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Throughout the present paper, $R$ be always a division ring, and $S$ a di-
vision subring of $R$ . And, we use the following conventions: $C=V_{R}(R),$ $V$

$=V_{R}(S),$ $H=V_{R}^{2}(S)=V_{R}(V_{R}(S))$ , and further for any subrings $R_{1}\supseteq R_{2}$ of $R$

the set of all $R_{2^{-}}(ring)$ isomorphisms of $R_{1}$ into $R$ will be denoted as $\Gamma(R_{1}/R_{2})$ .
As to other notations and terminologies used in this paper, we follow the
previous one [3]. We consider here the following conditions:

(I) If $S^{\prime}$ is a subring of $R$ properly containing $S$ with $[S^{\prime} : S]_{l}<\infty$ then
$\Gamma(S^{\prime}/S)\neq 1$ .

(I) If $S^{\prime}$ is a subring of $R$ properly containing $S$ with $[S^{\prime} : S]_{r}<\infty$ then
$\Gamma(S^{\prime}/S)\neq 1$ .

(I’) $H/S$ is Galois.
(II) If $S_{1}\supseteq S_{2}$ are intermediate rings of $R/S$ with $[S_{1}:S]_{l}<\infty$ then

$\Gamma(S_{1}/S)|S_{2}=\Gamma(S_{2}/S)$ .
$(II_{0})$ If $S_{1}\supseteq S_{Z}$ are intermediate rings of $R/S$ with $[S_{1} : S]_{r}<\infty$ then

$\Gamma(S_{1}/S)S_{2}=\Gamma(S_{2}/S)$ .
(I ) If $T_{1}\supseteq T_{2}$ are intermediate rings of $R/H$ with $[T_{1} : H]_{l}<\infty$ then

$\Gamma(Tl/S)|T_{2}=\Gamma(T_{2}/S)^{1)}$ .
(II\’o) If $T_{1}\supseteq T_{2}$ are intermediate rings of $R/H$ with $[T_{1} : H]_{r}<\infty$ then

$\Gamma(T_{1}/S)T_{2}=\Gamma(T_{2}/S)$ .
Following [5], $R/S$ is said to be (left-)quasi-Galois when (I) and (II)

are fulfilled. Symmetrically, if $(I_{0})$ and $(II_{0})$ are done, we shall say $R/S$ is
right-quasi-Galois. In [5], we can find some fundamental theorems of quasi-
Galois extensions. The purpose of the present paper is to expose several
additional theorems concerning such extensions. At first, we shall recall the
following lemmas which have been obtained in [4] and [5].

Lemma 1. If $S^{\prime}$ is an intermediate ring of $R/S$ then $[V: V_{R}(S^{\prime})]_{r}\leq$

1) In [51, the condition that if $T$ is an intermediate ring of $R/H$ with $[T:H]\iota<\infty$ then
$\Gamma(T/S)|H=\Gamma(H/S)$ was cited as (II’). However, it will be rather natural to alter it like above.
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$[S^{\prime} : S]_{l}$ , and particularly in case $V_{R}^{2}(S)=S$ the equality holds (provided we
do not distinguish between two infinite dimensions). If $[S^{\prime} : S]_{l}<\infty$ then
$V_{R}^{2}(S^{\prime})=H[S^{\prime}]$ , and if $R/S$ is (left-) locally finite then so is $R/H$.

Lemma 2. Let $R/S$ be locally finite. In order that $R/S$ is quasi-
Galois it is necessary and sufficient that (I) and (II) are satisfied, and if (I)

and (II’) are satisfied then $R/S$ is quasi-Galois.

Lemma 3. Let $R$ be locally finite and quasi-Galois over S. If $T$ is
an intermediate ring of $H/S$ then $T\Gamma(T/S)\subseteq H$, whence it follows $\Gamma(H/S)$

$=\mathfrak{G}(H/S)$ .
Lemma 4. Let $R$ be locally finite and quasi-Galois over S. If $S^{\prime}$ is

an intermediate ring of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ then $R/S^{\prime}$ is quasi-Galois,
$V_{R}^{2}(S^{\prime})/S^{\prime}$ is outer Galois and $\mathfrak{G}(V_{R}^{2}(S^{\prime})/S^{\prime})\approx \mathfrak{G}(H/H\cap S^{\prime})$ by contraction, and
$\Gamma(V_{R}^{2}(S^{\prime})/S)|S^{\prime}=\Gamma(S^{\prime}/S)$ .

