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1. Introduction. Let us consider the Lebesgue integral on a bounded
interval $I$ of the real line. There have been many attempts of extending the
concept of integral for a larger class of measurable functions; some of them
depend heavily on special properties of the derivative on the real line, preventing
to be brought in general settings, but some are based only on the notions of
measure theory, admitting investigation in general cases. We will follow the
latter direction.

If a measurable function is not integrable, it has points of singularity, $i.e.$ ,

roughly speaking, it is not integrable on any neighborhood containing the points.
If functions with a fixed point of singularity are in question, a generalized integral
may be defined as something like Cauchy’s principal value. However, if points
of singularity are distributed over some region, depending on a function $f(x)$ ,

such an approach must undergo some modification. A natural generalization
will be

$\lim_{n\rightarrow\infty}\int_{F_{n}}f(x)dx$ ,

where $\{F_{n}\}$ is a sequence of measurable sets such that
$F_{n}\subset F_{n+1}$ $(n=1,2, \cdots)$ and $\lim_{n\rightarrow\infty}$ meas $(F_{n}^{c})=0$

with $F_{n}^{c}$ denoting the complement of $F_{n}$ . Since the region of singularity varies
along the function $f(x)$ , we can not take one and the same sequence $\{F_{n}\}$ for
the definition of a generalized integral, and even for a single function the limit
on a sequence $\{F_{n}\}$ may differ from that on another $\{F_{n}^{\prime}\}$ . In order to avoid
these inconvenience and ambiguity, sequences used for the definition must obey
some additional requirements. In this respect, Kunugi [3] proposed a definition
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nology under grant NSF-G 19914.
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of a generalized integral which is independent of the special choice of an
admissible sequence and proved that the class of functions integrable in the
generalized sense is linear and the generalized integral is a linear functional
on it. Then there arises a question whether the generalized integral can
be calculated more directly from the function $f(x)$ without any reference to a
sequence $\{F_{n}\}$ . In this connection we are interested in the generalized
integral, proposed by Titchmarsh [6], which is defined by

$\lim_{n\rightarrow\infty}\int_{I}f^{(n)}(x)dx$

where the function $f^{(\gamma)}(x)$ , the truncation of $f(x)$ by the positive number $\gamma$ , is
defined by

$f^{(\gamma)}(x)=\left\{\begin{array}{l}f(x)\\\gamma_{S}ignf(x)\end{array}\right.$

if $|f(x)|\leq\gamma$ ,

if $|f(x)|>\gamma$ .
The class of functions integrable in this sense is not linear, nor the generalized
integral is a linear functional. In order to guarantee both linearities, we have
to impose additional conditions on functions. The detailed definitions of both
generalized integrals are given in the next section.

We will prove that Kunugi’s generalized integral is identical with Titch-
marsh’s (Theorem 1). This gives an intrinsic characterization of Kunugi’s
generalized integral and, at the same time, an approach to Titchmarsh’s from
the standpoint of Cauchy’s principal value. The class of functions integrable
in the generalized sense can be characterized from various points of view. It
is shown to be the maximum extension of the Lebesgue integral under the
suitable restrictions (Theorem 2). As the Lebesgue class can be obtained from
the class of continuous functions by the procedure of completion with respect
to the $L_{1}$-norm

llfll $=\int_{1}|f(x)|dx$ ,

the class of functions integrable in the generalized sense is the completion of
the Lebesgue class with respect to the quasi-norm

$\Vert f\Vert_{*}=\sup_{\sim>0}|\int_{I}f^{(\gamma)}(x)dx|+\sup_{\gamma>0}\gamma$ meas $(x:|f(x)|\geq\gamma)$

(Theorem 3). The quasi-norm introduces the linear metric topology on the class,
under which the generalized integral becomes a continuous linear functional, and
moreover, in contrast to the Lebesgue case, it is the only continuous one up
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to scalar (Theorem 4). The last section is a survey of the usefulness of the
generalized integral in connection with conjugate functions in the theory of
Fourier series. Except in the last section, we will discuss generalized integrals
on an abstract measure space.

