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In his paper [2], Amitsur has given the condition for a division ring to
have a cyclic extension, and at the same time he has determined the types of
cyclic extensions. Obviously, the earlier works for the commutative case
(Artin-Schreier [3], Albert [1], Witt [12]) and for the non-commutative quadratic
case (Dieudonn\’e [4]) are contained in Amitsur’s one. The purpose of this
paper is to give simple rings an analogue. Concerning the case that the simple
ring is of prime characteristic $p$ and the extension dimension is a power of
$p$ , our attempt will be accomplished in \S 2. While, \S 3 is devoted to the study
of the case that the simple ring is of characteristic $0$ or prmie $p$ not dividing
the extension dimension. Now, we shall begin our study with the following
preliminary section.

\S 1. Notations and prerequisite results.
Throughout the present paper, $R\supset S--$ represent simple rings1) with the

respective centers $C$ and $Z$ such that $R$ is a unital S-module, and $V$ the
centralizer $V_{R}(S)$ of $S$ in $R$ .

I. Let $\rho$ be an automorphism of a ring $A$ and $D$ a $\rho$-derivation2) in $A$ .
Then $A[X;\rho, D]$ means the ring of all (non-commutative) polynomials in the
indeterminate $X$ with the coefficient in $A$ (written on the right side), where
the multiplication is defined by the distributive law and the rule $aX=X(a\rho)+$
$aD(a\in A)$ . In particular, we set $A[X;D]=A[X;1, D],$ $A[X;\rho]=A[X;\rho, 0]$

and $A[X]=A[X;1,0]$ .
(i) Let $q=\sum X^{\nu}a_{\nu}$ be an arbitrary element of $A[X;D]$ . If $c$ is a non-

zero element of $V_{A}(A)$ with $cD=c$ then $gI_{c}^{m}=(q(c_{r}-c_{t})^{m})=m!c^{m}a_{m}$ .
In fact, $gL^{m}=(gc-cg)I_{c}^{m- 1}=(X^{m-\rfloor}mca_{m}+\cdots)L^{m- 1}=m$ ! $c^{m}a_{m}$ by induction.
(ii) If $a$ is an arbitrary element of A then $(X+a)^{n}=\sum_{3=0}^{n}\left(\begin{array}{l}n\\k\end{array}\right)X^{n-k}\Delta_{k}(a)$

in $A[X;D$}, $where’\Delta_{0}$ ($a\}=1$ and $\Delta_{k}\{a$) $=(\Delta_{k-1}(a))D+(\Delta_{k- 1}(a))a^{3)}$ .
$*)$ Domestic Fellow in the Mathematical Institute, Hokkaido University, on leave from

Hokkaido Gakugei University.
1) Throughout the present paper, a simple ring means a (simple) Artinian ring
2) Cf. [6] p. 171.
3) Cf. [5] p. 223.
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An easy induction with respect to (abbreviated $w.r.t.$ ) $n$ will prove the
assertion.

(iii) Let $\tau$ be an endomorphism of $A$ , and $a$ an element of A. The
map $\Phi:\sum X^{y}a,\rightarrow\sum(X+a)^{\nu}(a_{\nu}\tau)$ defines an endomorphism of $A[X;D]$ if and
only if $D\tau-\tau D=\tau\cdot I_{a}$ . Moreover, the endomorphism $\Phi$ is an automorphism
if and only $\iota f\tau$ is an automorphism. In particular, for any $c\in V_{A}(A)$ ,
$\Phi:\sum X^{\nu}a_{d}\rightarrow\sum(X+c)^{\nu}a_{\nu}$ defines an A-ring automorphism of $A[X;D]$ .

Indeed, $\Phi$ is an endomorphism if and only if $ b\Phi X\Phi=(Xb+bD)\Phi$ and
hence $ b\tau\cdot(X+a)=X(b\tau)+(b\tau)D+b\tau\cdot a=(X+a)b\tau+(bD)\tau$ , consequently, $ b(D\tau$

$-\tau D)=(b_{T})a-a(b\tau)=b\cdot\tau I_{a}$ for each $b\in A$ . If $(\Sigma_{\nu- 0}^{n}- X^{\nu}a_{j})\Phi=\Sigma_{\nu=0}^{n}(X+a)^{\nu}(a_{\nu}\tau)$

$=\Sigma_{\nu}(\Sigma_{\mu=0\left(\begin{array}{l}\nu\\\mu\end{array}\right)X^{\nu-\mu}\Delta_{\mu}(a))(a_{d}\tau)=0}^{\nu}$ then $a_{n}\tau=\Delta_{1}(a)a_{n}\tau+a_{n- 1}\tau=\left(\begin{array}{l}7l\\2\end{array}\right)\Delta_{2}(a)a_{n}\tau+$

$\left(\begin{array}{ll}n & -1\\ & 1\end{array}\right)\Delta_{1}(a)a_{n- 1}\tau+a_{n-2}\tau=\cdots=\left(\begin{array}{ll} & n\\n & -1\end{array}\right)\Delta_{n- 1}(a)a_{n}\tau+\left(\begin{array}{ll}n & -1\\n & -2\end{array}\right)\Delta_{n- 2}(a)a_{n-1}\tau+\cdots+$

$\Delta_{1}(a)a_{1}\tau+a_{0}\tau=0$ . Thus, $\Phi$ is an automorphism.
(iv) Let $\rho$ be an automorphism, and $\tau$ an endomorphism ofA respectively.

The map $\Psi:\sum X^{\nu}a_{J}\rightarrow\sum(Xb)^{\nu}(a_{\nu}\tau)$ where $b$ is an arbitrary regular element
of A defines an endomorphism of $A[X;\rho]$ if and only if $\tau\cdot\rho=\rho.\tau$ a where
$\tilde{a}=a_{l}\cdot a_{r}^{-1}$ . Moreover, the endomorphism $\Psi$ is an automorphism if and only
$\iota f\tau$ is an automorphism.

