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Particle path length estimates for the Navier arrow\tilde{i}

Stokes equations in three space time \backslash sims

By G. F. D. DUFF
(Received January 14, 1983) - f

Abstract. Flows with finite energy of a viscous incompressible fluid in a
domain of three dimensional space are studied to estimate particle path
lengths. In the general case a bound is given for the essential maximum
path length as time Tarrow\infty . If the domain satisfies a Poincar\’e inequality,
then as T– \infty all particle motions are essentially uniformly bounded. Some
additional asymptotic results are also given.

1. Introduction

In this paper are given results on the path lengths of the motions of
fluid elements or point masses, which we may refer to as particles.

For three space dimensions solutions of the Navier Stokes equations may
be turbulent in the sense of Leray [7] and all calculations must be made with
allowance for this possibility which remains not completely decided despite
many advances in the mathematical theory of nonlinear fluid motions. Any
turbulent solutions may develop singularities which however can only occu^{Jr}

on sets of low dimension in space and time [2, 8] . One must therefore
work with integrals that remain convergent in the presence of such possible
singularities. After a sufficiently long time interval, the singularities can no
longer appear, and emphasis is then on asymptotic behaviour. We show that
motions generated by initial values with finite energy give rise to finite path
lengths over bounded time intervals. An asymptotic estimate is given for
large elapsed times in the general case of a domain in R^{3} that satisfies a
cone condition. When the domain also satisfies a Poincar\’e inequality, it is
shown that the path lengths are bounded as Tarrow\infty . These results extend
and complete those announced in [3] and are in turn based on a technique
used by Foias, Guillop\’e and Temam in [4]. For domains with boundary
we use orthogonal projection on the subspace of solenoidal vector functions
that vanish on the boundary, and this is essentially our ot\dot{h}er necessary
condition on the domains considered. The method yields an estimate free of
boundary terms as stated in Theorem 1 below. This is applied to the path
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length estimations in Theorems 2, 3 and 4. For completeness we include
proofs of certain key lemmas.

2. The Navier Stokes equations and the initial value problem

Let \Omega\subseteq R^{3} be a region in which solutions u=\{u_{i}(x, t)\} are defined for
the Navier Stokes equations for t\geq 0 . We assume such solutions exist, are
globally weak and locally regular except on certain singular sets [2, 5, 6, 7, 9].

“fhey satisfy

\frac{\partial u_{i}}{\partial t}+u_{k}\frac{\partial u_{i}}{\partial x_{k}}=-\frac{\partial p}{\partial x_{i}}+\nu\Delta u_{i} , i=1,2,3

and \frac{\partial u_{k}}{\partial x_{k}}=0 ,

where summation over repeated indices such as k is understood for k=1,2,3 .
Here \nu is the constant viscosity and \Delta the Laplacian differential operator.
The boundary conditions of no sh.p are u_{i}(x_{j}, t)=0 for \{x_{f}\}\in\partial\Omega , while the
initial conditions are

u_{i}(x_{f}, 0)=u_{i0}(x_{j}) . i=1,2,3
We assume

||u_{0}||_{2}^{2}= \int_{0}\sum_{i=1}^{3}u_{i0}^{2}(x_{j})dV < \infty

as the hypothesis of finite initial energy. We use the Lebesgue p-norm

||v||_{p}=[ \int_{\rho}\sum_{i=1}^{3}|v_{i}|^{p}dV]^{1/p} , p\geq 1

for vectors v, and similar norms for derivatives.

The Sobolev inequality in three space dimensions is

||u||_{\frac{3p}{3-p}}\leq C ||\nabla u||_{p} , 1\leq p<3

where \nabla u denotes the gradient u_{i,j}= \frac{\partial u_{i}}{\partial x_{j}}

Note that the constant in this inequality is independent of the domain \Omega , [6].