2. Generalized Integrals. We shall use the terminologies of [2] con-
ceming measure and integration theory. Let (X, $\mathfrak{B},$ $m$ ) be a non-atomic, finite
measure space. Every functions $f,$ $ g,\cdots$ in this paper will be assumed to be
real valued and measurable. Any two functions which coincide with each other
almost everywhere are identified, and $\mathfrak{L}$ stands for the class of all integrable
functions. Capitals $E,$ $F,$ $\cdots$ denote measurable sets and Greek letters $\alpha,$ $\beta,$ $\cdots$

are reserved for real numbers. The following property of the non-atomic
measure will be used without any reference: if $m(E)>\gamma>0$ , there is a
set $F$ such that $F\subset E$ and $ m(F)=\gamma$ . We shall use the simplified notations
$\int fdm$ and $\{f\geq\gamma\}$ for $\int_{X}f(x)dm(x)$ and $\{x:f(x)\geq\gamma\}$ respectively.

Kunugi [3] introduced the notion of a generalized integral based on his
theory of ranked spaces and called it the (E. R.) integral, the definition of which
in an abstract measre space can be found in [5]. We can formulate it in
a slightly different from a function; $f$ is (E. R.) integrable, if there are a
sequence $\{F_{n}\}$ , a decreasing sequence $\{\epsilon_{n}\}$ with the limit $0$ , and a constant
$\rho>1$ which obey jointly the following requirements:

$(k1)$ $f$ is integrable on every $F_{n}$ and the limit

$\lim_{n\infty}\int_{F_{n}}fdm$

exists,

$(k2)$ $F_{n}\subset F_{n+1},$ $m(F_{n}^{c})\leq\rho.m(F_{n+1}^{c})n=1,2,$ $\cdots$ ,

and $\Sigma m(F_{n}^{c})<\infty$ ,

$(k3)$ $\int_{E}|f|dm<\epsilon_{n}$ whenever $E\subset F_{n}$ and $m(E)\leq m(F_{n}^{c})$ .
The (E.R.) integral of the function $f$ is defined by

(E. $R.$ ) $\int fdm=\lim_{n\rightarrow\infty}\int_{F_{n}}fdm$

It is proved in [3], [5] that the limit does not depend on any special choice
of the sequence $\{F_{n}\}$ obeying (k1) to (k3) and that the class of all (E.R.)

integrable functions forms a linear set and the (E.R.) integral is a linear
functional on it. If a function is integrable, it is obviously (E.R.) integrable
and its (E.R.) integral coincides with its integral.

Titchmarsh [6] introduced the notion of the $Q$ integral, the precise definition
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of which with the condition (q2) is due to Ocan [4] and Ulyanov [7]. A
function $f$ is $Q$ integrable, if

$(q1)$ the limit of the integrals of truncated functions

$\lim_{\gamma\infty}\int f^{(\gamma)}dm$

exsts, and

(q2) $m(|f|\geq\gamma)=o(\frac{1}{\gamma})$ .

The $Q$ integral of the function $f$ is defined by

$(Q)\int fdm=\lim_{\gamma\rightarrow\infty}\int f^{(\gamma)}dm$ .

It is proved in [6] that the class of all $Q$ integrable functions in a linear set
and the $Q$ integral is a linear functional on it. It is obvious that the Q-
integral coincides with the integral on the class $\mathfrak{L}$ . The parameter $\gamma$ in (q1)
may be confined to the sequence of all positive integers $n$ view of (q2). In
this connection, it is interesting to observe that O\v{c}an [4] proved that the $Q$

integrability can be characterized by the single condition absorbing $(q1)$ and
(q2): $f$ is $Q$ integrable if and only if the limit

$\lim_{\gamma\rightarrow\infty J}r_{f^{(n_{1}\gamma,n_{2}\gamma)}dm}$

exists for every pair of positive integers $n_{1},$ $n_{2}$ , and does not depend on the
choice of $n_{1}$ and $n_{2}$ , where

$ f^{(n_{1}\gamma,n_{2}\gamma)}(x)=\max\{-n_{2}\gamma$ , min $\{f(x),$ $n_{1}\gamma\}\}$ .