Indeed, $\Psi$ is an endomorphism if and only if $b\Psi X\Psi=b\tau(Xa)=X(b\tau\rho)a=$

$(Xb\rho)\Psi=Xa(b\rho\tau)$ , and hence, $b\tau\rho=b\rho\tau\cdot\tilde{a}$ for each $b\in A$ . Since $(\sum X^{\nu}a_{\nu})\Psi=$

$\sum X^{\nu}(a\rho^{\nu-1}a\rho^{\nu-2}\cdots a\rho\cdot a)(a_{\nu}\tau)$ , an endomorphism $\Psi$ is an automorphism if and
only if $\tau$ is an automorphism.

For each automorphism $\rho$ of $A$ , we set $RN_{\nu}(a;\rho)=a\cdot a\rho\cdots a\rho^{\nu-1}$ and
$LN_{\nu}(a;\rho)=a\rho^{\nu-1}.a\rho\cdots a\rho a(a\in A)$ , and it will be called the right (resp. left)
$\rho$-norm of $a$ if $\rho$ is of order $\nu$ .

Let $\mathfrak{S}=S[X;\rho, D]$ such that $\rho$ is an automorphism. If $I$ is an arbitrary
non-zero ideal of $\mathfrak{S}$ , there exists a uniquely determined monic polynomial $f$

such that $I=f\mathfrak{S}=\mathfrak{S}f$. In fact, $f$ is the monic polynomial in $I$ of the lowest
degree, and called the monic generator of $I$. Now, let $g$ be a monic polynomial
in $\mathfrak{S}$ . If $g$ does not generate $\mathfrak{S}$ but any proper monic left divisor of $g$ does
$\mathfrak{S},$

$g$ is defined to be w-irreducible. If $g$ is central $(i.e. q\in V_{\mathfrak{S}}(\mathfrak{S}))$ and irreducible
then it is w-irreducible while the converse is not true4), and if $S$ is a field5)

4) Let $S$ be the ring of $2\times 2$ matrices over $GF(2)$ with a system of matrix units {$e_{ij}$ ;
$i,j=1,2\}$ and $\mathfrak{S}=S[X]$ . Then $X^{2}+X+1$ is contained in the center of $\mathfrak{S}$ and $X^{2}+X+1=$
$(X+e_{12}+e_{21}+e_{22})(X+e_{11}+e_{J2}+e_{12})$ . On the other hand, as is easily seen, a monic divisor $X+s$
of $X^{2}+X+1$ does not generate $\mathfrak{S}$ if and only if $s\in Vs(S)=GF(2)$ . Thus, $X^{2}+X+1$ is central
and w-irreducible, but not irreducible.

5) Throughout the present paper, “field” means a commutative field.
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and $\mathfrak{S}=S[X]$ then the notion of w-irreducibility coincides with that of irre-
ducibility.

(v) A non-zero ideal I of $\mathfrak{S}$ is maximal $\iota\beta$ and only if the monic
generator of I is w-irreducible.

II. An automorphism group $\mathfrak{G}$ of $R$ is called an F-group if $\mathfrak{G}$ is of
finite order and the subring $I(\mathfrak{G})$ of $R$ generated by all the regular element
$v$ inducing inner automorphism $\tilde{v}$ contained in $\mathfrak{G}$ is a simple ring. Needles
to say, if $R$ is a division ring, any finite automorphism group is an F-group.

(vi) If $\mathfrak{G}$ is an F-group then $S=J(\mathfrak{G}, R)$ (the fixsubring of G) is simple,
$V=I(\mathfrak{G})$ and $[R:S]\leqq\#\mathfrak{G}$ (order of (SS) [9, Lemma 2].

If $\mathfrak{G}$ is an F-group and $[R:J(\mathfrak{G}, R)]=\#\mathfrak{G},$ $R/J(\mathfrak{G}, R)$ is said to be $\mathfrak{G}-$

regular (or strictly Galois $w.r.t$ . $\mathfrak{G}[9]$ ).
(vii) If $R$ is Galois and finite over $S$ with a cyclic Galois group $\mathfrak{G}=(\sigma)$ ,

then $V$ is a field, and hence, by [8, Lemma 1.4], each intermediate ring of
$R/S$ is simple.

For the sake of completeness, we shall give here a short proof. Since
$V$ is Galois and finite over $Z$ contained in the center of $V$, it suffices to prove
that if $R$ is Galois and finite over a subfield $S$ of $C$ than $R=C$ . If 7 is the
order or $\sigma|C^{6)}$ then $\sigma^{\gamma}=\tilde{v}$ with some $v$ . Since $c^{\prime}=v\sigma\cdot v^{-1}\in C$ by $\sigma\tilde{o}=7$)$\sigma\sim$ and
there holds $N_{C^{\prime}C\cap S}(c^{\prime})=\Pi_{0}^{\gamma- 1}c^{\prime}\sigma^{i}=1$ , it is well known that there exists an element
$c\in C$ such that $ c^{\prime- 1}=c^{-1}\cdot c\sigma$ . Setting here $z=vc$ , we see that $ 7=\tilde{z}\sim$. and $z$ is
contained in $Z$ . Hence, $C[z]$ is a subfield of the center of $V$, and so
$R=V=C[z]=C$.

(viii) If $\mathfrak{G}$ is an F-group of order $p^{e}$ such that $J(\mathfrak{G}, R)=S$ and $Z$ con-
tains no primitive p-th roots of 1, then $[R:S]$ is a divisor of $\acute{\prime}\mathfrak{G}$ and $V$

coincides with the field $C[Z]$ [ $7$ , Theorem 5].

Let $R/S$ be G-regular.
(ix) If $\sigma\rightarrow s_{\sigma}$ is a homomorphism of $\mathfrak{G}$ into the additive group of $S$,

then there exists an element $x$ in $R$ such that $ s_{\sigma}=-x+x\sigma$ for all $a$ in $\mathfrak{G}$

[10, Corollary 3].
(x) If $\sigma\rightarrow s_{\sigma}$ is an anti-homomorphism of $\mathfrak{G}$ into $S^{\cdot}7$ ) then there exists

an element $x$ in $R$ such that $ s_{\sigma}=x^{-1}x\sigma$ for all $a$ in $\mathfrak{G}$ [ $10$ , Corollary 2].