By Lemma 4, in the same way as in the proof of [3, Lemma 3.5], we
can prove that if $R$ is locally finite and quasi-Galois over $S$ and $R^{\prime}$ an in-

termediate ring of $R/S$ with $[H[R^{\prime}]:H]_{l}<\infty$ then $H[R^{\prime}]$ is locally finite
and outer Galois over $R^{\prime}$ and $\mathfrak{G}(H[R^{\prime}]/R^{\prime})\approx \mathfrak{G}(H/H\cap R^{\prime})$ by contraction.
Accordingly, we can apply the same argument as in the proof of [4, Lemma
4] to obtain the next

Theorem 1. Let $R$ be locally finite and quasi-Galois over S. If $R^{\prime}$

is an intermediate ring of $R/S$, and $H^{\prime}$ an intermediate ring of $H/S$ that

is Galois over $S$, then $H^{\prime}[R^{\prime}]$ is locally finite and outer Galois over $R^{\prime}$ and
$\mathfrak{G}(H^{\prime}[R^{\prime}]/R^{\prime})\approx \mathfrak{G}(H/H^{\prime}\cap R^{\prime})$ (algebraically and topologically) by contraction.

The proof of the next lemma will be easy from that of [3, Lemma 3.2].

Lemme 5. Let $T$ be an intermediate division ring of $R/S$, and $\mathfrak{H}$ an
automorphism group of $H[T]$ . If $J(\mathfrak{H}, H[T])=T$ and $H\mathfrak{H}=H$ then $[H^{*}\cdot$

$T:H^{*}]_{l}^{2)}=[T:H\cap T]_{l}$ and $[T\cdot H^{*} : H^{*}]_{r}=[T:H\cap T]_{r}$ for each intermediate
division ring $H^{*}$ of $H/H\cap T$.

Now, Lemmas 4 and 5 enable us to apply the argument used in the
proof of [3, Lemma 3.2] to obtain the next lemma.

Lemma 6. Let $R$ be locally finite and quasi-Galois over S. If $S^{\prime}$ is

an intermediate ring of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ then $[H^{*}[S^{\prime}]:H^{*}]_{l}=[R^{*}:$ $H$

$\cap R^{*}]_{l}=[S^{\prime} : H\cap S^{\prime}]_{l}$ for each intermediate rings $H^{*}$ of $H/H\cap S^{\prime}$ and $R^{*}$

of $H[S^{\prime}]/S^{\prime}$ .
By the validity of Lemma 6, the proof of the next theorem proceeds

evidently just like that of [3, Theorem 3.2] did.

2) $H^{*}\cdot T$ means the module product of $H^{*}$ and $T$.



On Quasi-Galois Extensions of Division Rings 75

Theorem 2. Let $R$ be locally finite and quasi-Galois over S. If $T$ is
an fregular intermediate ring of $R/S$ then $[T:H\cap T]_{l}=[V:V_{R}(T)]_{r}<\infty$ .

Lemma 7. If $R/H$ is locally finite and $R^{\prime}$ is an intermediate ring of
$R/H$ with $[R^{\prime} : H]_{l}<\infty$ then $R/H$ is right-locally finite and $[R^{\prime} : H]_{r}=[R^{\prime}$ :
$H]_{l}$ .

Proof. Although the first assertion is [2, Lemma 4] itself, we shall prove
here both. Let $X$ be an arbitrary finite subset of $V$ that is linearly left-
independent over $V^{\prime}=V_{R}(R^{\prime})$ , and let $R_{1}=R^{\prime}[X]$ , that is evidently left-finite
over $H$. We set here $V_{1}=V_{R_{1}}(H),$ $V_{1}^{\gamma}=V_{R_{1}}(R^{\prime})$ , and $C_{1}=V_{R_{1}}(R_{1})$ . Then,
$[V_{1} : C_{1}]\leq[R_{1}:H]_{l}<\infty$ by Lemma 1, whence it follows $[V_{1} : V_{1}^{\prime}]_{l}=[V_{1} : V_{1}^{\prime}]_{r}<$

$\infty$ . On the other hand, Lemma 1 yields also $[V_{1} : V_{1}^{\prime}]_{r}\leq[R^{\prime}:H]_{l}$ , whence we
obtain $[V_{1} : V_{1}^{\prime}]_{l}\leq[R^{\prime}:H]_{l}$ . Recalling here that $X\subseteq V_{1}$ and $V_{1}^{\prime}\subseteq V$ , we obtain
$\# X\leq[V_{1} : V_{1}^{\prime}]_{l}\leq[R^{\prime}:H]_{l}$ , that is, $[V: V^{\prime}]_{l}\leq[R^{\prime}:H]_{l}$ . Lemma 1 yields there-
fore $[R^{\prime}:H]_{r}=[V:V^{\prime}]_{l}\leq[R^{\prime}:H]_{l}$ , because $V_{R}^{2}(V^{\prime})=V^{\prime}$ . Now, the right-local
finiteness of $R/H$ is evident, and so it follows symmetrically $[R^{\prime}:H]_{l}\leq[R^{\prime}$ :
$H]_{r}$ . We have proved therefore that $[R^{\prime} : H]_{r}=[R^{\prime}:H]_{l}$ .

