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1. Introduction. Let $m$ be an integer not less than two. An infinite
sequence $A=(a_{n})$ of integers is said to be uniformly distributed modulo
$m$ , if the limit

$\lim_{N\rightarrow\infty}\frac{1}{N}A(N, j, m)=\frac{1}{m}$

exists for all $j=0,1,$ $\cdots,$ $m-1$ , where $A(N, j, m)$ is the number of terms
$a_{n}(1\leqq n\leqq N)$ which are $\equiv i(mod m)$ . If the sequence $A$ is uniformly
distributed modulo $m$ for every integer $m\geqq 2$ , then we say that $A$ is
uniformly distributed.

The notion of uniform distribution of sequences of integers, which
is in a sense dual to that, of uniform distribution $(mod 1)$ of sequences
of real numbers, is due to I. Niven [4], who obtained a number of inter-
esting results on uniformly distributed sequences of integers. And a
criterion for a sequence $A=(a_{n})$ of integers should be uniformly distri-
buted has been given by one of the present authors (see [5]): thus, a
necessary and sufficient condition that the sequence $A$ be uniformly dis-
tributed modulo $m$ , where $m\geqq 2$ , is that

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}$ exp $(2\pi ia_{n}\frac{h}{m})=0$

for all $h=1,$ $\cdots,$ $m-1$ . Hence, the sequence $A$ is uniformly distributed
if and only if

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n\subset 1}^{N}$ exp $(2\pi ia_{n}t)=0\rightarrow$

for all rational numbers $t$ with $t\not\equiv O(mod 1)$ .
The main purpose of this note is to present another characterization

of uniformly distributed sequences of integers, making use of a kind of
integrals defined over the space of integers. This, as well as the criterion
quoted above, will have some analogy with the well-known characteriza-
tion of uniform distribution $(mod 1)$ of sequences of real numbers (cf.

[3; Chap. IV]).
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We first define a (finitely additive) measure on the set of integers

and then construct an integration theory of functions defined on the set
of integers. The notion of uniform distribution of sequences of integers
will be re-defined in terms of measures of certain sets of integers, and
we shall formulate and prove our fundamental result on the characteriza-
tion of uniformly distributed sequences.

The results of the present note can, of course, be easily generalized
to the.case of any finite dimensional product of the space of integers.

2. The measure of Banach Buck. There is no essential loss of
generality in restricting ourselves only to consider the set of non-nega-
tive integers. Let $I$ denote throughout in the following the set of all
non-negative integers. According to the result of S. Banach [1; p. 231]

and R. C. Buck [2] a totally finite measure $\mu$ is defined on a class of
subsets of the space $ I;\mu$ is necessarily finitely additive since points are
to have zero measure and the space on which the measure is defined is
only countable.

Notation. If $A$ and $B$ are subsets of $I,$ $A\subset B$ means that there is
a finite subset $C$ of $I$ for which $A-C\subset B-C;A=B$ means that $A\subset B$

’

and $B\subset A$ , thus $ A=\emptyset$ means that $A$ itself is finite. (We shall use the
symbol $\emptyset$ to denote the empty set.)

If $A$ is a subset of $I,$ $A^{\prime}$ denotes its complement, thus $A^{\cup}A^{\prime}=I$.
DEFINITION 1. $R$ is the Boolean ring generated by all fi $I\mathfrak{j}ite$ subsets

of $I$ and all subsets of $I$ which are infinite arithmetic progressions.
In particular, if $A\in R$ and $A=B$ then $B\in R$ . Clearly R-contains the

whole space $I$ and hence is in fact a Boolean algebra.

DEFINITION 2. If $E$ is a finite set $\cdot$ in $R$ , we define $\mu(E)=0$ , in parti-
cular $\mu(\emptyset)=0$ ; if $E=(an+b)$ is an infinite arithmetic progression in $R$,
we define $\mu(E)=1/a$ , in particular $\mu(I)=1$ . If $A$ and $B$ are disjoint sets
in $R$ and if $\mu(A)$ and $\mu(B)$ are defined, then $\mu(A^{\cup}B)$ is defined and is
equal to $\mu(A)+\mu(B)$ .