III. Let $R/S$ be G-regular. $R$ is called a cyclic extension of $Sw.r.t$ .
$\mathfrak{G}$ if $\mathfrak{G}$ is cyclic. In particular, if $R/S$ is a cyclic extension $w.r.t$ . inner (resp.

outer) $\mathfrak{G}$ , we say that $R/S$ is an inner (resp. outer) cyclic extension. $R/S$ is
defined to be a parallel extension of $Sw.r.t$ . $\mathfrak{G}$ if there exists a G-invariant

6) $\sigma|C$ means the contraction of $\sigma$ to $C$ .
7) Let $A(\ni 1)$ be a ring. Then, $A$ means the multiplicative group consisting of the

regular elements of $A$ .
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simple subring $T$ of $R$ such that $R=S[’\Gamma]$ and $T/T\cap S$ is $\mathfrak{G}|$ T-regular. Obvi-
ously, if $R/S$ is a parallel extension then $\mathfrak{G}$ is isomorphic to $\mathfrak{G}|T$, and hence
$[R:S]=[T:T\cap S]$ . A parallel extension $R=S[T]$ of $Sw.r.t$ . $\mathfrak{G}$ is called
a d-parallel (resp. f-parallel), if $T$ can be a division ring (resp. field). In
particular, an $f$-parallel extension $R=S[T]$ is called a trivial extension if
$T=C$, namely, $R=S\otimes {}_{z}C$. If $R/S$ is a trivial extension, it is obviously outer
Galois and each $\mathfrak{G}$-invariant (simple) intermediate ring of $R/S$ is a trivial
extension of $S$. The following facts are pointed out by H. Tominaga.

(xi) If $R/S$ is outer Galois andfinite and $[S:Z]<\infty$ then $R/S$ is trivial.
In particular, if $R$ is outer Galois and finite over a field then $R$ is a field.

In fact, noting that $[R:C]<\infty$ by [11, Lemma], $V_{R}(S[C])=V=C$, and
that $S[C]=S\otimes {}_{z}C$ is simple, the principal theorem of simple rings yields at
once $R=S[C]$ .

(xii) Assume that $R/S$ is G-regular, $S$ is of characteristic $p$ , and $\#\mathfrak{G}=p^{e}$ .
In order that $R/S$ is a trivial extension, it is necessary and sufficient that
$C$ contains an element $c$ with $T_{\mathfrak{C}\$}(c)=\sum_{\sigma\in \mathfrak{G}}ca\neq 0$ .

If $c$ is an element of $C$ with $T_{\mathfrak{G}}(c)\neq 0$ then $\{ca;a\in \mathfrak{G}\}$ is an S-basis of
$R$ contained in $C$ [ $9$ , Corollary 1], and so, $R=S[C]=S\otimes {}_{z}C$. The converse
is obviously true.

Let $R/S$ be G-regular, and an intermediate ring $T$ of $R/S$ is $\mathfrak{H}$-regular.
If $\mathfrak{H}=\mathfrak{G}|T,$ $T/S$ is said to be regularly embedded in $R/S$ .

\S 2. Cyclic extension of characteristic $p$ with respect to $\mathfrak{G}$ of
order $p^{e}$.

Throughout the present section, we assume that $S$ is of characteristic $p$ .
One of the principal theorem of this section is the following.

Theorem 2. 1. (a) In order that $S$ has a $p$ dimensional cyclic extension,
it is necessary and sufficient that there exist a derivation $D$ of $S$ and an
element $s\in S$ such that (1) $D^{p}-D=I_{s},$ $sD=0$ , and (2) $X^{p}-X-s$ is w-
irreducible in $\mathfrak{S}=S[X;D]$ . More precisely, $\iota\beta$ there exist $D,\dot{s}$ satisfying
(1), (2) then $M=(X^{p}-X-s)\mathfrak{S}$ is a maximal ideal, $R^{*}=S[y]=\mathfrak{S}/M$ is a $p$

dimensional cyclic extension of $S$ with a generating automorphism $a^{*}$ defined
by $ya^{*}=y+1$ , and $D=I_{y}|S$, where $y$ is the residue class of $X$ modulo $M$

Conversely, $\iota\beta R$ is a $p$ dimensional cyclic extension of $Sw.r.t$. $\mathfrak{G}=(\sigma)$ , then
we can find such $D,$ $s$ satisfying (1), (2) that there holds an S-isomorphism
$\varphi^{*}$ : $R^{*}\cong R$ with $\varphi^{*}\cdot a=a^{*}\cdot\varphi^{*}$ .

(b) In order that $S$ has a $p$ dimensional outer cyclic extension, it is
necessary and sufficient that there exist $D$ and $s$ satisfying (1), (2) and (3)
$D|Z=0$ .
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(c) In order that $S$ has a $p$ dimensional inner cyclic extension, it is
necessary and sufficient that there exist $D$ and $s$ satisfying (1) and (4) $zD=z$

for some $z\in Z^{\cdot}$ .
Proof. (a) and (b). To be easily verified, (1) is equivalent with

$X^{p}-X-s\in V.(\mathfrak{S})$ , and so (2) implies the maximality of $M$ $($ \S 1, $(v))$ . Hence,
$R^{\star}=\sum_{0}^{p- 1}y^{i}S$ is a simple ring and $\{1, y, --, y^{p- 1}\}$ forms a linearly indpendent
S-basis of $R^{*}$ . Noting that $X^{p}-X-s$ is left invariant by $\Phi:\sum X^{\nu}s_{\nu}\rightarrow\sum(X$

$+1)^{\supset}s_{\nu}$ , we see that $\Phi$ induces in $R^{*}$ an S-automorphism $a^{*}$ of order $p$ such
that $y\sigma^{*}=y+1$ . If $(\Sigma_{0}^{p- 1}y^{i}s_{i})\cdot a^{*}=\Sigma_{0}^{p- 1}y^{i}s_{i}$ then $\Sigma_{0}^{p-}(y+1)^{i}s_{i}=\Sigma_{0}^{p-1}y^{i}s_{i}$

yields $\left(\begin{array}{ll}p & -l\\p & -2\end{array}\right)s_{p- 1}+s_{p- 2}=s_{p- 2}$ , and hence $s_{p- 1}=0$ . Repeating the same pro-

cedure, we readily obtain $s_{p-1}=\cdots=s_{1}=0$ , namely, $J(a^{*}, R^{*})=S$ . Obviously,
$(a^{*})$ is inner or outer. If $\sigma^{*}$ is inner: $a^{*}=\tilde{z}$ , then $z$ is contained $V_{R^{*}}(S)\cap S=Z$

