A REMARK ON MAZUR-ORLICZ'S NORM

By

Shôzô KOSHI

- 1. Let Ω be a measure space with finite measure μ , and let M(u, v) be a real valued function which is defined on $[0, \infty) \times \Omega$ such that
- (M. 1) $0 \le M(u, v) \le +\infty$ for $(u, v) \in [0, \infty) \times \Omega$ with M(0, v) = 0 a.e. $v \in \Omega$;
- (M. 2) M(u, v) is an increasing function and left-hand continuous with $\lim_{u\to 0} M(u, v) < +\infty$ a.e. $v \in \Omega$;
- (M. 3) M(u, v) is a measurable function of u for a fixed $v \in [0, \infty)$;
- (M. 4) $\lim_{u\to\infty} M(u,v) > \lim_{u\to 0} M(u,v)$ a.e. $v \in \Omega$.

Now, we shall consider the function space $L_{M(u,v)}$ whose element f is as follows:

(1)
$$\rho(\alpha f) = \int_{\rho} M(\alpha |f(v)|, v) d\mu < +\infty \quad \text{for some } \alpha > 0.$$

If we identify f and g when f(v)=g(v) except a measure zero set, then we can consider $L_{M(u,v)}$ as a conditionally complete vector lattice with a functional $\rho^{(1)}$:

(2)
$$\rho(f) = \int_{0}^{\infty} M(|f(v)|, v) d\mu.$$

In the case that M(u,v)=M(u) for every $v\in\Omega$, and $\lim_{u\to 0}M(u)=0$, Mazur and Orlicz has considered in his paper [2], the quasi-norm such that

$$||f|| = \inf \left\{ \varepsilon; \ \rho \left(\frac{f}{\varepsilon} \right) < \varepsilon \right\}.$$

- $||\cdot||$ has the following properties:
- (F. 1) $||f+g|| \le ||f|| + ||g||$ for $f, g \in L_{M(u)}$;
- (F. 2) $\alpha \to 0$, then $||\alpha f|| \to 0$ for each $f \in L_{M(u)}$;
- (F. 3) $||f|| \rightarrow 0$, then $||\alpha f|| \rightarrow 0$ for every real number α ;
- (F. 4) $0 \le f \le g$, then $||f|| \le ||g||$;
- $\begin{array}{lll} \text{(F. 5)} & 0 \leq f_1 \leq f_2 \leq \cdots, & \sup_n ||f_n|| < + \infty, & \text{then } \bigcup_{n=1}^{\infty} f_n \in L_{M(u)} & \text{and } ||\bigcup_{n=1}^{\infty} f_n|| \\ & = \sup_n ||f_n||; \end{array}$

¹⁾ This space is an example of quasi-modular spaces. cf. [3].

222 S. Koshi

(F. 6) $||\cdot||$ is complete.

The fact that $||\cdot||$ is complete is considered as a generalization of Riesz-Fisher's theorem concerning the completeness of norms. (cf. [1])

In the case of $L_{M(u,v)}$, we define ρ^* and $\|\cdot\|$ with

(4)
$$\rho^*(f) = \rho(f) - \lim_{\alpha \to 0} \rho(\alpha f) \quad \text{for } f \in L_{M(u,v)}$$

and

$$(5) ||f|| = \inf \left\{ \varepsilon; \ \rho^* \left(\frac{f}{\varepsilon} \right) < \varepsilon \right\} \text{for } f \in L_{\mathtt{M}}(u, v).$$

Then, $||\cdot||$ has the properties (F. 1), (F. 2), (F. 3), (F. 4). But, $||\cdot||$ is not complete in general cases.

We have the following theorem.

Theorem 1. $||\cdot||$ is complete, if and only if $\lim_{u\to 0} M(u,v) = M(v)$ is an integralable function of Ω with respect to μ .

Moreover, we have

Theorem 2. $L_{M(u,v)}$ has a complete quasi-norm if and only if $\lim_{u\to 0} M(u,v) = M(v)$ is an integrable function of Ω with respect to μ .

2. From the definition of ρ and ρ^* , we have

(6)
$$\rho(|f|) = \rho(f), \qquad \rho^*(|f|) = \rho^*(f)$$

and

(7)
$$\rho(\alpha f + \beta g) \leq \rho(f) + \rho(g), \qquad \rho^*(\alpha f + \beta g) \leq \rho^*(f) + \rho^*(g)$$
 for $\alpha + \beta = 1$: $\alpha, \beta \geq 0$.