Let L^{2}(\Omega) be the Hilbert space of vector functions u, v with inner

product \int_{\rho}u\cdot vdV=\int_{\Omega}\sum_{i=1}^{3}u_{i}v_{i}dV. Consider the closure \mathscr{L}^{2} of the divergence

free (or solenoidal) vector functions of compact support in 12. This set is
a linear subspace of \mathscr{L}^{2} that is orthogonal to the space of gradient vectors
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in \Omega , for if v_{i}= \frac{\partial f}{\partial x_{i}} and u\in \mathscr{L}^{2} we have

(u, v)= \int_{\rho}\sum_{i=1}^{3}u_{i}v_{i}dV=\int_{\Omega}\sum_{i=1}^{3}u_{i}\frac{\partial f}{\partial x_{i}}dV

= \int_{\rho}\sum_{i=1}^{3}\frac{\partial}{\partial x_{i}}(u_{i}f)dV (u_{i,i}=0)

= \int_{\partial D}u_{j}fn_{i}dS=0

since u_{i} is of compact support within \Omega or is a limit of such vectors. Hence
orthogonality of the subspaces will follow [6; 9, p. 141].

If P denotes orthogonal projection from L^{2} onto \mathscr{L}^{2}, we may write
P\Delta=Z thus defining the solenoidal projection of the Laplacian with compact

support. As shown in [9, p. 148] ||Zu||_{2}=0 implies u=0 if u\in C^{2}, u=0 on
\partial\Omega and u_{i,i}=0 . Indeed 0=(\tilde{\Delta}u, u)=(\Delta u, Pu)=(\Delta u, u)=-(\nabla u)_{2}^{2} by Green’s
Theorem. Hence \nabla u=0 in f2 and u is a constant, which must be zero.
Hence ||Zu||_{2} is a norm.

Following [9, p. 148], the completion of C_{*}^{\infty} the set of smooth solenoidal
vector fields vanishing on \partial\Omega , in the || \sum u||_{2} norm will be denoted by \mathscr{F}^{2} .
We now show [9, p. 194] that a form of Sobolev’s inequality holds, namely

LEMMA 2. 1. ||\nabla u||_{6}\leq c||Zu||_{2} for u\in \mathscr{A}^{2} .

PROOF. Let u\in C_{*}^{\infty} , v\in C_{0}^{\infty}\subset \mathscr{L}^{2} . Then u\in C^{\infty}(\Omega)\subset C^{0}(\overline{\Omega}) , u=0 on \partial\Omega

and u_{i,i}=0 , so that

|(\nabla u, \nabla v)|=|(\Delta u, v)|=|(\tilde{\Delta}u, v)|

\leq||Zu||_{2}||v||_{2}

\leq c||Zu||_{2}||\nabla v||_{\mathcal{U}b}

by Sobolev’s inequality with p=6/5. Hence if v \frac{\neq^{-}}{\backslash }0 , \frac{|(\nabla u,\nabla v)|}{||\nabla v||_{\mathcal{U}b}}\leq c||Zu||_{2} .

By duality of \mathscr{A}^{p} spaces, the dual of \mathscr{F}_{0}^{1,6} is \mathscr{F}_{0}^{1,6/5} so the supremum of

the left side over all v\in C_{0}^{\infty} is exactly the norm of u in \mathscr{A}_{0}^{1,6} . This proves

the inequality for u\in C_{*}^{\infty} and the result for \mathscr{A}^{2} follows on closure since C_{*}^{\infty}

is dense in \mathscr{F}^{2} .

3. The main estimate

We multiply the Navier Stokes equations by Zu_{i} and integrate over \Omega .
The time derivative term yields
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\int_{\rho}Zu_{i}\cdot u_{i,t}dV=\int_{\Omega}\Delta u_{i}\cdot u_{i,t}dV

since u_{i,t} is solenoidal and vanishes on the boundary. After integration by
parts we obtain

- \int_{\rho}\nabla u_{i}\nabla u_{i,t}dV=-\frac{1}{2}\frac{d}{dt}\int(\nabla u_{i})^{2}dV

=- \frac{1}{2}\frac{d}{dt}||\nabla u||_{2}^{2}(

The pressure term is

- \int_{\rho}p_{i},\tilde{\Delta}u_{i}dV=0

since \tilde{\Delta}u_{i} is orthogonal to all gradients. The viscous term becomes