and $z^{p}\in C^{*}=V_{R^{*}}(R^{*})$ , whence we see that $C^{*}[z]$ is a subfield of $Z$. Moreover,
one may remark that $y\tilde{z}=y+1$ implies $zD=z\neq 0$ , and so $D|Z\neq 0$ . While, if
$a^{*}$ is outer then $(a^{*})$ is obviously an F-group and $D|Z=I_{y}|S\cap C^{*}=0$ . Con-
versely, assume that $R/S$ be a $p$ dimensional cyclic extension $w.r.t$ . $\mathfrak{G}=(a)$ .
Then, in virtue of (ix) of \S 1, there exists an element $x\in R$ such that $xa=x+1$ ,
and then it is easy to see that $R=S[x]=\sum_{0}^{p-1}x^{i}S,$ $s=x^{p}-x\in S$, and $D=I_{x}|S$

is a derivation in $S$ . To be easily seen, $X^{p}-X-s$ is contained in the center
of $\mathfrak{S}$ . Since $\varphi:\sum X^{\nu}s_{\nu}\rightarrow\sum x^{v}s_{\nu}$ is an $S$ (-ring) homomorphism of $\mathfrak{S}$ onto $R$ whose
kernel contains $M$ and $[\mathfrak{S}/M:S]=p,$ $\varphi^{*}:$ $\sum y^{i}s_{i}\rightarrow\sum x^{\prime i}s_{i}$ is an S-isomorphism
of $R^{*}$ onto $R$ such that $\varphi^{*}\cdot\sigma=\sigma^{*}\cdot\varphi^{*}$ Hence, $M$ is maximal, and so
$X^{p}-X-s$ is w-irreducible, completing the proof of (a). Now, (b) is obvious
by the above proof.

(c) By the above proof, it suffices to prove that $X^{p}-X-s$ is w-
irreducible. If $g$ is a proper monic left divisor of the central monic polynomial
$X^{p}-X-s$ , then deg $g=m<p$ and $gI_{z}^{m}=m!z\neq 0$ $($ \S 1, $(i))$ , which proves $(g)=\mathfrak{S}$ ,
namely, $X^{p}-X-s$ is w-irreducible.

Corollary 2. 1. The following conditions are equivalent to each other:
(1) $S$ has a $p$ dimensional trivial cyclic extension.
(2) There exists an element $s\in Z$ such that $X^{p}-X-s$ is irreducible in

$Z[X]$ .
(3) There exist an inner derivation $D$ and $s$ satisfying (1), (2) in

Theorem 2. 1.
Proof. (1) $\rightarrow(2)$ . If $R$ is a $p$ dimensional trivial cyclic extension of $S$

$w.r.t$ . $(a)$ , then $C$ is a $p$ dimensional cyclic extension field of $Z$. Hence, there
exists an element $s\in Z$ such that $X^{p}-X-s$ is irreducible in $Z[X]$ .

(2) $\rightarrow(3)$ . If we set $D=0$ , our implication is trivial.
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(3) $\rightarrow(1)$ . If $D=I_{8^{\prime}}$ for some $s^{\prime}\in S$, then $c=y-s^{\prime}$ is contained in the
center $C^{*}$ of $R^{*}$ , and $c\sigma^{*}=c+1$ . Hence, $R^{*}=\Sigma_{0}^{p- 1}c^{i}S=S\otimes {}_{z}C^{*}$ .

Corollary 2. 2. If $R/S$ is an abelian extension $w.r$. t. $\mathfrak{G}^{8)}$ of dimension
$p^{e}$ , and $Z$ is perfect, then it is outer. If moreover, $[S:Z]<\infty$ then it is
trivial, in particular, if $S=Z$ then $R=C$.

Proof. Since any derivation in the perfect field $Z$ is $0$ , the case $e=1$ is
obvious by Theorem 2. 1. Assume now $e>1$ and the validity of our assertion
for $e-1$ . If $\mathfrak{G}$ contains an inner automorphism different from 1, then $\mathfrak{G}$

contains an inner F-group $\mathfrak{H}$ of order $p$ (\S 1, (viii)) and $T=J(\mathfrak{H}, R)$ is abelian
$w.r.t$ . $\mathfrak{G}(T)^{9)}$ . Noting here that $T/S$ is outer Galois by induction hypothesis,
we see that the center of $T$ is perfect, and hence $R/T$ is outer, which is
a contradiction. The second one is a direct consequence of the former and
(xi) of \S 1.

Corollary 2. 3. Assume that $S$ is a division ring. In order that $S$

has a $p$ dimensional cydic division ring extension, it is necessary and sufficient
that there exist $D$ and $s$ satisfying (1) in Theorem 2.1 and (2) $X^{p}-X-s$

is irreducible. The precise statment corresponding to that in Theorem 2. 1
is valid.

Proof. Since (1) and (2) imply that $M$ is a maximal ideal of an integral
domain $\mathfrak{S},$ $R^{*}$ is a division ring.

Corollary 2.4. (a) $S$ has a $p$ dimensional pamllel cyclic extension $\iota\beta$

and only $\iota f$ there exist $D,$ $s$ satisfying (1), (2) in Theorem 2.1 and (3) there
exists a simple subring $W$ of $S$ containing $s$ such that $WD\subseteqq W$ and $X^{p}-X-s$

is w-irreducible in $W[X;D]$ .
(b) $S$ has a $p$ dimensional d-parallel cyclic extension $\iota\beta$ and only $\iota\beta$

there exist $D,$ $s$ satisfying (1), (2) in Theorem 2.1 and (3) there exists a
division subring $W$ of $S$ containing $s$ such that $WD\subseteqq W$ and $X^{p}-X-s$ is
irreducible in $W[X;D]$ .

(c) $S$ has a $p$ dimensional f-parallel cyclic extension if and only $\iota\beta$

there exist $D,$ $s$ satisfying (1), (2) in Theorem 2.1 and $(3^{\prime\prime})$ there exists a
subfield $W$ of $S$ containing $s$ such that $WD=0$ and $X^{p}-X-s$ is w-irreducible
in $W[X;D]$ .