It is easy to see that every finite union of arithmetic progressions
is a finite union of disjoint arithmetic progressions. Thus $\mu$ is well de-
fined for all sets in R.

The set function $\mu$ defined on $R$ is real valued, non-negative, mono-
tone and finitely additive. If $A$ and $B$ belong to $R$ then we have

$\mu(A^{\cup}B)+\mu(A_{\cap}B)=\mu(A)+\mu(B)$ .
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DEFINITION 3. Let $S$ be the class of all subsets of $I$. If $E$ is a set
in $S$ , we define

$\mu^{*}(E)=\inf\{\mu(A):E\subset A, A\in R\}$ .
The set function $\mu^{*}$ defined on $S$ is real valued, non-negative, mono-

tone and finitely subadditive. Hence $\mu^{*}$ is an outer measure on S.
DEFINITION 4. $\overline{S}$ is the class of all sets $E$ in $S$ such that for all $X$

in $S$ ,
$\mu^{\star}(X)=\mu^{*}(X_{\cap}E)+\mu^{*}(X\cap E^{\prime})$ .

A set $E$ belonging to $\overline{S}$ is called measurable. Clearly the class $\overline{S}$ is
a Boolean algebra containing the class R. It is shown in [2] that $\overline{S}$

strictly contains R.
It is easily seen that every set of outer measure zero belongs to $\overline{S}$

and that the set function $\overline{\mu}$ , defined for $E$ in $\overline{S}$ by $\overline{\mu}(E)=\mu^{*}(E)$ , is a
complete, finitely additive measure on $\overline{S}$ . Since $\overline{\mu}(A)=\mu(A)$ for $A$ in $R$ ,
there is no possibility of confusion in writing $\mu(E)$ instead of $\overline{\mu}(E)$ for
sets $E$ which are in $\overline{S}$ but not necessarily in R.

The following statements are mutually equivalent:
(i) $E$ belongs to $\overline{S}$ ;
(ii) $\mu^{*}(E)+\mu^{*}(E^{\prime})=1$ ;
(iii) for any $\epsilon>0$ there exist $A$ and $B$ in $R$ with $A\subset E\subset B$ and

$\mu(B-A)<\epsilon$ ;
(vi) $\mu^{*}(E)=\mu_{*}(E)$ , where $\mu_{*}(E)=\sup\{\mu(B):B\subset E, B\in R\}$ .
Buck [2] has shown among others that the class $\overline{S}$ contains infinite

sets of measure zero and that the set of values of $\mu(E)$ for $E$ in $\overline{S}$ is
exactly the closed unit interval.

3. Integration. By a partition $\Delta=(E_{1}, \cdots, E_{r})$ of the set $I$ is meant
a finite, disjoint class $E_{1},$

$\cdots,$
$E_{r}$ of sets in $\overline{S}$ whose union is $I$.

Let $f(x)$ be a bounded, real valued function defined on the set $I$. If
$\Delta=(E_{1}, \cdots, E_{r})$ is a partition of $I$, we write

$\underline{f}_{j}=\inf\{f(x):x\in E_{j}\}$ , $\overline{f_{j}}=\sup\{f(x):x\in E_{j}\}$

for $j=1,$ $\cdots,$ $r$ . We set

$\underline{M}(f;\Delta)=\sum_{j=1}^{r}\underline{f}_{j}\mu(E_{j})$ , $\overline{M}(f;\Delta)=\sum_{j=1}^{r}\overline{f_{j}}\mu(E_{j})$ .
Then
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$-K\leqq\underline{M}(f;\Delta)\leqq\overline{M}(f;\Delta)\leqq K$,

if $|f(x)|\leqq K$.
If $\Delta_{1}=(F_{1}, \cdots, F_{s})$ is another partition of $I$, then it is clear that

$\underline{M}(f;\Delta)\leqq\overline{M}(f;\Delta_{1})$ ,
$\underline{M}(f;\Delta_{1})\leqq\overline{M}(f;\Delta)$ .

Consequently, if we put
$\underline{M}(f)=\sup_{\Delta}\underline{M}(f;\Delta)$ , $\overline{M}(f)=\inf_{\Delta}\overline{M}(f;\Delta)$ ,

then we have
$\underline{M}(f)\leqq\overline{M}(f)$ .

