ON THE DISTRIBUTION OF INTEGERS REPRESENTABLE AS A SUM OF TWO h-TH POWERS

By

Saburô UCHIYAMA

Our aim in this note is to present some elementary results concerning the distribution of integers which can be expressed as a sum of two h-th powers, where $h \geqq 2$ is a fixed integer.

1. According to P. Erdös [2], R. P. Bambah and S. Chowla [1] have proved that for some sufficiently large constant C the interval ($n, n+C n^{\frac{1}{4}}$) always contains an integer of the form $x^{2}+y^{2}, n, x$ and y being integral, and Erdös [2] coniectures (among others) that this holds for every C if $n \geqq n_{0}(C)$. We cannot, at present, prove this conjecture of Erdös, but it is possible to refine the result of Bambah and Chowla in the following form:

Theorem 1. For every $n \geqq 1$ there are integers x, y with $x y \neq 0$ satisfying

$$
n<x^{2}+y^{2}<n+2^{\frac{3}{2}} n^{\frac{1}{4}}
$$

Proof. For $n=1$ and $n=2$ the result is obvious. Assume now that $n \geqq 3$.
Let $\delta, 0<\delta<1$, be a fixed real number: the exact value of δ (which may depend on n) will be determined in a moment later.

Write

$$
\left[n^{\frac{1}{2}}\right]=n^{\frac{1}{2}}-(1-\varepsilon) \quad(0<\varepsilon \leqq 1)
$$

Here, and in what follows, [t] denotes, as usual, the greatest integer not exceeding t.

We distinguish two cases.
Case 1: $0<\varepsilon \leqq \delta$. We take

$$
x=\left[n^{\frac{1}{2}}\right]+1, \quad y=1
$$

Then we have

$$
n<x^{2}+y^{2}=n+2 \varepsilon n^{\frac{1}{2}}+\varepsilon^{2}+1<n+2^{\frac{3}{2}} n^{\frac{1}{4}}
$$

if

$$
2 \varepsilon n^{\frac{1}{2}}+\varepsilon^{2}+1<2^{\frac{3}{2}} n^{\frac{1}{4}}
$$

or

$$
\begin{equation*}
\delta^{2}+2 \delta n^{\frac{1}{2}}-\left(2^{\frac{3}{2}} n^{\frac{1}{4}}-1\right)<0 . \tag{1}
\end{equation*}
$$

Case 2: $\dot{\delta}<\varepsilon \leqq 1$. We put

$$
x=[n], \quad y=\left[\left(n-\left[n^{\frac{1}{2}}\right]^{2}\right)^{\frac{1}{2}}\right]+1 .
$$

Then we have

$$
n<x^{2}+y^{2} \leqq n+2\left(2(1-\varepsilon) n^{\frac{1}{2}}-(1-\varepsilon)^{2}\right)^{\frac{1}{2}}+1<n+2^{\frac{3}{2}} n^{\frac{1}{4}},
$$

if

$$
2\left(2(1-\varepsilon) n^{\frac{1}{2}}-(1-\varepsilon)^{2}\right)^{\frac{1}{2}}+1<2^{\frac{3}{3}} n^{\frac{1}{4}}
$$

or

$$
\begin{equation*}
\delta^{2}+2 \delta\left(n^{\frac{1}{2}}-1\right)-\left(2^{\frac{1}{2}} n^{\frac{1}{4}}-\frac{5}{4}\right)>0 . \tag{2}
\end{equation*}
$$

Now, let δ_{0} be the (unique) positive zero of the quadratic equation

$$
\delta_{0}^{2}+2 \delta_{0}\left(n^{\frac{1}{2}}-1\right)-\left(2^{\frac{1}{2}} n^{\frac{1}{4}}-\frac{5}{4}\right)=0 .
$$

It is easy to see that $\delta_{0}<1$ and that

$$
\delta_{0}^{2}+2 \delta_{0} n^{\frac{1}{2}}-\left(2^{\frac{3}{2}} n^{\frac{1}{4}}-1\right)=2 \delta_{0}-\left(2^{\frac{1}{2}} n^{\frac{1}{4}}+\frac{1}{4}\right)<0
$$

for $n \geqq 3$. Thus, we may take any δ less than 1 and slightly greater than δ_{0}, so that the inequalities (1) and (2) hold true simultaneously. This proves the theorem.