Proof. (a) If $\tau*$ is the subring of $R^{*}$ consisting of all the elements
$\Sigma_{0}^{p-1}y^{i}s_{i}$ with $s_{i}\in W$, then $R^{*}=S[T^{*}]$ and $\tau*$ is W-isomorphic to the simple
ring $W[X;D]/M_{W}$ , where $M_{W}=(X^{p}-X-s)W[X;D]$ (Theorem 2.1). Since
$\sigma^{*}|T^{*}$ is an automorphism of $\tau*$ with $J(a^{*}|T^{*}, T^{*})=T^{*}\cap S=W,$ $T^{*}/T^{*}\cap S$

8) $R/S$ is called an abelian extension $w.r.t$ . $\mathfrak{G}$ if $R/S$ is $\mathfrak{G}$-regular and $\mathfrak{G}$ is abelian.
9) $\mathfrak{G}(T)=$ {$\sigma\in \mathfrak{G};t\sigma=t$ for all $t\in T$}.
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is $(a^{*}|T^{*})$-regular again by Theorem 2.1. Conversely, if $R=S[T]$ is a $p$

dimensional parallel cyclic extension of $Sw.r.t$ . $(a)$ , then $T/T\cap S$ is a $p$

dimensional cyclic extension $w.r.t$ . $(a|T)$ . Hence, there exists $t\in T$ with
$ta=t+1$ (\S 1, (ix)). If $D=I_{t}|S,$ $s=t^{p}-t$ and $W=T\cap S$, then our assertion is
easy by the proof of Theorem 2.1.

(b) Combining (a) with Corollary 2.3, we readily obtain (b).
(c) Noting that $W[X;D]=W[X]$ by $WD=0$ , the proof is obvious by

the proof of (a).

If $S$ is a field and has a $p$ dimensional cyclic extension field, then, as is
well known, $S$ has a $p^{e}$ dimensional cyclic extension field for each positive
integer $e$ . However, as was refered to in [2], the same will be seemed no
longer valid for simple rings. Concerning the regular embedding of a $p^{e}$

dimensional cyclic extension, we can prove following theorem.
Theorem 2. 2. Let $T/S$ be a cyclic extension $w.r$. $t$. $\mathfrak{H}=(\tau)$ of order

$p^{e}$ . In order that $T$ is regularly embedded in some $p^{e+1}$ dimensional cyclic
extension $R/S$, it is necessary and sufficient that there exist a derivation $D$

in $T$ and elements $a,$ $b\in T$ such that (1) $D^{p}-D=I_{a},$ $aD=0$ , (2) $X^{p}-X-a$

is w-irreducible in $T[X;D]$ , (3) $\tau^{-1}\cdot D\cdot\tau-D=I_{b}$ , (4) $T_{\mathfrak{H}}(b)\neq 0$ , and (5)
$\Delta_{p}(b)-b=a(\tau-1)$ .

Proof. By (iii) of \S 1, (3) means that $\Phi:\sum X^{\nu}t_{\nu}\rightarrow\sum(X+b)^{\nu}(t_{b}\tau)$ defines in
$\mathfrak{T}=T[X;D]$ an automorphism, whose order is $p^{e+1}$ by (4). Next, (1) and (2)
shows that $M=(X^{p}-X-a)\mathfrak{T}$ is a maximal ideal and $R^{*}=\mathfrak{T}/M$ is a $p$ di-
mensional simple ring extension of $T$ (Theorem 2.1). By a brief computation
with (5) and (ii) of \S 1, we can see that $X^{p}-X-a$ is left invariant by $\Phi$ , and
hence $\Phi$ induces in $R^{*}$ an S-automorphism $a^{*}$ of order $p^{e+1}$ such that $ya^{*}=$

$y+b$ and $ a^{*}|T=\tau$ , where $y$ is the residue class of $X$ modulo $M$. If $\sum y^{i}t_{t}=$

$(\sum y^{i}t_{i})\tau^{*p}$

’ then $\sum y^{i}t_{i}=\sum(y+T_{\mathfrak{H}}(b))^{i}t_{i}=\Sigma_{i}(\Sigma_{k=0}^{i}\left(\begin{array}{l}i\\k\end{array}\right)y^{i- k}\Delta_{k}(T_{\mathfrak{H}}(b))t_{i}$ (\S 1, (ii)),

whence it follows $t_{p-2}=(p-11)\Delta_{1}(T_{\mathfrak{H}}(b))t_{p-1}+t_{p-2}$ , namely, $(p1-1)\Delta_{1}(T_{\mathfrak{H}}(b))t_{p- 1}$

$=0$ . Since $sT_{\mathfrak{H}}(b)-T_{\mathfrak{H}}(b)s=T_{\mathfrak{H}}$ (sb-bs) $=T_{\mathfrak{H}}(s(\tau^{-1}\cdot D\cdot\tau-D))=T_{\mathfrak{H}}(sD\tau-sD)$

$=0$ for each $s\in S,$ $T_{\mathfrak{H}}(b)$ is an element of $Z^{\cdot}$ , and so we obtain $t_{p- 1}=0$ .
Repeating the same arguments, we readily obtain $t_{p-1}=\cdots=t_{1}=0$ , which proves
evidently $J(\sigma^{*p^{e}}, R^{*})=T$. Hence, $R^{*}/T$ is a cyclic extension $w.r.t$ . $(a^{*p^{P}})$ and
$J(\sigma^{*}, R^{*})=J(a^{*}|T, T)=S$. If $R^{*}/T$ is outer, the unique minimal subgroup
$(a^{*p^{o}})$ of $\mathfrak{G}=(a^{*})$ is outer, and hence so is $\mathfrak{G}$ itself. On the other hand, if
$R^{*}/T$ is inner then $T$ contains the center $C^{*}$ of $R^{*}$ and there exists a divisor
$p^{q}$ of $p^{e}$ such that $a^{*p^{o}}=\tilde{v}’,$ $v\in V^{*}=V_{R^{*}}(S)$ and $a^{*i}\leq\overline{V}^{*}$ for each positive
$i<p^{q}$ . Obviously, $v$ is contained in $ J(\tilde{v}^{e-q}, R^{*})\cap V^{*}=J(a^{*p^{e}}, R^{*})\cap V^{*}=T\cap$
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$V^{*}=V_{T}(S)$ . Since $V_{T}(S)$ is a field (\S 1, (vii)), $C^{*}[v]$ is its subfield. Hence,
in either case, $\mathfrak{G}$ is an F-group. Conversely, assume that $T$ is regularly
embedded in a cyclic extension $R/Sw.r.t$ . $\mathfrak{G}=(\sigma)$ of order $p^{e+1}(a|T=\tau)$ . Since
$V$ is a field (\S 1, (vii)) and $[R:T]=p,$ $R/T$ is cyclic $w.r.t$ . $\mathfrak{G}(T)=(a^{p^{e}})$ . Then,
there exists an element $x\in R$ such that $x\sigma^{p^{o}}-x=1$ (\S 1, (ix)). Evidently,
$b=xa-x$ is contained in $T$ and $T_{\mathfrak{H}}(b)=1$ . Moreover, one will easily see
that $I_{x}$ induces a derivation $D$ in $T$. If we set $a=x^{2)}-x$ then, patterning
after the proof of Theorem 2.1, one will easily complete the proof.