DEFINITION 5. A bounded, real valued function $f(x)$ defined on $I$ is
said to be integrable, if $\underline{M}(f)=\overline{M}(f)$ , in which case this common value
determined by $f$ is the integral of $f$ over $I$ and is denoted by $\int f(x)d\mu(x)$

or simply by $\int fd\mu$ .
A bounded, complex valued function $f(x)$ defined on I-is integrable,

if the real yalued functions ${\rm Re} f(x)$ and ${\rm Im} f(x)$ are integrable, and then
the integral of $f$ over $I$ is

$\int f(x)d\mu(x)=\int{\rm Re} f(x)d\mu(x)+i\int{\rm Im} f(x)d\mu(x)$ .

Remark. For an unbounded real or complex valued function $f(x)$

defined on $I$ we may define the integrability of $f$ by the existence and
finiteness of the limit

$\lim_{F-\infty}\int f_{K}(x)d\mu(x)$ ,

where $f_{K}(x)=f(x)$ if $|f(x)|\leqq K$ and $=K$ otherwise. But in what follows
we shall concern, for our purpose, only with bounded functions $f(x)$ de-
fined on $I$.

Our integrals thus defined possess many elementary properties in
common with ordinary Riemann integrals. However, it should be noted
that there is an integrable function on $I$ whose lower and upper Darboux
sums do not converge, so that the Darboux theorem for integrals does
not hold in the present situation.

4. Measurable functions. A real valued function $f(x)$ defined on $I$

is said to be measurable, if for all real $c$ we have
$\{x:f(x)<c\}\in\overline{S}$.
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Since $\overline{S}$ is a Boolean algebra, the measurability of $f(x)$ implies that
$\{x:f(x)\geqq c\}\in\overline{S}$ , $\{x:c_{1}\leqq f(x)<c_{2}\}\in\overline{S}$

for all real $c,$ $c_{1}$ and $c_{2}$ .
A complex valued function $f(x)$ defined on $I$ is measurable, if the

functions ${\rm Re} f(x)$ and ${\rm Im} f(x)$ are both measurable.
It is easy to prove the following propositions:

PROPOSITION 1. If a real or complex valued function $f(\dot{x})$ defined
on I is bounded and measurable, then $f(x)$ is integrable.

PROPOSITION 2. If $f(x)$ is a real valued, bounded and measurable
function defined on $I$, then we have

$\int f(x)d\mu(x)=\lim_{r\rightarrow\infty}\lambda_{K_{r}}^{\gamma}\frac{k}{r}\mu(E_{r,k})k=-Kr-1$

where $|f(x)|<K,$ $K$ being an integer, and

$E_{r,k}=\{x;\frac{k}{r}\leqq f(x)<\frac{k+1}{\gamma}\}$ $(-Kr\leqq k\leqq Kr-1)$ .
$Examples_{\vee}$ . The characteristic function $\chi_{E}(x)$ of a measurable set $E$

is measurable and hence is integrable: we have in fact

$\int\chi_{E}(x)d\mu(x)=\mu(E)$ .
A less trivial example is the following. It can be shown that the

function
$e_{\alpha}(x)=\exp(2\pi i\alpha x)$

defined on $I,$ $\alpha$ being a real valued parameter, is measurable if and only
if $\alpha$ is a rational number (see Proposition 4 below).

5. Uniform distribution. Let $H$ be a fixed subset of the set $I$

An infinite sequence $A=(a_{n})$ of non-negative integers is said to be uni-
formly distributed in the set $H$, if for every set $E$ in $R$ we have

$\lim_{N\neg\infty}\frac{1}{N}\sum_{\hslash=1}^{N}\chi_{H\cap E}(a_{n})=c(A, H)\mu(E)$

where $c(A, H)$ is a constant depending only on $A$ and $H$. In the special
case of $H=I$ we say simply that $A$ is uniformly $|distributed$ .

It follows from the definition that we have
$0\leqq c(A, H)\leqq 1$

for every set $H$ in which there is a uniformly distributed sequence $A$

and, in particular, $c(A, I)=1$ for every sequence $A$ which is uniformly



A Characterization of Uniformly Distributed Sequences of Integers 243

distributed. In the following we shall restrict our considerations, when
we speak of uniform distribution of sequences of integers in certain sets,
to the sets $H$ and sequences $A$ for which $c(A, H)>0$ .