Corollary 1. For every $\varepsilon>0$ the set of integers n for which the interval $\left(n, n+\varepsilon n^{\frac{1}{4}}\right)$ contains an integer of the form $x^{2}+y^{2}$ has a positive density.

Proof. For every $\delta, 0<\delta \leqq 1$, the set of integers n satisfying $n^{\frac{1}{2}}-\delta<\left[n^{\frac{1}{2}}\right]$ $\leqq n^{\frac{1}{2}}$ is of positive density. It suffices to take $\delta=\delta(\varepsilon)$ small enough.
2. Here we wish to state two conjectures related to Theorem 1. They are:

Conjecture 1. Let C_{1} be a constant $>2^{-\frac{1}{4}} \cdot 3$. Then for all $n \geqq 1$ there are integers x, y with $x y \neq 0$ satisfying

$$
n<x^{2}+y^{2}<n+C_{1} n^{\frac{1}{4}} ;
$$

and
Conjecture 2. Let C_{2} be a constant $>2^{-\frac{1}{2}} \cdot 5^{\frac{3}{4}}$. Then for all $n \geqq 1$ there are integers x, y satisfying.

$$
n<x^{2}+y^{2}<n+C_{2} n^{\frac{1}{4}} .
$$

Either of these conjectures, if true, is the best possible in the sense that if $C_{1}=2^{-\frac{1}{\frac{1}{2}}} \cdot 3$ or $C_{2}=2^{-\frac{1}{2}} \cdot 5^{\frac{3}{4}}$ then the corresponding result cannot be correct any longer (to see this we put, for instance, $n=2$ or $n=20$). We note also that our Conjectures 1 and 2 have been verified by M. Uchiyama up to $n=$ 1000.
3. For a general $h \geqq 2$ we shall mention the following rather trivial

Theorem 2. Let $g(n)$ be a function of n satisfying the inequality

$$
g(n)>\sum_{j=1}^{n}\binom{h}{j}\left(n-\left[n^{1 / h}\right]^{n}\right)^{(n-j) / h}
$$

for $n \geqq n_{0}$. Then there exist integers x, y with $x y \neq 0$ such that

$$
n<x^{h}+y^{n}<n+g(n)
$$

for all $n \geqq n_{0}$.
Proof. Put

$$
x=\left[n^{1 / h}\right], \quad y=\left[\left(n-\left[n^{1 / h}\right]^{n}\right)^{1 / h}\right]+1 .
$$

Corollary 2. For any $\varepsilon>0$ there is an $n_{0}=n_{0}(\varepsilon)$ such that for all $n \geqq n_{0}$ there exist integers x, y with $x y \neq 0$ satisfying

$$
n<x^{h}+y^{h}<n+(c+\varepsilon) n^{a}
$$

where

$$
a=\left(1-\frac{1}{h}\right)^{2}, \quad c=h^{(2 h-1) / h} .
$$

For $h=2$ this is of course weaker than Theorem 1.
Corollary 3. For every $\varepsilon>0$ the set of integers n for which the interval $\left(n, n+\varepsilon n^{a}\right)$, with $a=\left(1-\frac{1}{h}\right)^{2}$, contains an integer of the form $x^{h}+y^{n}$ has a positive density.

Proof is similar to that of Corollary 1.

References

[1]* R. P. Bambah and S. Chowla: On numbers which can be expressed as a sum of two squares, Proc. Nat. Inst. Sci. India, vol. 13 (1947), pp. 101-103.
[2] P. Erdös: Some unsolved problems, Publ. Math. Inst. Hungar. Acad. Sci., vol. 6, ser. A (1961), pp. 221-254.

Department of Mathematics, Hokkaidô University
(Received September 10, 1964)

[^0]
[^0]: * The writer has been unable to consult this paper.