The next corollary has been stated in [2, Theorem 2], whose proof was
essentially due to [1, Theorem 7.9.2]. However, we have recently found that
the proof of [1, Theorem 7.9.2] would be open to doubt–we are afraid that
the proof of [1, Theorem 7.8.1] was no longer efficient in that of [1, Theo-
rem 7.9.2]. Because of this reason, we should like to present a new proof
without making use of [1, Theorem 7.9.2] to our corollary.

Corollary 1. Let $R$ be Galois over $S$ and locally finite over H. If
$S^{\prime}$ is an intermediate ring of $R/S$ with $[S^{\prime}:S]_{l}<\infty$ then $[S^{\prime}:S]_{r}=[S^{\prime} : S]_{l}$ .

Proof. At first, if $R/S$ is outer Galois, [3, Lemma 1.3] yields at once
$\infty>[S^{\prime} : S]_{l}=[(\mathfrak{G}|S^{\prime})R_{r}:R_{r}]_{r}^{3)}=[(\mathfrak{G}|S^{\prime})C_{r} : C_{r}]_{r}=[(\mathfrak{G}|S^{\prime})C_{\iota^{I}}C_{l}]_{r}=[(\mathfrak{G}|S^{\prime})R_{l}:R_{t}]_{r}$

$=[S^{\prime} : S]_{r}$ . Next, for general case, $R/S^{\prime}$ is Galois by $[$2, Theorem $1]^{3)}$ and
there holds $\infty>[H[S^{\prime}]:H]_{l}=[H[S^{\prime}]:H]_{r}$ by Lemma 7. And so, by Lemmas
1 and 5, we obtain $\infty>[H[S^{\prime}]:H]_{r}\geq[S^{\prime}\cdot H:H]_{r}=[S^{\prime}:H\cap S^{\prime}]_{r}\geq[V:V_{R}(S^{\prime})]_{t}$

$=[H[S^{\prime}]:H]_{r}$ and $\infty>[H[S^{\prime}]:H]_{l}\geq[H\cdot S^{\prime}:H]_{l}=[S^{\prime}:H\cap S^{\prime}]_{l}\geq[V:V_{R}(S^{\prime})]_{r}=$

$[H[S^{\prime}]:H]_{l}$ . AccordingIy, it follows $[S^{\prime}:H\cap S^{\prime}]_{r}=[H[S^{\prime}]:H]_{r}=[H[S^{\prime}]:H]_{l}$

$=[S^{\prime}:H\cap S^{\prime}]_{l}<\infty$ . Recalling here that $H/S$ is outer Galois, as is noted
above, there holds $[H\cap S^{\prime}:S]_{r}=[H\cap S^{\prime} : S]_{l}<\infty$ . Now, combining these
equalities, our assertion $[S^{\prime}:S]_{r}=[S^{\prime} : S]_{l}$ will be evident.

Now, we shall prove the next theorem.
Theorem 3. The following conditions are equivalent to each other:

3) Since the division ring $R$ is $\mathfrak{G}R_{r}$-irreducible and $V_{Hom(R.R)}(\mathfrak{G}R_{f})=S\iota,$ $\mathfrak{G}R_{r}$ is dense
in $Homs_{l}(R, R)$ by JACOBSON’S density theorem [1, p. 28].
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(1) $R/S$ is. locally finite and quasi-Galois, (1) $R/S$ is right-locally finite and
right-quasi-Galois, (2) $R/S$ is locally finite and (I), (II) are fulfilled, (2) $R/S$

is right-locally finite and (I‘), $(II_{0})$ are fulfilled, (3) $R/S$ is locally finite and
(I), (II’) are fulfilled, and (3) $R/S$ is right-locally finite and (I), (II\’o) are
fulfilled.

Proof. In virtue of Lemma 2, one will readily see that only the implica-
tions (1) $\Rightarrow(3)$ and (1) $\Rightarrow(1_{0})$ are left to be shown.