Let us state some of immediate consequences of the definition of the $Q$

integral. First of all, if a non-negative function is $Q$ integrable, it is integrable.
If a function $f$ is $Q$ integrable, every p-th power of $|f|$ is integrable with
$0<p<1$ , but $|f|$ itself is not necessarily integrable. If two $Q$ integrable
functions $f$ and $q$ are equi-measunble in the sense:

$m(\alpha>f>\beta)=m(\alpha>g>\beta)$ for every pair $\alpha,$ $\beta$ ,

then they have one and the same $Q$ integral.
Theorem 1. The $(E.R.)$ integrability coincides with the $Q$ integrability,

and the (E. $R.$ ) integral is equal to the $Q$ integral.
Proof. Let $f$ be (E. R.) integrable with the defining sequences $\{F_{n}\}\{\epsilon_{n}\}$ and

$\rho$ , then each set $F_{n_{\tau 1}}-F_{n}$ can be written as the sum of mutually disjoint subsets
$E_{j}(j=1, \cdots, k_{n})$ such that
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$m(E_{j})=m(F_{n\}1}^{c})$ $j=1,$ $\cdots,k_{n}-1$ and $m(E_{k_{n}})\leq m(F_{n+1}^{r})$ .

Since by $(k2)$

$m(F_{n+1}-F_{n})=m(F_{n}^{c})-m(F_{n+1}^{c})\leq(\rho-1)m(F_{n+1}^{c})$

and

$m(F_{n+1}-F_{n})=\sum_{j=1}^{k_{n}}m(E_{j})\geq(k_{n}-1)m(F_{n+1}^{r})$

we have $ k_{n}\leq\rho$ , hence from (k3) it follows that

$\int_{F_{n+1}-p_{n}}|f|dm=\sum_{J=1}^{k_{n}}\int_{E_{j}}|f|dm\leq k_{n}\epsilon_{n}\leq\rho.\epsilon_{n}$ .

If $\sum\epsilon_{n}<\infty,$ $f$ is integrable, a fortiori, $Q$ integrable, for

$\int|f|dm=\sum\int_{F_{n+}-F_{n}}|f|dm+\int_{F_{1}}|f|dm\leq\rho\sum\epsilon_{n}+\int_{F_{1}}|f|dm<\infty-$

If $\sum\epsilon_{n}=\infty$ , putting

$\alpha_{n}=\frac{\rho_{\epsilon_{n}}}{m(F_{n}^{r})}$

we have
$\alpha_{n+1}\leq\rho_{\alpha_{n}}$ $n=1,2,$ $\cdots$ and $supj=1,2_{i}\cdots j$ ’

for the first inequality is an immediate consequence of $(k2)$ and if $\{\alpha_{n}\}$ is
bounded with a positive number $\gamma$ , by (k2)

$\sum\epsilon_{n}\leq\gamma\sum m(F_{n}^{c})<\infty$

contrary to the hypothesis. Now given any positive number $\gamma\geq\alpha_{1}$ , taking the
minimum index $n$ such that

$\alpha_{n}\leq\gamma<\rho_{\alpha_{n}}$ ,

the existence of which is guaranteed by the above consideration, let us prove
that

$m(G_{n})\leq m(F_{n}^{c})$ with $G_{n}=F_{n\cap}\{|f|\geq\alpha_{n}$ },
for, otherwise, there is a set $E$ such that

$E\subset G_{n}$ and $m(E)=m(F_{n}^{r})$ ,

then by (k3) we have

$\epsilon_{n}>\int_{E}|f|dm\geq\alpha_{n}m(E)=\alpha_{n}m(F_{n}^{c})=\rho_{\epsilon_{n}}$ ,
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leading to the contradiction that $\epsilon_{n}>\rho_{\epsilon_{n}}$ with $\rho>1$ . Now it follows that

