ON THE DISTRIBUTION OF INTEGERS REPRESENTABLE AS A SUM OF TWO *h*-TH POWERS

By

÷

Saburô UCHIYAMA

Our aim in this note is to present some elementary results concerning the distribution of integers which can be expressed as a sum of two *h*-th powers, where $h \ge 2$ is a fixed integer.

1. According to P. Erdös [2], R. P. Bambah and S. Chowla [1] have proved that for some *sufficiently large* constant C the interval $(n, n+Cn^{\frac{1}{4}})$ always contains an integer of the form $x^2 + y^2$, n, x and y being integral, and Erdös [2] conjectures (among others) that this holds for every C if $n \ge n_0(C)$. We cannot, at present, prove this conjecture of Erdös, but it is possible to refine the result of Bambah and Chowla in the following form:

Theorem 1. For every $n \ge 1$ there are integers x, y with $xy \ne 0$ satisfying

$$n < x^2 + y^2 < n + 2^{\frac{3}{2}} n^{\frac{4}{4}}$$
.

Proof. For n=1 and n=2 the result is obvious. Assume now that $n \ge 3$. Let δ , $0 < \delta < 1$, be a fixed real number: the exact value of δ (which may depend on n) will be determined in a moment later.

Write

$$[n^{\frac{1}{2}}] = n^{\frac{1}{2}} - (1 - \varepsilon) \qquad (0 < \varepsilon \le 1).$$

Here, and in what follows, [t] denotes, as usual, the greatest integer not exceeding t.

We distinguish two cases.

Case 1: $0 < \varepsilon \leq \delta$. We take

$$x = [n^{\frac{1}{2}}] + 1$$
, $y = 1$.

Then we have

$$n < x^2 + y^2 = n + 2\varepsilon n^{\frac{1}{2}} + \varepsilon^2 + 1 < n + 2^{\frac{3}{2}} n^{\frac{1}{4}},$$

if

$$2\varepsilon n^{\frac{1}{2}} + \varepsilon^2 + 1 < 2^{\frac{3}{2}} n^{\frac{1}{4}}$$

or

(1)
$$\delta^2 + 2\delta n^{\frac{1}{2}} - (2^{\frac{3}{2}}n^{\frac{1}{4}} - 1) < 0$$

Case 2: $\delta < \varepsilon \leq 1$. We put

$$x = [n], \quad y = \left[(n - [n^{\frac{1}{2}}]^2)^{\frac{1}{2}} \right] + 1$$

Then we have

$$n < x^2 + y^2 \le n + 2 \left(2(1-\varepsilon)n^{\frac{1}{2}} - (1-\varepsilon)^2 \right)^{\frac{1}{2}} + 1 < n + 2^{\frac{3}{2}}n^{\frac{1}{4}},$$

if

$$2\left(2(1-\epsilon)n^{\frac{1}{2}}-(1-\epsilon)^{2}\right)^{\frac{1}{2}}+1<2^{\frac{3}{2}}n^{\frac{1}{4}}$$

or

(

2)
$$\delta^{2} + 2\delta(n^{\frac{1}{2}} - 1) - \left(2^{\frac{1}{2}}n^{\frac{1}{4}} - \frac{5}{4}\right) > 0.$$

Now, let δ_0 be the (unique) positive zero of the quadratic equation

$$\delta_{0}^{2}+2\delta_{0}(n^{\frac{1}{2}}-1)-\left(2^{\frac{1}{2}}n^{\frac{1}{4}}-\frac{5}{4}\right)=0$$

It is easy to see that $\delta_0 < 1$ and that

$$\delta_{\mathfrak{o}}^{2} + 2\delta_{\mathfrak{o}} n^{\frac{1}{2}} - (2^{\frac{3}{2}} n^{\frac{1}{4}} - 1) = 2\delta_{\mathfrak{o}} - \left(2^{\frac{1}{2}} n^{\frac{1}{4}} + \frac{1}{4}\right) < 0$$

for $n \ge 3$. Thus, we may take any δ less than 1 and slightly greater than δ_0 , so that the inequalities (1) and (2) hold true simultaneously. This proves the theorem.

Corollary 1. For every $\varepsilon > 0$ the set of integers *n* for which the interval $(n, n + \varepsilon n^{\frac{1}{4}})$ contains an integer of the form $x^2 + y^2$ has a positive density.

Proof. For every δ , $0 < \delta \leq 1$, the set of integers *n* satisfying $n^{\frac{1}{2}} - \delta < [n^{\frac{1}{2}}] \leq n^{\frac{1}{2}}$ is of positive density. It suffices to take $\delta = \delta(\varepsilon)$ small enough.

2. Here we wish to state two conjectures related to Theorem 1. They are:

Conjecture 1. Let C_1 be a constant $>2^{-\frac{1}{4}} \cdot 3$. Then for all $n \ge 1$ there are integers x, y with $xy \ne 0$ satisfying

$$n < x^2 + y^2 < n + C_1 n^{\frac{1}{4}};$$

and

Conjecture 2. Let C_2 be a constant $>2^{-\frac{1}{2}} \cdot 5^{\frac{3}{4}}$. Then for all $n \ge 1$ there are integers x, y satisfying

$$n < x^2 + y^2 < n + C_2 n^{\frac{1}{4}}$$
.

Either of these conjectures, if true, is the best possible in the sense that if $C_1 = 2^{-\frac{1}{4}} \cdot 3$ or $C_2 = 2^{-\frac{1}{2}} \cdot 5^{\frac{3}{4}}$ then the corresponding result cannot be correct any longer (to see this we put, for instance, n=2 or n=20). We note also that our Conjectures 1 and 2 have been verified by M. Uchiyama up to n=1000.

3. For a general $h \ge 2$ we shall mention the following rather trivial Theorem 2. Let g(n) be a function of n satisfying the inequality

$$g(n) > \sum_{j=1}^{\hbar} \binom{h}{j} (n - [n^{1/\hbar}]^{\hbar})^{(\hbar-j)/\hbar}$$

for $n \ge n_0$. Then there exist integers x, y with $xy \ne 0$ such that

$$n < x^n + y^n < n + g(n)$$

for all $n \ge n_0$.

Proof. Put

$$x = [n^{1/\hbar}], \quad y = [(n - [n^{1/\hbar}]^{\hbar})^{1/\hbar}] + 1.$$

Corollary 2. For any $\varepsilon > 0$ there is an $n_0 = n_0(\varepsilon)$ such that for all $n \ge n_0$ there exist integers x, y with $xy \ne 0$ satisfying

 $n < x^{\hbar} + y^{\hbar} < n + (c + \varepsilon)n^{a}$,

where

$$a=\left(1-rac{1}{h}
ight)^{2}, \quad c=h^{(2h-1)/h} \; .$$

For h=2 this is of course weaker than Theorem 1.

Corollary 3. For every $\varepsilon > 0$ the set of integers *n* for which the interval $(n, n + \varepsilon n^{a})$, with $a = \left(1 - \frac{1}{h}\right)^{2}$, contains an integer of the form $x^{h} + y^{h}$ has a positive density.

Proof is similar to that of Corollary 1.

126

References

[1]* R. P. BAMBAH and S. CHOWLA: On numbers which can be expressed as a sum of two squares, Proc. Nat. Inst. Sci. India, vol. 13 (1947), pp. 101-103.

 [2] P. ERDÖS: Some unsolved problems, Publ. Math. Inst. Hungar. Acad. Sci., vol. 6, ser. A (1961), pp. 221-254.

> Department of Mathematics, Hokkaidô University

(Received September 10, 1964)

^{*} The writer has been unable to consult this paper.