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Our aim in this note is to present some elementary results conceming the
distribution of integers which can be expressed as a sum of two h-th powers,
where $h\geqq 2$ is a fixed integer.

1. According to P. Erdos [2], R. P. Bambah and S. Chowla [1] have
proved that for some sufficiently large constant $C$ the interval $(n, n+Cn\neq)$

always contains an integer of the form $x^{?}+y^{2},$ $n,$ $x$ and $y$ being integral, and
Erd\"os [2] coniectures (among others) that this holds for every $C$ if $n\geqq n_{0}(C)$ .
We cannot, at present, prove this conjecture of Erd\"os, but it is possible to
refine the result of Bambah and Chowla in the following form:

Theorem 1. For every $n\geqq 1$ there are integers $x,$ $y$ with $xy\neq 0$

satisfying

$n<x^{2}+y^{2}<n+2^{\frac{q}{2}}n:$ :
Proof. For $n=1$ and $n=2$ the result is obvious. Assume now that $n\geqq 3$ .
Let $\delta,$ $0<\delta<1$ , be a fixed real number: the exact value of $\delta$ (which may

depend on n) will be determined in a moment later.
Write

$[n^{\underline{\frac{1}{9}}}]=n^{\frac{1}{2}}-(1-\epsilon)$

$(0<\epsilon\leqq 1)$ .
Here, and in what follows, $[t]$ denotes, as usual, the greatest integer not
exceeding $t$.

We distinguish two cases.
Case 1: $ 0<\epsilon\leqq\delta$ . We take

$x=[n^{\frac{1}{2}}]+1$ , $y=1$ .
Then we have

$n<=n+2_{6}^{Z}+\epsilon^{2}+1<n+2^{\dot{Z}}n^{4}$ ,



On the Distribution of Integers Representable as a Sum of Two h-th Powers 125

if
$2_{6n^{1}}^{Z}+\epsilon^{2}+\perp<2^{\underline{\frac{q}{7}}}n^{\frac{1}{4}}$

or

(1) $\delta^{2}+2\delta n\#^{g}-(2^{2}n^{\frac{1}{4}}-1)<0$ .

Case 2: $\delta<\epsilon\leqq 1$ . We put

$x=[n]$ , $y=[(n-[n^{Z}]^{2})^{1}J+111$ .

Then we have

$n<x^{2}+y^{2}\leqq n+2(2(1-\epsilon)n^{1}z-(1-\epsilon)^{2})$ $’+1<n+2^{\dot{Z}}n^{i}q$

if

2 $(2(1-\epsilon)n^{1}z-(1-\epsilon)^{2})^{\frac{1}{2}}+1<2n$

or

(2) $\delta^{2}+2\delta(n^{2}-1)-L(2^{1}zn^{\frac{1}{4}}-\frac{5}{4})>0$ .

Now, let $\delta_{0}$ be the (unique) positive zero of the quadratic equation

$\delta^{\frac{o}{0}}+2\delta_{0}(n\not\in-1)-(2^{Z}1n^{4}1-\frac{5}{4})=0$ .

It is easy to see that $\delta_{0}<1$ and that

$\delta_{0}^{2}+2\delta_{0}n^{2}-(2^{\frac{\dot q}{2}}n-1)=2\delta_{\beta}-\iota\doteqdot(2^{\frac{1}{2}}n^{4}\perp+\frac{1}{4})<0$

for $n\geqq 3$ . Thus, we may take any $\delta$ less than 1 and slightly greater than $\delta_{0}$ ,
so that the inequalities (1) and (2) hold true simultaneously. This proves the
theorem.

Corollary 1. For euery $\epsilon>0$ the set of integers $n$ for which the interval
$(n, n+\epsilon n^{1})\rfloor$ contains an integer of the form $x^{2}+y^{2}$ has a positive density.

Proof. For every $\delta,$ $0<\delta\leqq 1$ , the set of integers $n$ satisfying $n^{\frac{1}{2}}-\delta<[n^{1}z]$

$\leqq n\#$ is of positive density. It suffices to take $\delta=\delta(\epsilon)$ small enough.

2. Here we wish to state two conjectures related to Theorem 1. They
are:

Conjecture 1. Let $C_{1}$ be a constant $>2^{-;}\cdot 3$ . 7hen for all $n\geqq 1$ there
are integers $x,$ $y$ with $xy\neq 0$ satisfying
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$n<x^{2}+y^{2}<n+C_{1}n^{4}$ ;
$\ddagger$

and
Conjecture 2. Let $C_{2}$ be a constant $>2^{-\frac{1}{2}}\cdot 5\not\in$ . Then for all $n\geqq 1$ there

are integers $x,$ $y$ satisfying
$n<x^{2}+y^{2}<n+C_{2}n^{\frac{1}{4}}$

Either of these conjectures, if true, is the best possible in the sense that

if $C_{1}=2^{-\frac{1}{4}}\cdot 3$ or $ C_{2}=25-\not\in\cdot\not\in$ then the corresponding result cannot be correct
any longer (to see this we put, for instance, $n=2$ or $n=20$). We note also
that our Conjectures 1 and 2 have been verified by M. Uchiyama up to $n=$

1000.

3. For a general $h\geqq 2$ we shall mention the following rather trivial
Theorem 2. Let $q(n)$ be a function of $n$ satisfying the inequality

$q(n)>\sum_{j=1}^{h}\left(\begin{array}{l}h\\j\end{array}\right)(n-[n^{1/h}]^{h})^{(h-j)/h}$

for $n\geqq n_{0}$ . Then there exist integers $x,$ $y$ with $xy\neq 0$ such that

$n<x^{h}+y^{h}<n+g(n)$

for all $n\geqq n_{0}$ .
Proof. Put

$x=[n^{1/h}]$ , $y=\lfloor(n-[n^{1/h}]^{h})^{1/h}]+1$ .

Corollary 2. For any $\epsilon>0$ there is an $n_{0}=n_{0}(\epsilon)$ such that for all $n\geqq n_{0}$

there exist integers $x,$ $y$ with $xy\neq 0$ satisfying

$n<x^{h}+y^{h}<n+(c+\epsilon)n^{a}$ ,

where

$a=(1-\frac{1}{h})^{2}$ , $c=h^{(2h-1)/h}$

For $h=2$ this is of course weaker than Theorem 1.
Corollary 3. For every $\epsilon>0$ the set of integers $n$ for which the interval

$(n, n+\epsilon n^{a})$ , with $a=(1-\frac{1}{h})^{2}$ , contains an integer of the form $x^{h}+y^{h}$ has

a positive density.
Proof is similar to that of Corollary 1.
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