$rm(|f|\geq\gamma)\leq\rho\alpha_{n}\{m(F_{n}^{c})+m(G_{n})\}\leq 2\rho\alpha_{n}m(F_{n}^{c})=2\rho^{2}\epsilon_{n}$

and finally

$m(|f|\geq\gamma)=o(\frac{1}{\gamma}1$

proving the condition (q2) for $f$. With the same $\gamma$ and $n$ we have

$|\int_{F_{n}}fdm-\int f^{(\gamma)}dm|\leq\int_{F_{n}}|f-f^{(\gamma)}|dm+rm(F_{n}^{c})$

$=\int_{G_{n}}|f-f^{(\gamma)}|d_{7n+\gamma}m(F_{n}^{c})\leq\int_{q_{n}}|f|dm+2\rho_{\alpha_{n}m(F_{n}^{c})\leq\epsilon_{n}+2\rho_{\epsilon_{n}}^{2}}$

because $m(G_{n})\leq m(F_{n}^{c})$ . This shows that

$\lim_{n\rightarrow\infty}\int_{F_{n}}fdm=\lim_{\gamma\neq\infty}\int f^{(\gamma)}dm$ .

Thus we have proved that every (E.R.) integrable function is $Q$ integrable and
its $Q$ integral is equal to its (E.R.) integral.

Conversely now let $f$ be $Q$ integrable. Without loss of generality, we
may assume that $m(X)\geq 1$ and $f$ is not essentially bounded. We can take
a sequence $\{\gamma_{n}\}$ of positive numbers and a sequence $\{F_{n}\}$ in the following way:
$\gamma_{n}\leq\gamma_{n\$ 1},$ $F_{n}\subset F_{n+1},$ $m(F_{n}^{c})=\frac{1}{2^{n}}$

$F_{n}\subset\{|f|\leq\gamma_{n}\}$ and $F_{n}^{c}\subset\{|f|\geq\gamma_{n}\}$ $n=1,2,$ $\cdots$

Since

$|\int_{F_{n}}fdm-\int f^{(\gamma_{n})}dm|\leq\gamma_{n}.m(|f|\geq\gamma_{n}-1)$ ,

$(k1)$ follows from (q1) and (q2). (k2) is obviously satisfied with $\rho=2$ . Finally
with the definition

$\epsilon_{n}=\sup_{j\geq n}\gamma_{j}m(|f|\geq\gamma_{j})$ ,

if $E\subset F_{n}$ and $m(E)\leq m(F_{n}^{c})$

$\int_{E}|f|dm\leq r_{n}m(F_{n}^{r})\leq\gamma_{n}m(|f|\geq\gamma_{n})\leq\epsilon_{n}$ ,

showing that (k3) is also satisfied. Thus $f$ is (E. R.) integrable. This completes
the proof.

3. Characterizations. A pair $(R, J)$ of a class St of functions and
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a functional $J$ on it is called an extension of the integral, if St is a linear
class containg $\mathfrak{L}$ and $J$ is a linear functional which coincides with the integral
on $\mathfrak{L}$ . An extension, St, $J$ is said to be larger than $(R_{2}, J_{2})$ if $R_{1}\supset\prime 9_{2}$ and $J_{1}$

coincides with $J_{2}$ on $R_{2}$ . If we denote by $\mathfrak{Q}$ the class of all $Q$ integrable
functions, the pair $(\mathfrak{Q}, (Q)\int)$ is obviously an extension.

Theorem 2. The $Q$ integral, $i.e.$ , the pair $(\mathfrak{Q}, (Q)!)$ , is the largest of
all extensions (St, $J$) obeying the following restrictions:

(e1) $J(f)=\lim_{\gamma\rightarrow\infty}\int f^{(\gamma)}dm$ $f\in R$

$(e2)$ a function $q$ is contained in $R$ , whenever

$|g|\leq|f|$ for some $f\in R$ and $\lim_{\gamma\rightarrow\infty}\int g^{(\gamma)}dm$ exists.