Hence, for $f_1, f_2, \dots, f_n \in L_{M(u,v)}$,

(8)
$$\rho^*(|f_1|+|f_2|+\cdots+|f_n|) \leq \rho^*(2f_1)+\cdots+\rho^*(2^nf_n).$$

Proof of Theorem 1. It is easily proved that if M(v) is an integrable function of Ω , it follows

(9)
$$\lim_{\alpha \to 0} \rho(\alpha f) < +\infty \quad \text{for each } f \in L_{M(u,v)};$$

especially

(10) $\lim_{\alpha \to 0} \rho(\alpha 1) < +\infty$ where 1 is a characteristic function of Ω .

Let $\{f_n\}$ be a sequence of elements of $L_{M,u,v}$ with $||f_n|| \leq 1/2^n$. From the definition of $||\cdot||$, $||f_n|| \leq 1/2^n$ implies

(11)
$$\rho^*(2^n f_n) \leq \frac{1}{2^n} n=1, 2, \cdots.$$

Hence, $f = \sum_{n=1}^{\infty} |f_n|$ is an element of $L_{M(u,v)}$ because of

(12)
$$\rho(|f_1| + \cdots + |f_n|) \leq \lim_{\alpha \to 0} \rho(\alpha 1) + \rho^*(|f_1| + \cdots + |f_n|)$$
$$\leq \lim_{\alpha \to 0} \rho(\alpha 1) + \sum_i \rho^*(2^i f_i) < + \infty;$$

i.e. $\rho(f) < +\infty$.

Since $L_{M(u,v)}$ is a conditionally complete (in order sence), $\sum_{n=1}^{\infty} f_n$ exists in $L_{M(u,v)}$ (in order sense).

Let $\{g_n\}$ $(n=1,2,\cdots)$ be a Cauchy sequence of $L_{M(u,v)}$. There exists a subsequence $\{g_n\}$ of $\{g_n\}$ with

$$||g_{n_i}-g_{n_{i+1}}|| \leq \frac{1}{2^i}.$$

Hence

$$h = g_{n_1} + (g_{n_2} - g_{n_1}) + \cdots + (g_{n_{\nu}} - g_{n_{\nu-1}}) + \cdots$$

is an element of $L_{M(u,v)}$, and

(13)
$$||h-g_{n_i}|| \leq \frac{1}{2^{i-1}};$$

i.e. g_{n_i} is convergent to h in norm's sense. This shows that $\{g_n\}$ is a convergent sequence.

Now, we shall prove the converse. We shall assume

(14)
$$\int_{\varrho} M(v) d\mu = + \infty.$$

Putting

(15)
$$\inf \{M(v), n\} = M_n(v),$$

we have

(16)
$$\int_{\varrho} M_n(v) d\mu < +\infty.$$

Now, we define the sets as follows:

$$A_n = \{ v \in \Omega \quad ; \quad M_n(v) \neq 0 \}$$

and

$$(18) A = \bigcup_{n=1}^{\infty} A_n.$$

Moreover, if we put

(19)
$$B_n = A_n - A_{n-1} \qquad (A_0 = \phi),$$

then

$$(20) A = \sum_{n=1}^{\infty} B_n.$$

We can choose the function f_n with

$$\rho^*(f_n) \leq \frac{1}{2^n}$$

and

(22)
$$B_n = \{v; f_n(v) \neq 0\}.$$

If we put $f_n^0 = \frac{1}{2^n} f_n$, then we have

$$||f_n^0|| \leq \frac{1}{2^n}.$$

Hence, $g_m = \sum_{n=1}^m f_n^0$ $(m=1, 2, \cdots)$ is a Cauchy sequence. But $\sum_{n=1}^{\infty} f_n^0 \in L_{M(u,v)}$.

This shows that $||\cdot||$ is not complete.

The proof of Theorem 2 is quite similar to that of Theorem 1. Because, if $\int_{a}^{b} M(v)d\mu = +\infty$, then there exists a sequence f_n $(n=1,2,\cdots)$ satisfying (21), (22), (23) for a quasi-norm $||\cdot||^*$ defined on $L_{M(u,v)}$ which is not necessary equal to (5). Similarly to the proof of Theorem 1, $\{f_n\}$ is a Cauchy sequence which is not convergent.

Theorem 1 is essentially equal to Theorem 3.2 in [4]. But the proof here is more simpler than that of Theorem 3.2.

References

- [1] I. AMEMIYA: A generalization of Riesz-Fischer's theorem, Jour. of Math. Soc. of Japan, Vol. 5 (1953), pp. 353-354.
- [2] S. MAZUR-W. ORLICZ: On some classes of linear metric spaces, Studia Math. 17 (1958), pp. 97-119.
- [3] S. Koshi-T. Shimogaki: On quasi-modular spaces, Studia Math. 21 (1961), pp. 15-35.
- [4] S. Koshi-T. Shimogaki: On F-norms of Quasi-modular spaces, Jour. of the Fac. of Sci. Hokkaido University, Series 1, Vol. 15 (1961), pp. 202-218.

Department of Mathematics, Hokkaido University

(Received May 7, 1962)