ is homogeneously $A^{\prime}$-A-
completely reducible, and consequently $V^{\prime}$ is simple. The final assertion is
then a consequence of Theorem 1.

Now, combining Theorems 2, 3 with [3, Corollary 3.3], one will readily
see that if $A$ is h-Galois and left locally finite over $B$ with $B=V_{A}^{2}(B)$ , then there
exists a 1-1 dual correspondence between simple subrings of $A$ left finite over
$B$ and closed $(*f)$-regular subgroups of G. Further, as another corollary to
Theorem 3, we can prove the next:

Corollary. Let $A$ be inner Galois and locally finite over $B$, and $V$

finite over the center of V. And let $B$’ be a simple intermediate ring of
$A/B$ with $[B^{\prime} : B]_{l}<\infty$ . If $B^{\prime}/B$ is inner Galois then the center $Z^{\prime}$ of $B$’ is
contained in the center $Z$ of $B$, and conversely.

Proof. If $B’/B$ is inner Galois then $V_{B}^{2},(B)=B$ yields at once $Z^{\prime}\subseteq B\cap V$

$=Z$. Now, assume conversely $Z^{\prime}\subseteq Z$. Then, $V$ is evidently an algebra over
$Z^{\prime}$ . Since $A/B$ is h-Galois by [3, Theorems 2.2, 2.4], Theorem 3 yields
$V_{A}(B^{\prime})\cap V_{A}^{2}(B^{\prime})=V_{A}(B^{\prime})\cap B^{\prime}=Z^{\prime}$ , so that $V_{A}(B’)$ is a central simple algebra of
finite rank over $Z^{\prime}$ by [5, Lemma]. Hence, by Wedderbum’s theorem, we
obtain $V=V_{A}(B^{\prime})\otimes_{Z^{\prime}}V_{V}(V_{A}(B^{\prime}))=V_{A}(B^{\prime})\otimes_{Z^{\prime}}V_{B^{\prime}}(B)$ . From the last relation, we
see that $V_{B^{\prime}}(B)$ is a simple ring. And finally, $J(\overline{V(B})|B^{\prime},$ $B^{\prime}$ ) $=V_{A}(V_{B}, (B))\cap$

$V_{A}^{2}(B’)=V_{A}(V)=B$ .
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