Before going into the proof, let us comment on these conditions. (e1) is
nothing but $(q1)$ and requires that the value of the functional $J(f)$ can be
calculated from the integral of truncated functions. (e2) requires that $R$ is
something like an ideal in a vector lattice, though the class of all functions
satisfying $(e1)$ is not a vector lattice under the usual definition of the order.
If (e2) is changed as follows: $g$ is in $R$ whenever $|g|\leq|f|$ for some $f\in R$ ,
then the class St necessarily coincide with the minimum class $\mathfrak{L}$ .

Proof of Theorem 2. It suffices to prove that every function in A obeys
the requirement (q2). Suppose, contrarily, that (q2) is not valid for some
$f\in R$ , then there are a sequence $\{\gamma_{n}\}$ and a constant $\epsilon>0$ such that

$0<\gamma_{n}<\frac{1}{4}\gamma_{n+1}$ and $ r_{n}m(|f|\geq\gamma_{n})>\epsilon$ $n=1,2,$ $\cdots$

We can take a sequence $\{\delta_{n}\}$ for which $\frac{1}{2}<\delta_{n}<1$ and $\delta_{n}r_{n}m(|f|\geq\gamma_{n})$ does

not converge. Every set $E_{n}=\{\gamma_{n+1}>|f|\geq\gamma_{n}\}$ can be written as the sum of
three mutually disjoint sets $F_{n},$ $G_{n}$ and $H_{n}$ such that

$m(F_{n})=\frac{1}{2}m(E_{n})$ and $m(G_{n})=m(H_{n})=\frac{1}{4}m(E_{n})$ .

If the functions $g$ and $h$ are defined by

$q=\sum\gamma_{n}\{c_{F_{n}}-c_{a_{n}}-c_{H_{n}}\}$ and $h=\sum\gamma_{n}\{c_{a_{n}}-c_{H_{n}}\}$

where $c_{E}$ denotes the characteristic function of $E$, we have

$|g|\leq|f|,$ $|h|\leq|f|$ and $rg^{(\gamma)}dm=\int h^{(\gamma)}dm=0$ for all $r>0$ ,
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hence by (e2) both $g$ and $h$ , and their sum $k=g+h$ are in $R$ , however, we
have without difficulty

$\int k^{(\delta_{n}\gamma_{n})}dm=\frac{1}{4}\delta_{n}\gamma_{n}m(|f|\geq\gamma_{n})$

which does not converge by assumption, contradicting the requirement (e1).
Originally Kunugi [3] obtained the class of all (E.R.) integrable functions

(or the class Q) by the procedure of completion with respect to the rank which
is something between a general uniform topology and a metric topology. A
detailed discussion of ranked spaces and their relation to the (E.R.) integral can
be found in [5]. It is natural to ask whether the class $\mathfrak{Q}$ can be obtained as
the completion of the class $\mathfrak{L}$ with respect to some reasonable metric, just as
the latter is the completion of the class of all bounded functions with respect
to the usual $L_{1}$-norm. In this respect, the conditions $(q1)$ and (q2) already
suggest how to define a norm-like functional.

Lemma. The functional defined by the formula
$\Vert f\Vert_{*}=\sup_{\gamma>0}|\int f^{(\gamma)}dm|+\sup_{\gamma>0}rm(|f|\geq\gamma)$

has the following properties:

$(n1)$ $ 0\leq\Vert f\Vert_{*}\leq\infty$ ( $=0$ $\iota f$ and only if $f=0$ )

(n2) $\Vert f\Vert_{*}<\infty$ if $f\in \mathfrak{Q}$ ,
$(n3)$ $\Vert\alpha f\Vert_{*}=|\alpha|\Vert f\Vert_{*}$ ,

(n4) $\Vert f+g\Vert_{*}\leq 6\{\Vert f\Vert_{*}+\Vert g\Vert_{*}\}$

$(n5)$ $|(Q)\int fdm|\leq\Vert f\Vert_{*}\leq 2\int|f|dm$ if $f\in \mathfrak{Q}$ .