\S 3. Cvclic extension of characteristic $0$ or prime $p$ not dividing
the extension dimension.

Throughout the present section, we assume that $Z$ contains a primitive
m-th root $\zeta$ of 1, and a cyclic extension $R$ of $S$ will mean such one that the
center $C$ of $R$ contains $\zeta$ . At first, we shall deal with an $m$ dimensional
cyclic extension of $S$.

Lemma 3. 1 Let $\rho$ be an automorphism of S. If there exists $z_{0}\in Z^{\cdot}$

with $ z_{0}\rho=z_{0}\zeta$ , then any polynomial in $S[X;\rho]$ of degree at most $m-1$ with
the non-zero constant term genentes $S[X;\rho]$ .

Proof. Let $f=X^{k}s_{k}+\cdots+s_{0}\in S[X;\rho](0\leqq k<m, s_{0}\neq 0)$ . Since the con-
stant term of $zf-fz_{0}\zeta^{k}$ is $s_{0}z_{0}(1-\zeta^{k})\neq 0$ and deg $(z_{0}f-fz_{0}\zeta^{k})<k$ , an easy
induction will complete the prooi.

The next corresponds to Theorem 2.1.
Theorem 3. 1. (a) In order that $S$ has an $m$ dimensional cyclic ex-

tension, it is necessary and sufficient that there exist an automorphism $\rho$ of
$S$ and $s_{0}\in S^{\cdot}$ such that (1) $\rho^{m}=s_{0}^{1}\sim,$ $s_{0}\rho=s_{0},$ $\zeta\rho=\zeta$ , and (2) $X^{k}-s_{0}$ is w-irre-
ducible in $\mathfrak{S}_{k}=S[X;\rho^{k^{l}}]$ , where $k$ ranges over all the positive divisor of
$m$ and $k^{\prime}=m/k$ . More precisely, if there exist $\rho,$

$s_{0}$ satisfying (1), (2), then
$M=(X^{m}-s_{0})\mathfrak{S}$ is maximal ideal of $\mathfrak{S}=S[X;\rho]$ and $R^{*}=S[y]=\mathfrak{S}/M$ is
a cyclic extension of $S$ with a generating automorphism $a^{*}$ of order $m$

defined by $ ya^{*}=y\zeta$ , where $y$ is the residue class of $X$ modulo M. Conversely,
if $R/S$ is an m-dimensional cyclic extension $w.r.t$. $\mathfrak{G}=(a)$ , then we can find
$\rho,$ $s_{0}$ satisfying (1), (2) that there holds an S-isomorphism $\varphi^{*}:$ $R^{*}\cong R$ with
$\varphi^{*}\cdot a=a^{*}\cdot\varphi^{*}$ .

(b) In order that $S$ has an $m$ dimensional outer cyclic extension, it is
necessary and sufficient that there exist $\rho$ and $s_{0}$ satisfying (1), (2) and (3)
$\iota\beta\rho^{i}=\hat{s}$ then $s\rho=s$ .

(c) In order that $S$ has an $m$ dimensional inner cyclic extension, it is
necessary and sufficient that there exist $\rho$ and $s_{0}$ satisfying (1) and (4)
$ z_{0}\rho=z_{0}\zeta$ for some $z_{0}\in Z^{\cdot}$ .
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Proof. (a) and (b). Let $k$ be an arbitrary positive divisor of $m$ , and $k^{\prime}=$

$m/k$ . To be easily seen, $\rho^{m}=s_{0}^{-1}\sim$ and $s_{0}\rho=s_{0}$ imply that $X^{k}s_{0}^{-1}-1$ is contained in
the center of $\mathfrak{S}_{k}=S[X;\rho^{k^{l}}]$ , and conversely. Hence, by (2), $M_{k}=(X^{k}s_{0}^{1}-1)\mathfrak{S}_{k}$

$=(X^{k}-s_{0})\mathfrak{S}_{k}$ is maximal, and so $R_{k}^{*}=S[y_{k}]=\mathfrak{S}_{k}/M_{k}$ is simple ring and
$\{1,y_{k},y_{k}^{2},\cdots,y_{k}^{k-1}\}$ forms an S-basis of $R_{k}^{*}$ , where (regular) $y_{k}$ is the residue
class of $X$ modulo $M_{k}$ . Since $X^{k}-s_{0}\in \mathfrak{S}_{k}$ is left invariant by the automorphism
$\Psi_{k}$ : $\sum X^{i}s_{i}\rightarrow\sum(X\zeta^{k^{\prime}})^{i}s_{i}$ (\S 1, (iv)), $\Psi_{k}$ induces in $R_{k}^{*}$ an S-automorphism $a_{k}^{*}$ of
order $k$ such that $y_{k}\cdot\sigma_{k}^{*}=y_{k}\zeta^{k^{\prime}}$ and $J(ak, Rk)=S$ . Now, let $k$ be especially
the least positive integer such that $\sigma_{m}^{*}k$ is inner: $\sigma_{m}^{*}=\tilde{v}k$ If $a^{*}=a_{m}^{*},$ $y=y_{m}$

and $R^{*}=R_{m}^{*}$ , then $T^{*}=J(\sigma^{*}, R^{*})=\sum y^{k^{\prime}}Sk$ Noting here that $R_{k}^{*}$ is a simple
ring, we see that $\varphi_{k}^{*}$ : $\sum y_{k}^{i}s_{i}\rightarrow\sum y^{k^{\prime}=}\cdot s_{i}$ defines an S-isomorphism of $R_{k}^{*}$ onto
$\tau*$ . Since $v$ is contained in $J(\tilde{v}, R^{*})\cap V_{R*}(T^{*})=V_{T^{*}}(T^{*})$ and $v^{k}‘\in C^{*}=$