(1) $\Rightarrow(3)$ , Let $T_{1}\supseteq T_{2}$ be intermediate rings of $R/H$ with $[T_{1} : H]_{l}<\infty$ .
Choose an intermediate ring $S_{z}^{\prime}$ of $T_{2}/S$ such that $[S_{2}^{\prime}:S]_{l}<\infty$ and $T_{2}=H[S_{2}^{\prime}]$

and an intermediate ring $S_{1}$ of $T_{1}/S_{2}^{\prime}$ such that $[S_{1} : S]_{l}<\infty$ and $T_{1}=H[S_{I}]=$

$V_{R}^{2}(S_{1})$ . If we set $S_{2}=T_{2}\cap S_{1}(\supseteq S_{2}^{\prime})$ , then $[S_{z} : S]_{l}<\infty$ and $T_{2}=H[S_{l}]=V_{R}^{2}(S_{2})$

evidently. As $R/S_{2}$ is quasi-Galois, $\mathfrak{G}(T_{2}/S_{2})=\mathfrak{G}(T_{1}/S_{1})|T_{2}$ by Lemma 4.
Noting that $\Gamma(T_{2}/S)|S_{2}\subseteq\Gamma(S_{1}/S)|S_{2}=\Gamma(T_{1}/S)|S_{2}$ by Lemma 4, for each $\sigma e$

$\Gamma(T_{2}/S)$ we can find some $\rho\in\Gamma(T_{1}/S)$ such that $\sigma|S_{2}=\rho|S_{2}$ . By Lemma 3,
$ T_{2}\sigma=H[S_{2}\sigma]\subseteq H[S_{1}\rho]=T_{1}\rho$ and $\sigma\rho^{-1}\in\Gamma(T_{Z}/S_{2})=\mathfrak{G}(T_{2}/S_{Z})=\mathfrak{G}(T_{1}/S_{1})|T_{2}$ . Ac-
cordingly, $\sigma$ is contained in $\Gamma(T_{1}/S)|T_{2}$ obviously.

(1) $\Rightarrow(1_{0})$ , Let $S^{\prime}$ be an intermediate ring of $R/S$ with $[S^{\prime} : S]_{l}<\infty$ .
Since $\mathfrak{G}(H[S^{\prime}]/S^{\prime})\approx \mathfrak{G}(H/H\cap S^{\prime})$ by contraction (Lemma 4), Lemmas 1, 5 and
7 yield $[S^{\prime} : H\cap S^{\prime}]_{r}=[S^{\prime}\cdot H:H]_{r}\leq[H[S^{\prime}]:H]_{r}<\infty$ . On the other hand,
recalling that $H/S$ is outer Galois by Lemma 2, we obtain $[H\Gamma 1S^{\prime} : S]_{r}=[H\cap$

$S^{\prime}$ : $ S]_{l}<\infty$ . $($See the proof of Corollary $1.)_{x}Combining$ those, we obtain [ $S^{\prime}$ :
$ S]_{r}<\infty$ , which proves evidently the right-local finiteness of $R/S$. Now, our
assertion will be obvious.

Corollary 2. Let $R$ be locally finite and quasi-Galois over S. If $S^{\prime}$

is an intermediate ring of $R/S$ finitely generated over $S$ then $[S^{\prime} : S]_{r}=$

$[S^{\prime} : S]_{l}$ .
Proof. As $R/H$ is locally finite by Lemma 1 and $R$ is right-locally finite

and right-quasi-Galois over $S$ by Theorem 3, Lemmas 6 and 7 together with
their symmetries yield $[S^{\prime} : H\cap S^{\prime}]_{l}=[H[S^{\prime}]:H]_{l}=[H[S^{\prime}]:H]_{r}=[S^{\prime} : H\cap S^{\prime}]_{r}$ .
Hence, we readily obtain $[S^{\prime} : S]_{r}=[S^{\prime} : S]_{l}$ . (Cf. the proof of Corollary 1.)

The following corollary is [3, Corollary 3.5] itself. However, its proof
contained a gap. In fact, in order to be able to apply the argument used in
the proof of [3, Lemma 3.9], we had to prove the validity of (II’). This fact
requested is now secured by Theorem 3.

Corollary 3. If $R$ is locally finite and quasi-Galois over $S$ and [$R$ :
$H]_{t}\leq\aleph_{0}$ , then $R/S$ is Galois.