\nu\int_{\Omega}\tilde{\Delta}u_{i}\Delta u_{i}dV=\nu\int_{\Omega}(\tilde{\Delta}u_{i})^{2}dV

since \Delta u_{i}-Zu_{i} is a gradient orthogonal to \tilde{\Delta}u_{i} . Finally, the nonlinear term
yields

| \int_{\Omega}\tilde{\Delta}u_{i}u_{k}u_{i,k}dV|

\leq||\tilde{\Delta}u||_{2}||u||_{6}||\nabla u||_{3}

\leq C||\tilde{\Delta}u||_{2}||\nabla u||_{2}||\nabla u||_{6}^{1/2}||\nabla u||_{2}^{1/2}

\leq C||\tilde{\Delta}u||_{2}^{3/2}||\nabla u||_{2}^{3/2}

\leq\frac{\nu}{2}||Zu||_{2}^{2}+C_{\nu}||\nabla u||_{2}^{6}

where we have used the inequalities of H\"older, Sobolev and Young as well
as the Lemma of Section 2.

THEOREM 1. For a solution u of the Navier Stokes equations in a
domain f2 in three space dimensions the estimate

\frac{d}{dt}||\nabla u||_{2}^{2}+\nu||Zu||_{2}^{2}\leq K||\nabla u||_{2}^{6}

holds^{\backslash }.
An estimate of this form was obtained by Leray [7] in the case \Omega=R^{3},

and by Foias, Guillop\’e and Temam [4] for the case of a periodic parallelepiped
in R^{3} . Heywood [7] gives somewhat similar estimates but with an additional
term C’||\nabla u||_{2}^{4} on the right: While this fourth order term is of no consequence
near singularities when ||\nabla u||_{2} becomes large, it is possible to derive improved
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asymptotic estimates as tarrow\infty from the estimate of Theorem 1. The estimate
of Theorem 1 is given by Shinbrot [9, p. 201] in essentially the same form
for bounded domains.

4. The path length estimates

The motion of a particle or element of fluid at x_{i}(t) at time t is
given by

\frac{dx_{i}}{dt}=u_{i}(x_{f}, t)

while its speed is given by

\frac{ds}{dt}=|u(x, t)| ,

where s denotes arc length travelled. For a motion commencing at t=0 we
have

s= \int_{0}^{T}|u(x, t)|dt

\leq\int_{0}^{T}||u||_{\infty}dt ,

because ||u||_{\infty}\equiv ess . \max_{x}|u(x, t)|l

To estimate the maximum norm we shall use an inequality of Adams
and Fournier [1, Theorem 4, p. 718], namely

||u||_{\infty}\leq K||u||_{on,p}’||u||_{q}^{1-\theta}

where q\geq 1 , p>1 , mp-p<n<mp , \theta=np/(np+(mp-n)q) . With the numeri-
cal choices n=3, m=1 , p=6 and q=6/\epsilon large these conditions hold with
\theta=\epsilon/1+\epsilon . Here also

||u||_{m,p}=||u||_{1,6}=\{||\nabla u||_{6}^{6}+||u||_{6}^{6}\}^{1/\emptyset}

\leq||\nabla u||_{6}+||u||_{6}

\leq K||Zu||_{2}+K||\nabla u||_{2} ,

by the Lemma and Sobolev’s inequality.

For large q we write ||u||_{q}\leq c||\nabla u||_{p} with p=3q/(3+q)=6/(2+\epsilon) . By

H\"older’s inequality and the Lemma
||\nabla u||_{p}\leq||\nabla u||_{6}^{1-\alpha}||\nabla u||_{2}^{\alpha}

\leq C||Zu||_{2}^{1-a}||\nabla u||_{2}^{\alpha} ,



466 G. F. D. Duff

wh,ere\wedge--\alpha=(1+\epsilon)/2 . Hence, finally,

||u||_{\infty}\leq K(\epsilon)\{||Zu||_{2}+||\nabla u||_{2}\}^{\frac{\epsilon}{1+\epsilon}}||u||_{q}^{\frac{1}{1+}}.
\leq K_{1}(\epsilon)\{||Zu||_{2}^{\frac{}{1+\text{\’{e}}}}.+||\nabla u||_{2}\overline{1+}.*\}||\nabla u||_{p}^{\frac{1}{1+\epsilon}}