$V_{R^{*}}(R^{*}),$ $C^{*}[v]$ is a subfield of the center of the simple ring $T^{*}$ , which proves
that $(\sigma^{*})$ is an F-group. Needless to say, $\zeta y=y(\zeta\rho)=y\zeta$ , namely, $\zeta$ is con-
tained in $C^{*}$ . Now, let $s=\sum y^{i}u_{i}(u_{i}\in S)$ be an arbitrary non-zero element of
$V^{*}=V_{R^{*}}(S)$ . Since $y^{i}S=Sy^{i}$ , every $y^{i}u_{i}$ is contained in $V^{*}$ . Hence, if $u_{i}$ is
non-zero then $(y^{i}u_{i})S=S(y^{i}u_{i})S=y^{i}(S\rho^{i})u_{i}S=y^{i}S$, where we see that $u_{\dot{\iota}}$ is
regular and $\rho^{i}=\tilde{u}_{i}$ . Accordingly, if (3) is satisfied then $u_{i}\rho=u_{i}$ , which proves
obviously $V^{*}=C^{*}$ . Conversely, assume that $R/S$ is an $m$ dimensional cyclic
extension $w.r.t$ . $\mathfrak{G}=(a)$ . Then, there exists $x\in R$ such that $ x\sigma=x\zeta$ and
$R=\Sigma_{0}^{m- 1}x^{i}S$ is a direct sum by \S 1, (x) and [10, Corollary 1]. If we set
$\rho=\tilde{x}^{-1}|S$ and $s_{0}=x^{m}$ , one will easily see that $\rho$ is an automorphism of $S,$ $s_{0}$ is
in $S$, and (1) is satisfied. Moreover, if $k$ is an arbitrary positive divisor of
$m$ , then $X^{k}s_{0}^{-1}-1$ is contained in the center of $\mathfrak{S}_{k}$ and $R_{k}$ is isomorphic to
the simple ring $J(\sigma^{k}, R)=\sum x^{k^{\prime}i}S$, which proves (2). Finally, assume that $R/S$

is outer and $\rho^{i}=s\sim$ . By the validity of (1), we may assume that $0\leq i<m$ .
Since $\rho^{i}=\tilde{x}^{-i}|S$ , it follows $x^{i}s\in V=C$ , and so $x^{i+1}s\rho=x^{i}sx=x^{i+1}s$ , namely
$s\rho=s$ .

(c) Under the above notations, the monic polynomial $X^{m}-s_{0}$ is w-
irreducible by Lemma 3. 1. Since $z_{0}yz_{0}^{-1}=y(z_{0}\rho)\cdot z_{0}^{-}$ $=y\zeta$ , we obtain $\sigma^{*}=\tilde{z}_{0}$ .
Accordingly, $V=J(\tilde{z}_{0}|V, V)$ coincides with the field $Z$. Hence $(a^{*})=(\hat{z}_{0})$ is an
F-group. Conversely, assume that $R/S$ is an $m$ dimensional inner cyclic
extension $w.r.t$ . $\mathfrak{G}=(\check{z}_{0})$ . Noting here that $V=Z,$ $z_{0}$ is in $Z$ and $z_{0}\rho=x^{-1}z_{c}x$

$=x^{-1}(x\tilde{z}_{0})z_{0}=x^{-1}(x\zeta)z_{0}=z_{0}\zeta$ .
Corollary 3. 1. The following conditions are equivalent to each other:
(1) $S$ has an $m$ dimensional trivial cyclic extension.
(2) There exists an element $z_{0}$ in $Z$ such that $z_{0}^{1/m}$ is not contained

in $Z$.



On Cyclic Extensions of Simple Rings 83

(3) There exist an inner automorphism $\rho$ of $S$ and $z_{0}$ in $S$ satisfying
(1), (2) in Theorem 3.1.

Proof. The implication (1) $\rightarrow(2)\rightarrow(3)$ are obvious. (Note that $\zeta$ is con-
tained in $Z$ ).

(3) $\rightarrow(1)$ . Under the notations in the proof of Theorem 3.1, if $\rho=s\sim$ then
$c=ys$ is contained in $C^{*}$ and $ c\rho=c\zeta$ . Hence, $R=S[c]=S\otimes {}_{z}C^{*}$ .

The next corollary will be almost evident and it corresponding to Corol-
lary 2.3.

Corollary 3. 2. Let $S$ be a division ring. In order that $S$ has an m-
dimensional cyclic division ring extension, it is necessary and sufficient that
there exist $\rho,$ $s_{0}$ satisfying (1) in Theorem 3.1 and (2) $X^{m}-s_{0}$ is irreducible
in $S[X;\rho]$ . The precise statment corresponding to that in Theorem 3.1 is
valid.

Concerning parallel extensions of the present types, we have
Corollarv 3.3. (a) $S$ has an $m$ dimensional parallel cyclic extension $\iota\beta$

and only if there exist $\rho,$ $s_{0}$ satisfying (1), (2) in Theorem 3.1 and (3) there
exists a simple subring $W$ of $S$ containing $s_{0}$ such that $W_{\rho\overline{\equiv}}W,$ $ V_{W}(W)\ni\zeta$

and $X^{k}-s_{0}$ is w-irreducible in $\mathfrak{W}_{k}=W[X;\rho^{k^{\prime}}]$ , where $k$ ranges over all the
positive divisor of $m$ and $k^{\prime}=m/k$ .

(b) $S$ has an $m$ dimensional d-parallel cyclic extension if and only $\iota\beta$

there exist $\rho,$ $s_{0}$ satisfying (1), (2) in Theorem 3.1 and (3) there exists a
division subring $W$ of $S$ containing $s_{0}$ such that $W\rho\subseteqq W,$ $ V_{W}(W)\ni\zeta$ and
$X^{m}-s_{0}$ is irreducible in $W[X;\rho]$ .