Further, for the sake of completeness, we shall give here the proof of the
following theorem [5, Theorem 2].
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Theorem 4. If $R/S$ is locally finite and quasi-Galois then so is $R/T$

for each fregular intermediate ring $T$ of $R/S$ .
Proof. Obviously, by Lemma 4, we may restrict our proof to the case

that $T\subseteq H$ Let $F$ be an arbitrary finite subset of $R$ , and set $S^{\prime}=S[F],$ $H=$

$T[H\cap S^{\prime}],$ $R^{\prime}=H[S^{\prime}]=T[F]$ . Then, $[R$
‘ : $H]_{l}=[S$‘ : $H$ rl $ S^{\prime}]_{l}<\infty$ by Lemma

6. On the other hand, noting that $H$ is locally finite and outer Galois over
$S$, there holds $[H^{\prime} : T]<\infty$ by [3, Conclusion 2.1]. Hence, we have [ $T[F]$ :
$ T]_{l}=[R^{\prime} : H^{\prime}]_{l}\cdot[H:T]<\infty$ , which means evidently the local finiteness of $R/T$.
Moreover, as $V_{R}^{2}(T)=H$ and the condition (II’) holds by Theorem 3, our as-
sertion is a consequence of Theorem 3.

Lemma 8. Let $R$ be locally finite and quasi-Galois over S. If $T$ is
an f-regular intermediate ring of $R/S$ then $\Gamma(V_{R}^{2}(T)/S)|T=\Gamma(T/S)$ .

Proof. Take an intermediate ring $S^{\prime}$ of $T/S$ such that $[S^{\prime} : S]_{l}<\infty$ and
$V_{R}(S^{\prime})=V_{R}(T)$ . Then, $T‘=V_{R}^{2}(T)=V_{R}^{2}(S^{\prime})=H[S^{\prime}]$ and $[T^{\prime} : H]_{l}<\infty$ by
Lemma 1. As $\mathfrak{G}(T^{\prime}/S^{\prime})\approx \mathfrak{G}(H/H\cap S^{\prime})$ by contraction (Lemma 4), [3, Conclu-
sion 2.1] will yield at once $T=(H\cap T)[S^{\prime}]$ . Now, let $\sigma$ be an arbitrary ele-
ment of $\Gamma(T/S)$ . Then, by Lemma 4 $\sigma|S^{\prime}=\tau|S^{\prime}$ for some $\tau\in\Gamma(T^{\prime}/S)$ , and
by Lemma 3 we see that $ T\sigma=((H\cap T)\sigma)[S^{\prime}\sigma]\subseteq H[S^{\prime}\sigma]=H[S^{\prime}\tau]=T^{\prime}\tau$ . And
so, $\sigma\tau^{-1}\in\Gamma(T/S^{\prime})=\mathfrak{G}(T^{\prime}/S^{\prime})|T$ by Lemmas 3, 4 and [3, Conclusion 2.1],
whence we have $\sigma=(\sigma\tau^{-1})\tau\in\Gamma(T^{\prime}/S)|T$.

By the light of Lemma 8, we can prove the following extension theorem
of isomorphisms that corresponds to [3, Theorem 3.5].

Theorem 5. Let $R$ be locally finite and quasi-Galois over $S$ , and $T_{1}$

$\supseteq T_{2}$ intermediate rings of $R/S$. If $T_{1}$ is f-regular then $\Gamma(T_{2}/S)=$

$\Gamma(T_{1}/S)|T_{2}$ .
Proof. Setting here $T_{i}^{\prime}=V_{R}^{2}(T_{i})(i=1,2)$ , we have $T_{1}^{\prime}\supseteq T_{2}^{\prime}\supseteq H,$ $T_{1}^{\prime}\supseteq T_{1}$

$\supseteq T_{2},$ $[T_{1}^{\prime}:H]_{l}<\infty$ by Lemma 1, and so $\Gamma(T_{i}/S)=\Gamma(T_{i}^{\prime}/S)|T_{i}(i=1,2)$ and
$\Gamma(T_{2}^{\prime}/S)=\Gamma(T_{1}^{\prime}/S)|T_{2}^{\prime}$ by Lemma 8 and Theorem 3 respectively. It follows
therefore $\Gamma(T_{2}/S)=(\Gamma(T_{J}^{\prime}/S)|T_{2}^{\prime})T_{2}=\Gamma(T_{1}^{\prime}/S)T_{2}=(\Gamma(T_{1}^{\prime}/S)|T_{1})T_{2}=$

$\Gamma(T_{1}/S)|T_{2}$ .
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