\leq K_{1}(\epsilon)\{||Zu||_{2}^{\frac{\epsilon}{1+}}. +||\nabla u||_{2}^{\frac{\epsilon}{1+\epsilon}}\}||Zu||_{2}^{\frac{1-\epsilon}{2(1+*)}}||\nabla u||_{2}^{1/2}

\leq K_{1}(\epsilon)\{||\tilde{\Delta}u||_{2}^{1/2}||\nabla u||_{2}^{1/2}+||Zu||_{2}^{\frac{1-}{2(1+)}}..||\nabla u||_{2}^{\frac{1+3}{2(1+\cdot)}\}t}

.
To estimate the integral of ||u||_{\infty} we modify a method of Foias, Guillop\’e

and Temam [4]. Let f(t) be a smooth positive nonincreasing function for
t>0 . From Theorem 1 we have

\frac{d}{dt}(f(t)+||\nabla u||_{2}^{2})+\nu||\tilde{\Delta}u||_{2}^{2}\leq K||\nabla u||_{2}^{2}(f(t)+||\nabla u||_{2}^{2})^{2}

whence on division by the last factors on the right we find

- \frac{d}{dt}(f(t)+||\nabla u||_{2}^{2})^{-1}+\frac{\nu||Zu||_{2}^{2}}{(f(t)+||\nabla u||_{2}^{2})}2-\leq K||\nabla u||_{2}^{2} .
Now integrate over (0, T) to obtain

\frac{1}{f(0)+||\nabla u_{0}||_{2}^{2}}+\nu\int^{TT}\frac{||Zu||_{2}^{2}dt}{(f(t)+||\nabla u||_{2}^{2})^{2}}\leq K\int_{0}^{\infty}||\nabla u||_{2}^{2}dt+\frac{1}{f(T)+||\nabla u(T)||_{2}^{2}}

Noting that the integral on the right converges we may obtain estimates for
the integral on the left.

Now

v.\S’i
\int_{0}^{T}||Zu||_{2’}^{23}dt=\int_{0}^{T}(f(t)+||\nabla u||_{2}^{2})^{2/3}\frac{||\tilde{\Delta}u||_{2}^{2/3}dt}{(f(t)+||\nabla u||_{2}^{2})^{2/8}}

\leq[\int_{0}^{T}(f(t)+||\nabla u||_{2}^{2})dt]^{2/\}[\int^{TT}\frac{||Z_{u||_{2}^{2}dt}}{(f(t)+||\nabla u||_{2}^{2})^{2}}]^{1/3}

by H\"older’s inequality. Hence

\int_{0}^{T}||Z_{u||_{2}^{2/3}dt\leq}[\int_{0}^{T}f(t)dt+A]^{2/3}\cdot[KA+\frac{1}{f(T)+||\nabla u||_{2}^{2}}]^{1/3}

The integral on the left is bounded for any finite T and so is bounded during
any possible epoch of turbulence. Referring to Lemma 2. 1 we now obtain

LEMMA 4. 1. Zu\in L^{2/3}(0, T;L^{2}(\Omega))

and
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\nabla u\in L^{2/3} (0, T;L^{6}(\Omega)).
It will be shown below that as Tarrow\infty we have ||\nabla u||_{2}^{2}=\sigma(T^{-1}) . Hence

the choice f(t)=(1+T)^{-1} is convenient and this yields

\int_{0}^{T}||\tilde{\Delta}u||_{2}^{2/3}dt\leq(A+\log(1+T))^{2/3}(KA+1+T)^{1/3}

\leq BT^{1/3} log (1+T)^{2/3} as Tarrow\infty

Now

s \leq\int_{0}^{T}||u||_{\infty}dt

\leq K(\epsilon)\int_{0}^{T}\{||\tilde{\Delta}u||_{2’}^{12}.||\nabla u||_{2}^{1/2}+||\tilde{\Delta}u||_{2}^{\frac{1}{2}(\frac{1-}{1+*})_{||\nabla u||_{2}^{\frac{1+3}{2(1+\epsilon)}}\}dt}}.