(c) $S$ has an $m$ dimensional f-parallel cyclic extension $\iota f$ and only $\iota\beta$

there exist $\rho,$ $s_{0}$ satisfying (1), (2) in Theorem 3.1 and $(3^{\prime\prime})$ there exists
a subfield $ W\ni\zeta$ of $S$ containing $s_{0}$ such that $\rho|W=1$ and $X^{m}-s_{0}$ is w-
irreducible in $W[X;\rho]$ .

Proof. (a) is almost evident, and irreducibility (resp. w-irreducibility) of
only $X^{m}-s_{0}$ in (b) (resp. in $(c)$ ) is valid from Corollary 3.2.

Corresponding to Theorem 2.2, the regular embedding problem for the
present case is solved in the following way.

Theorem 3. 2. Let $T/S$ be an $m^{\prime}$ dimensional cyclic extension $w.r.t$.
$\mathfrak{H}=(\tau)$ such that $ V_{T}(T)\ni\zeta$ . In order that $T/S$ is regularly embedded in
some $m^{\prime}m$ dimensional cyclic extension, it is necessary and sufficient that there
exist an automorphism $\rho$ of $T$ and regular elements $t_{0},$ $t_{1}$ of $T$ such that (1)
$\rho^{m}=t_{0}^{-1}\sim,$ $t_{0}\rho=t_{0},$ $\zeta\rho=\zeta,$ (2) $X^{m}-t_{0}$ is w-irreducible in $T[X;\rho],$ (3) $\tau^{-1}\cdot\rho^{-1}.\tau\cdot\rho$

$=t_{1}\sim,$ (4)$RN_{m^{\prime}}(t_{1};\tau)=\zeta,$ (5) $t_{0}\tau=t_{0}LN_{m}(t_{1}, \rho)$ , and (6) if $(u_{0}, u_{1}, \cdots, u_{m- 1})$ is a non-
zero $1\times m$ matrix with entries in $T$ and $s\rho^{i}u_{i}=u_{i}s$ for all $s\in S(i=0,1, \cdots,m-1)$ ,
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then the simultaneous equations $\sum_{0}^{k}u_{k-i}\rho^{i}w_{i}+\sum_{i=k+1}^{m-1}t_{0}u_{m+3-i}\rho^{i}w_{i}=\delta_{0k}(k=$

$0,1,$ $\cdots,$ $m-1$ ) have a solution in $T$.

Proof. By (iv) of \S 1, (3) means that $\Psi:\sum X^{i}t_{l}^{\prime}\rightarrow\sum(Xt_{1})^{i}(t_{i}^{\prime}\tau)$ defines in
$\mathfrak{T}=T[X;\rho]$ an automorphism, whose order is $m^{\prime}m$ by (4). Next, (1) and (2)

show that $M=(X^{m}-t_{0})\mathfrak{T}$ is a maximal ideal of $\mathfrak{T},$ $R^{*}=\mathfrak{T}/M$ is a simple ring
with $\{1, y, \cdots, y^{m- 1}\}$ as an S-basis, where $y$ is the residue class of $X$ modulo
$M$. Since (5) implies that $X^{m}-t_{0}$ is left invariant by $\Psi,$ $\Psi$ induces in $R^{*}$ an
S-automorphism $a^{*}$ of order $m^{\prime}m$ such that $ya^{*}=yt_{1}$ and $ a^{*}|T=\tau$ . To be
easily seen, $J(\sigma^{*m^{\prime}}, R^{*})=T$, and so $J(\sigma^{*}, R^{*})=S$. Finally, if $v=\sum y^{i}u_{i}$ is
a non-zero element of $V_{R^{*}}(S)$ then $t\rho^{i}u_{i}=u_{i}t$ and (6) secures the existence of
the inverse of $v$ , which means that $V_{R^{*}}(S)$ is a division ring.

Conversely, assume that $T/S$ is regularly embedded in some $m^{\prime}m$ di-
mensional cyclic extension $R/Sw.r.t$ . $\mathfrak{G}=(\sigma)$ , and set $\tau=\sigma|T$. Since $V$ is
a field (\S 1, (vii)) and $[R:T]=m,$ $R/T$ is cyclic extension $w.r.t$ . $\mathfrak{G}(T)=(a^{n})$ .
Then, there exists an element $x\in R$ such that $ xa^{m^{\prime}}=x\zeta$ $($ \S 1, $(x))$ . Evidently,
$t_{1}=x^{-1}\cdot xa$ is contained in $T$ and $ RN_{m^{\prime}}(t_{1} ; \tau)=x^{-1}xa^{m^{\prime}}=\zeta$ . Moreover, $\tilde{x}^{-1}$

induces an automorphism $\rho$ of $T$. If we set $t_{0}=x^{m}$ then, patterning after the
proof of Theorem 3.1, we can easily see that the validity of the conditions
(1), (2), (3), (5) and (6).

The condition (6) in Theorem 3.2 was needed only to see that the cen-
tralizer of $S$ in the extension considered is simple. Accordingly, combining
Theorem 3.2 with Corollary 3.2, we readily obtain the following:

Corollary 3.4. Let $T/S$ be an $m^{\prime}$ dimensional cyclic division ring
extension $w.r.t$. $\mathfrak{H}=(\tau)$ such that $ V_{T}(T)\ni\zeta$ . In order that $T/S$ is regularly
embedded in some $m^{\prime}m$ dimensional cyclic division ring extension, it is neces-
sary and sufficient that there exist an automorphism $\rho$ of $T$ and non zero
element $t_{0},$ $t_{1}$ of $T$ such that (1) $\rho^{m^{\sim}}=t_{0}^{-1},$ $t_{0}\rho=t_{0},$ $\zeta\rho=\zeta,$ (2) $X^{m}-t_{0}$ is irreducible
in $T[X;\rho],$ (3) $\tau^{-1}\cdot\rho^{-1}\cdot\tau\cdot\rho=\check{t}_{1},$ (4) $ RN_{m^{\prime}}(t_{1} ; \tau)=\zeta$ , and (5) $t_{0}\tau=t_{0}LN_{m}(t_{1} ; \rho)$ .
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