Proof. (n1) and (n2) are trivial. (n3) follows from the relation $(\alpha f)^{(\gamma)}$

$=\alpha f^{(\frac{\gamma}{a})}$ or $=\alpha f^{(\frac{-\gamma}{\alpha})}$ according as $\alpha>0$ or $<0$ . Since

$\{|f+g|\geq 2\gamma\}\subset\{|f|\geq\gamma\}^{\cup}\{|g|\geq\gamma\}$

and
$|(f+g)^{(2\gamma)}(x)-f^{(\gamma)}(x)-g^{(\gamma)}(x)|$

$)=0$ if $|f(x)|\leq\gamma$ and $|g(x)|\leq\gamma$

1 $\leq 4r$ otherwise,

we have

$|\int(f+g)^{(2\gamma)}dm-\int f^{(\gamma)}dm-\int g^{(\gamma)}dm|\leq 4rm(|f|\geq\gamma)+4rm(|g|\geq\gamma)$ ,
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hence

$|\int(f+g)^{(2\gamma)}dm|+2rm(|f+g|\geq 2\gamma)$

$\leq|\int f^{(\gamma)}dm|+|\int g^{(\gamma)}dm|+6rm(|f|\geq\gamma)+6rm(|g|\geq\gamma)$

and (n4) follows. The left hand inequality of (n5) follows immediately from
the definition of the $Q$ integral, and finally the right hand one from the
following :

$|\int f^{(\gamma)}dm|\leq\int|f|dm$ and $rm(|f|\geq\gamma)\leq\int|f|dm$ .

The properties (n1) to (n4) guarantee that the system of the sets

$\{f$ : $\Vert f|\int_{*}\leq\frac{1}{n}\}n=1,2,$ $\cdots$ forms a basis of the linear metric topology on

the class $\mathfrak{Q}$ (cf. [1] p. 13) and the $Q$ integral becomes a continuous linear
functional by $(n5)$ . The functional $\Vert f\Vert^{*}$ will be called the quasi-norm.

Theorem 5. The class $\mathfrak{Q}$ is complete with respect to the quasi-norm
and contains the class $\mathfrak{L}$ as a dense subclass. In other words, $\mathfrak{Q}$ is considered
as the completion of $\mathfrak{L}$ with respect to the quasi-norm.

Proof. Let $\{f_{n}\}$ be a Cauchy sequence, then it is fundamental in measure,
in fact, for every $\gamma>0$

$m(|f_{n}-f_{m}|\geq\gamma)\leq\frac{1}{\gamma}\Vert f_{n}-f_{m}\Vert_{*}\rightarrow 0$ as $n,$ $ m\rightarrow\infty$ ,

hence $f_{n}$ converges in measure to some function $f$ (cf. [2] p. 91), we have
obviously

$m(|f-f_{n}|>\gamma)\leq\sup_{k\geq n}m(|f_{k}-f_{n}|\geq\gamma)$

and

$|\int(f-f_{n})^{(\gamma)}dm|\leq\sup_{k\geq n}|\int(f_{k}-f_{n})^{(\gamma)}dm|$

so that

$\Vert f-f_{n}\Vert_{*}\leq 2\cdot\sup_{k\geq n}\Vert f_{k}-f_{n}\Vert_{*}\rightarrow 0$

showing that $f_{n}$ converges to $f$ with respect to the quasi-norm. We have to
$pr.ove$ that $f$ is contained in Q. Using quite a similar procedere as in the proof
of Lemma, we have

$|\int f^{(2\gamma)}dm-\int f_{n}^{(\gamma)}dm|\leq 4\Vert f-f_{n}\Vert_{*}+4\gamma_{m}(|f_{n}|\geq\gamma)$
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and
$rm(|f|\geq 2\gamma)\leq\Vert f-f_{n}\Vert_{*}+rm(|f_{n}|\geq\gamma)$

consequently by (q1) and (q2) for $f_{n}$

$\lim\cdot\sup_{\gamma\rightarrow\infty}|\int f^{(2\gamma)}dm-(Q)\int f_{n}dm|\leq 4\Vert f-f_{n}\Vert_{*}$

and

$\lim_{\gamma\rightarrow\infty}r_{m(|f|\geq\gamma)\leq 4\Vert f-f_{n}\Vert_{*}\rightarrow 0}$ .