.
The first term is bounded by

\leq K(\epsilon)[\int_{0}^{T}||\tilde{\Delta}u||_{2}^{2/3}dt]^{s/4}[\int_{0}^{T}||\nabla u||_{2}^{2}dt]^{1/4}

\leq K(\epsilon)B_{1}T^{1/4} log (1+T)^{1/2} as Tarrow\infty

The second term may be estimated by

K( \epsilon)[\int_{0}^{T}||Zu||_{2}^{2/3}dt]^{\frac{3}{4}(\frac{1-\epsilon}{1+\epsilon})}[\int_{0}^{T}||\nabla u||_{2}^{2}dt]^{\frac{1+3}{4(1+\epsilon)}}.[\int_{0}^{T}dt]^{\frac{\epsilon}{1+\text{\’{e}}}}

\leq K(\epsilon)B_{2}T^{\frac{1}{4}(\frac{1+3\epsilon}{1+\epsilon})}

( log T)^{\frac{1}{2}(\frac{1-\epsilon}{1+*})}

/1

\leq K(\epsilon)B_{3}T^{\frac{1}{4}+\frac{\epsilon}{2}}

: as Tarrow\infty

Hence we have

THEOREM 2. As Tarrow\infty , s\leq K_{1}(\epsilon)T^{\frac{1}{4}+\frac{\epsilon}{2}}

: \epsilon>0 .

This result extends and completes Theorem 1 of [3] for which the
abbreviated proof there given is valid for R^{3}, for a periodic rectangular
domain or for a closed three dimensional manifold, with a slight improvement
in the order of magnitude as Tarrow\infty .

We now prove the further

Lemma 4. 2. For t sufficiently large, the norm ||\nabla u||_{2} is decreasing in
t, and

|| \nabla u||_{2}=\sigma(t^{-}\frac{1}{2}) as tarrow\infty

PROOF. We have (\nabla u, \nabla u)=-(u, \Delta u)

=-(u, z_{u)}
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since u is orthogonal to gradients, being solenoidal and vanishing on the
boundary. Hence

||\nabla u||_{2}^{2}\leq||u||_{2}||\tilde{\Delta}u||_{21}

Dividing the main estimate by ||\nabla u||_{2}^{4} , we find

- \frac{d}{dt}\frac{1}{||\nabla u||_{2}^{2}}+\frac{\nu}{||u||_{2}^{2}}\leq-\frac{d}{dt}\frac{1}{||\nabla u||_{2}^{2}}+\frac{\nu||Zu||_{2}^{2}}{||\nabla u||_{2}^{4}}

\leq K||\nabla u||_{2}^{2} .

Hence \frac{d}{dt}\frac{1}{||\nabla u||_{2}^{2}}\geq\frac{\nu}{||u||_{2}^{2}}-K||\nabla u||_{2}^{2} .

Since ||u||_{2} is decreasing with t , the first term on the right is increasing,
while the second term being integrable over (0, \infty) must take arbitrarily
small values. Hence for some t_{0} the right side is positive, and it follows
that the time rate of change of ||\nabla u||_{2}^{2} is negative there. Consequently the
right side remains positive and it is easily seen that ||\nabla u||_{2}^{2} is decreasing for
t>t_{0} . Thus for T>2t_{0} we have

\frac{1}{2}T||\nabla u||_{2}^{2}(T)\leq\int_{\frac{\tau_{1}}{2}T}||\nabla u||_{2}^{2}dt\leq\epsilon(T)

so that ||\nabla u||_{2}^{2}(T)\leq\epsilon(T)/T as Tarrow\infty . This completes the proof of the
lemma. See also [9, p. 203].

THEOREM 3. If ||u||_{2}^{2} \leq\frac{t}{c}||\nabla u||_{2}^{2} , for t>t_{1} , where 4\nu c>1 , then all path
lengths are essentially uniformly bounded for all times and in the limit
tarrow\infty .

PROOF. From the energy integral

\frac{d}{dt}||u||_{2}^{2}=-2\nu||\nabla u||_{2}^{2}

we deduce

\frac{d}{dt}||u||_{2}^{2}\leq-\frac{2c\nu}{t}||u||_{2}^{2}

and hence
||u||_{2}\leq Ct^{-c\nu}

Thus ||u||_{2}\in L^{p}(t_{0}, \infty) for t_{0}>0 , with pc\nu>1 .