It is clear that this new definition of uniform distribution of sequences
of integers (in the whole space $I$ ) coincides with the $prev\dot{w}$us one (with-

out the reference to modulus m) given in the Introduction, though $R$

contains sets other than mere arithmetic progressions.

PBOPOSITION 3. If $A=(a.)$ is a sequence of integers uniformly dis-
tributed in a set $H$, then

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})=c(A, H)\mu(E)$

for all sets in $\overline{S}$ .
Proof. Put $c=c(A, H)$ . Let $E$ be any set in S. We have, by de-

finition,
$\mu^{*}(E)\leqq\mu(B)$ for every $B$ with $E\subset B,$ $B\in R$ ;
$\mu_{*}(E)\leqq\mu(C)$ for every $C$ with $C\subset E,$ $C\in R$ .

Hence

$\lim_{N-\infty}\sup_{1}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})\leqq\lim_{N-\infty}\frac{1}{N}\sum_{n--1}^{N}\chi_{H\cap B}(a_{n})=c\mu(B)$ ,

so that

$\lim_{N\rightarrow}\sup_{\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})\leqq c$ $inf\mu(B)=c\mu^{*}(E)$ .

Similarly

$\lim_{N-}\inf_{\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})\geqq c$ $sup\mu(C)=c\mu_{\star}(E)$ .

If $E$ belongs to $\overline{S}$, then, by (iv) in \S 2, we have $\mu^{*}(E)=\mu_{*}(E)=\mu(E)$ .
The result follows at once.

We can now state our main theorem.

THEOREM. Let $H$ be a subset of I and let $A=(a_{n})$ be a sequence of
non-negative integers. A necessary and sufficient condition that the se-
quence $A$ be uniformly distributed in the set $H$ is that

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})f(a_{n})=c(A, H)\int f(x)d\mu(x)$

for all real or complex valued integrable functions $f(x)$ defined on $I$,

where $c(A, H)>0$ is a constant depending only on $A$ and $H$.
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Proof. The sufficiency of the condition is obvious. To prove the
necessity, suppose that $A$ is uniformly distributed in $H$ and let $f(x)$ be
an integrable function defined on $I$. There is no $lcss\neg$ of generality in
assuming that $f(x)$ is real valued and non-negative.

Given a positive number $\epsilon$ , there exist partitions
$\Delta=(E_{1}, \cdots, E_{r})$ and $\Delta_{1}=(F_{1}, \cdots, F_{s})$ .

of $I$ such that

$\int fd\mu-\epsilon\leqq\sum_{j=1}^{r}\underline{f}_{j}\mu(E_{j})\leqq\sum_{k=1}^{s}\overline{f_{k}}\mu(F_{k})\leqq\int fd\mu+\epsilon$ ,

where
$\underline{f}_{j}=\inf\{f(x):x\in E_{j}\}$ $(1\leqq j\leqq r)$ ,
$f_{k}^{-}=\sup\{f(x):x\in F_{k}\}$ $(1\leqq k\leqq s)$ .

Here, we may suppose without loss of generality that
$\mu(E_{j})>0$ for all $j=1,$ $\cdots,$ $r$ , and
$\mu(F_{k})>0$ for all $k=1,$ $\cdots,$

$s$ .
Now, since $A=(a_{n})$ is uniformly distributed in $H$, there is an $N_{0}$ de-

pending only on $A,$ $H,$ $\epsilon,$
$\Delta,$ $\Delta_{1}$ such that for all $N>N_{0}$ we have

$|\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap Ej}(a_{n})-c\mu(E_{j})|<\epsilon c\mu(E_{j})$

for $j=1,$ $\cdot,$

$\gamma$ and

$|\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap F_{k}}(a_{n})-c\mu(F_{k})|<\epsilon c\mu(F_{k})$

for $k=1,$ $\cdots,$ $s$ , where we have put $c=c(A, H)70$ . Hence, for $N>N_{0}$ we
have

$\frac{1}{N}\sum_{n--1}^{N}\chi_{H}(a_{n})f(a_{n})=\sum_{j=1}^{r}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap Ej}(a_{n})f(a_{n})$