On the other hand, since by (n5)

$|(Q)Jf_{n}dm-(Q)\int f_{k}dm|\leq\Vert f_{n}-f_{k}\Vert_{*}\rightarrow 0$ as $n,$
$ k\rightarrow\infty$ ,

we can conclude from the above that $(q1)$ and (q2) are satisfied for $f$

In order to see that $\mathfrak{L}$ is dense in $\mathfrak{Q}$ , it suffices to prove that for every
$g\in \mathfrak{Q}g^{(n)}$ converges to $q$ . Given $\epsilon>0$ , there is a positive number $\gamma_{0}$ such that

$\gamma m(|g|\geq\gamma)\leq\epsilon$ and $|\int g^{(\gamma)}dm-\int g^{(\gamma_{0})}dm|\leq\epsilon$ for $\gamma\geq\gamma_{0}$ .

Since, as is seen without difficulty,

$m(|g-g^{(n)}|\geq\gamma)=m(|g|\geq\gamma+n)$

and

$\int\{g-g^{(n)}\}^{(\gamma)}dm=\int g^{(\gamma+n)}dm-\int g^{(n)}dm$ ,

we have for every $n\geq\gamma_{0}$

$\Vert q-g^{(n)}\Vert_{*}\leq\sup_{\gamma>0}|\int g^{(\gamma+n)}dm-\int g^{(n)}dm|+\sup_{\gamma>0}rm(|g|\geq\gamma+n)$

$\leq 2\epsilon+\frac{\gamma_{0}\epsilon}{r_{0}+n}\leq 3\epsilon$ .

This completes the proof.

As the quasi-norm $\Vert f\Vert_{*}$ has properties similar to a norm, it is interesting
to ask whether the topology it induces is equivalent to that induced by some
norm or, more generally, is equivalent to some locally convex topology (cf. [1]
p. 12). One of the advantages of local convexity is that it guarantees the
existence of plenty of different continuous linear functionals. However, in our
case, the $Q$ integral turns out the only continuous linear functional up to
scalar.
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Theorem 4. Every continuous linear functional on $Q$ is a scalar
multiple of the $Q$ integral.

Proof. Let $J(f)$ be a continuous linear functional, then when restricted to
the subclass $\mathfrak{L}$ , it is continuous even with respect to the $L_{1}$-norm, for the
continuity combined with (n3) and (n5) implies

$|J(f)|\leq\alpha\Vert f\Vert_{*}\leq 2\alpha\int|f|dm$ for some $\alpha>0$ .

As is known (cf. [1] p. 30), there is the uniquely determined bounded function
$h$ such that

$J(g)=\int h$ . gdm for all $g\in \mathfrak{L}$

Since

$|J(f)-J(f^{(n)})|\leq\alpha\Vert f-f^{(n)}\Vert_{*}$

and the right hand side converges to $0$ as in the proof of Theorem 3, we can
conclude

$J(f)=\lim_{n\rightarrow\infty}\int h\cdot f^{(n)}dm$

Now if $h$ is a constant function, the assertion follows from the definition of
the $Q$ integral. Suppose that $h$ is not constant, then there are two real numbers
$\beta<\rho$ for which

$m(h>\rho)\neq 0$ and $m(h<\beta)\neq 0$ .