$\geqq\sum_{j=1}^{r}\underline{f}_{J}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap Ej}(a_{n})$

$\geqq\sum_{j=1}^{r}\underline{f}_{j}c\mu(E_{f})(1-\epsilon)$

$\geqq c(1-\epsilon)(\int fd\mu-\epsilon)$ ,

and similarly

$\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})f(a_{n})=\sum_{k=1}^{s}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap F_{k}}(a_{n})f(a_{n})$
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$\leqq\sum_{k=1}^{s}\overline{f_{k}}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap Fk}(a_{n})$

$\leqq\sum_{k=1}^{s}\overline{f_{k}}c\mu(F_{k})(1+\epsilon)$

$\leqq c(1+\epsilon)(\int fd\mu+\epsilon)$ .
It now follows from the arbitrariness of 6 that

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})f(a_{n})=c\int fd\mu$ ,

which is the desired result.
COROLLARY 1. Let $A=(a_{n})$ be a sequence of integers uniformly dis-

tributed. If the $set$ $A$ is measurable, then $\mu(A)=1$ . Conversely, if a set
$A=(a_{n})0]$ integers is measurable and $\mu(A)=1$ then the sequence $A$ is
uniformly distributed.

Proof. Put $H=I$ and take $f(x)=\chi_{A}(x)$ in the theorem. Then, since
$c(A, I)=1$ , we have

$1=\lim_{N\leftarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{A}(a_{n})=\int\chi_{A}d\mu=\mu(A)$ .

To prove the converse, suppose that $A$ is measurable and $\mu(A)=1$ .
Then the complement $A^{\prime}$ of $A$ is also measurable and $\mu(A^{\prime})=0$ . Since
the sequence $I=(n)$ is uniformly distributed, we find that

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{E}(a_{n})=\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{E\sim A}(n)$

$=\mu(E\cap A)$

$=\mu(E\cap A)+\mu(E\cap A^{\prime})$

$=\mu(E)$

for every $E$ in $\overline{S}$ , and a fortiori for every $E$ in R.
This completes the proof of Corollary 1.
COBOLLARY 2. If a uniformly distributed sequence $A=(a_{n})$ of integers

is uniJormly distributed in a measurable set $H$, then $c(A, H)=1,$ $\mu(H)$

$=1$ . Conversely, if a sequence $A=(a_{n})$ of integers is uniformly distri-
buted in a measurable set $H$ with $\mu(H)=1$ , then $c(A, H)=1$ and the se-
quence $A$ is uniformly distributed.

Proof. Put $H=I$ and take $f(x)=\chi_{H}(x)$ in the theorem. Then

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})=\mu(H)$ .
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On the one hand, if we apply the theorem to $H=H$ and $f(x)=\chi_{I}(x)\equiv 1$ ,
then

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})=c(A, H)$ .

On the other hand, if we apply the theorem to $H=H$ and $f(x)=\chi_{H}(x)$ ,
then

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H}(a_{n})=c(A, H)\mu(H)$ .

Thus
$\mu(H)=c(A, H)=c(A, H)\mu(H)$ ,

whence follows that $c(A, H)=\mu(H)=1$ , since $c(A, H)20$ .
Conversely, if $A$ is uniformly distributed in $H$, then for every set

$E$ in $\overline{S}$

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})=c(A, H)\mu(E)$ .

Since $H$ is measurable and $\mu(H)=1$ , we have $\mu(H^{\prime})=0$ and, for any set $E$,

$0\leqq\lim_{N-}\sup_{\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H^{\prime}\cap E}(a_{n})\leqq\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H^{\prime}}(n)=\mu(H^{\prime})=0$ ,

$i.e$ .
$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H^{\prime}\cap E}(a_{n})=0$ .

It now follows that, for every $E$ in $\overline{S}$ ,

$\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{E}(a_{n})=\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}(\chi_{H\cap E}(a_{n})+\chi_{H^{\prime}\cap E}(a_{n}))$

$=\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{HE}(a_{n})$

$=c(A, H)\mu(E)$ .
Since this holds for every measurable $H$ with $\mu(H)=1$ , we must have
$c(A, H)=c(A, I)=1$ , and the sequence $A$ is uniformly distributed.