Without loss of generality we may assume that $\frac{1}{2}(\beta+\rho)=0$ .
Take measurable sets $E$ and $F$ such that

$E\subset\{h>\rho\}$ , $F\subset\{h<\beta\}$ and $m(E)=m(F)\neq 0$

and write $E$ (respectively $F$ ) as the sum of mutually disjoint subsets $E_{n}$ (re-
spectively $F_{n}$ ) such that

$m(E_{n})=m(F_{n})=\underline{m(E)}$ $n=1,2,$ $\cdots$

$2^{n}$

Now for the function $g$ defined by

$g=\sum\frac{2^{n}}{n}\{c_{E_{n}}-c_{F_{n}}\}$

where $c_{E}$ is the characteristic function of $E$, we have obviously
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$\int q^{(\gamma)}dm=0$ for all $\gamma>0$

and

$rm(|g|\geq r)=r\sum_{j\geq n}\{m(E_{j})+m(F_{j})\}$

$\leq\frac{rm(E)}{2^{n- 2}}\leq\frac{4m(E)}{n+1}\rightarrow 0$

where $n$ is determined by the relation

$\frac{2^{n}}{n}\leq r<\frac{2^{n+1}}{n+1}$ ,

hence $g$ is a function in Q. On the other hand, from the definition of $g$ , it
follows

$h\cdot g^{(\gamma)}=|h\cdot q^{(\gamma)}|$ and $J(g^{(\gamma)})=\int|h\cdot g^{(\gamma)}|dm$

and the last term diverges as $ r\rightarrow\infty$ , in fact,

$\int|h\cdot g^{(\gamma)})|dm\geq(\rho-\beta)m(E)\{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}\}$

leading to the contradiction. Thus $h$ must be a constant function.

4. Conjugate functions. In this section, let $X$ be the interval $(-\pi, \pi)$

and $m$ be the Lebesgue measure. The conjugate function $\tilde{f}(x)$ of an integrable
function $f(x)$ is defined by

$\tilde{f}(x)=\frac{1}{2\pi}\int_{-\pi}^{n}f(t)\cot\frac{1}{2}(x-t)dt$

where the integral is taken in the sense of Cauchy’s principal value, $i.e$ .

$\lim_{\epsilon\rightarrow 0}\{\int_{-\pi}^{x-\text{\’{e}}}+\int_{x+}^{\pi}.\}$ .

It is known that $\tilde{f}(x)$ is defined almost everywhere ([10], p. 131), but not neces-
sarily integrable. Titchmarsh [6] proved, in essense, that the conjugate function
has both the properties $(q1)$ and $(q2)$ . Careful inspection of his proof leads
to the following statement.

Theorem 5. The conjugate function of any integrable function is $Q$

integrable, and the correspondence $\mathfrak{L}\ni f\rightarrow\tilde{f}\in \mathfrak{Q}$ is continuous, when $\mathfrak{L}$ and
$\mathfrak{Q}$ are provided with the $L_{1}$-norm and the quasi-norm $\Vert f\Vert_{*}$ respectively.

Let the Fourier series of $f(x)$ be
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$\frac{1}{2}a_{0}+\Sigma$ ($a_{n}$ cos $nx+b_{n}$ sin $nx$).

Roughly speaking, the Fourier series of the conjugate function $f(x)$ is

$\sum$ ( $b_{n}$ cos $nx-a_{n}$ sin $nx$),

in fact, the latter is summable $(C, 1)$ to the conjugate function almost everywhere
([10], p. 92). The notion of the $Q$ integral permits a more precise formulation,
which was basically obtained by Titchmarsh [6] and was explicity mentioned
by Ulyanov [8]

Theorem 6. For every $n$ , both $\tilde{f}(x)$ sin $nx$ and $\tilde{f}(x)cosnx$ are $Q$

integrable and

$(Q)\int_{-\pi}^{n}\tilde{f}(x)$ sin $nxdx=-\int_{-\pi}^{n}f(x)$ cos nxdx

$(Q)\int_{-\pi}^{\pi}\tilde{f}(x)$ cos $nxdx=\int_{-\pi}^{n}f(x)$ sinnxdx.

Many interesting applications of the $Q$ integral to Fourier series can be
found in a series of papers [7], [8], [9].
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