As an application of Corollary 2 to the theorem we shall prove the
following

PROPOSITION 4. The function
$e_{a}(x)=\exp(2\pi i\alpha x)$

defined on I is measurable if and only if $\alpha$ is a rational number. If
$\alpha$ is rational then $e_{\alpha}(x)$ is integrable and we have
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$\int e_{\alpha}(x)d\mu(x)=\left\{\begin{array}{ll}1 & for \alpha\equiv 0(mod 1),\\0 & for \alpha^{\frac{\iota}{\mp}0}(mod 1).\end{array}\right.$

Proof. It is easy to see that $e_{\alpha}(x)$ is measurable for rational $\alpha$ . The
result for the integral of $e_{\alpha}(x)$ over $I$ is obvious from the relation

$\int e_{\alpha}(x)d\mu(x)=\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}e_{\alpha}(n)$ .

Suppose now that $\alpha$ is irrational. Since $e_{\alpha}(x)$ is a periodic function
of $\alpha$ with period 1, we may assume without loss of generality that $0$

$<\alpha<1$ . Put $\beta=1/\alpha$ . To show that $e_{a}(x)$ is not measurable, it suffices to
prove that the set $H$ of integers $[\beta n]$ with

$c_{1}\leqq\{\beta n\}<c_{2}$

is not measurable for all real numbers $c_{1},$ $c_{2}$ satisfying $0\leqq c_{1}<c_{2}\leqq 1$ , where
$-\{t\}$ denotes the fractional part of $t$ .

Consider the sequence $A=(a_{n})$ , where $a_{n}=[\beta n]$ . Since $\beta$ is irrational,
$A$ is uniformly distributed (see [4]). Moreover, $A$ is uniformly distributed
in the set $H$. For it is easily verified that

$\lim_{N-\infty}\frac{1}{N}\sum_{n=1}^{N}\chi_{H\cap E}(a_{n})=(c_{2}-c_{1})\mu(E)$

for every $E$ in $R$ ; thus $c(A, H)=c_{2}-c_{1}>0$ . (To see this, note that if $m$ ,
$j$ are integers with $m\geqq 2,0\leqq j\leqq m-1$ then $[\beta n]\equiv i(mod m)$ if and only

if

$\{\frac{\beta n}{m}\}=\frac{j+\{\beta n\}}{m}$ $)$

Now, if the set $H$ were measurable, then we would have

$c(A, H)=1$ , $\mu(H)=1$ ,

by Corollary 2. Suppose that $c(A, H)=c_{2}-c_{1}=1$ . Then $c_{1}=0,$ $c_{2}=1$ , and
hence the sets $A$ and $H$ are identical. However, every measurable set
has (natural) density equal to its measure. Thus

$\frac{1}{\beta}=\mu(A)=\mu(H)=1$ ,

which is a contradiction since $1/\beta=\alpha<1$ . This completes the proof of.
Proposition 4.

Remark. If $\alpha$ is irrational then the function $e_{\alpha}(x)$ , defined in Pro-
position 4, is not integrable. To show this it will be sufficient to prove

that
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$\inf_{\sup^{\{\cos 2\pi\alpha x:}}x\in E\}=\left\{\begin{array}{l}-1\\\end{array}\right.$

for every measurable set $E$ of positive measure. But this is in substance
contained in the proof of Proposition 4. (Of course, a similar result
holds for sin $2\pi\alpha x.$ )

References
[1] S. BANACH: Th\’eorie des op\’erations lin\’eaires, Warszawa, 1932.
[2] R. C. BUCK: The measure theoretic approach to density, Amer. Journ. of Math., vol.

68 (1946), pp. 560-580.
[3] J.W. S. CASSpLS: An introduction to Diophantine aPproximation, Cambridge, 1957.
[4] I. NIVBN: Uniform distribution of sequences of integers, Trans. Amer. Math. Soc., vol.

98 (1961), pp. 52-61.
[5] S. UCHIYAMA: On the uniform distribution of sequences of integers, Proc. Japan Acad.,

$-$vol. 37 (1961), pp. 605-609.

Department of Mathematics,
Hokkaid\^o University

(Received August 20, 1962)