The two following lemmas are now required.
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Lemma 4. 3. If ||u||_{2}\in L^{p}(t_{0}, \infty) and t_{0} is sufficiently large, then ||\nabla u||_{2}\in

L^{q}(t_{0}, \infty) where \frac{1}{p}+\frac{1}{2}-\epsilon=\frac{1}{q} , \epsilon>0 .

PROOF OF Lemma. From the energy integral we obtain, dividing by
||u||_{2}^{2-}. ,

\frac{1}{\epsilon}\frac{d}{dt}||u||_{2}^{\epsilon}+\nu\frac{||\nabla u||_{2}^{2}}{||u||_{2}^{2-\epsilon}}=0 .

After integration we find

\frac{1}{\epsilon}||u||_{2}^{\epsilon}(t)+\nu\int_{l_{0}}^{t}\frac{||\nabla u||_{2}^{2}}{||u||_{2}^{2-\epsilon}}dt’=\frac{1}{\epsilon}||u||_{2}^{\epsilon}(0)

Hence as t– \infty the integral on the left is convergent for fixed \epsilon>0 . Now

\int_{t_{0}}^{\infty}||\nabla u||_{2}^{q}dt=\int_{t_{0}}^{\infty}||\nabla u||_{2}^{q}\frac{||u||_{2}^{q}(1)\overline{2}}{||u||_{2}^{q}(1\frac{\epsilon}{2})}.dt

\leq[\int_{t_{0}}^{\infty}||u||_{2}^{p}dt]\frac{q(-1\frac{\epsilon}{2})}{p}[\int_{t_{0}}^{\infty}\frac{||\nabla u||_{2}^{2}dt}{||u||_{2}^{2-e}}]^{q/2}<\infty

by H\"older’s inequality, where

\frac{1}{p}-\frac{\epsilon}{2p}+\frac{1}{2}=\frac{1}{q}

This gives the conclusion of the Lemma, with a slight change of notation
for \epsilon .

Lemma 4. 4. If ||\nabla u||_{2}\in L^{q}(t_{0}, \infty) where t_{0} is sufficiently large, then
||Zu||_{2}\in L^{r}(t_{0}, \infty) with \frac{1}{r}=\frac{1}{q}+^{\frac{1}{2}}-\epsilon .

PROOF OF Lemma. From the main estimate we find, on division by
||\nabla u||_{2}^{2-e} ,

\frac{1}{\epsilon}\frac{d}{dt}||\nabla u||_{2}^{\text{\’{e}}}+\nu\frac{||\tilde{\Delta}u||_{2}^{2}}{||\nabla u||_{2}^{2-e}}\leq K||\nabla u||_{2}^{4+e}

Noting that the term on the right side is integrable for t_{0}<t<\infty , since
||\nabla u||_{2}^{2} is integrable and ||\nabla u||_{2} is shown to be a decreasing function of t by
Lemma 4. 2, we find

\frac{1}{\epsilon}||\nabla u||_{2}^{\epsilon}+\nu\int_{t_{0}}^{t}\frac{||\tilde{\Delta}u||_{2}^{2}d\tau}{||\nabla u||_{2}^{2-\text{\’{e}}}}\leq K\int_{t_{0}}^{\infty}||\nabla u||_{2^{+}}^{4*}d\tau+\frac{1}{\epsilon}||\nabla u||_{21}^{\epsilon}

Hence the integral on the left converges as tarrow\infty . Again
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\int_{t_{0}}^{\infty}||\tilde{\Delta}u||_{2}^{r}dt=\int_{t_{0}}^{\infty}||Zu||_{2}^{r}\frac{||\nabla u||_{2}^{r}(1)\overline{2}}{||\nabla u||_{2}^{r}(1-\dot{\tau})}.dt

\leq[\int_{t_{0}}^{\infty}||\nabla u||_{2}^{q}dt]^{r(1-i)/q}.[\int_{t_{0}}^{\infty}\frac{||\tilde{\Delta}u||_{2}^{2}dt}{||\nabla u||_{2}^{2-}}.]^{r/2}

by H\"older’s inequality, where

\frac{1}{q}-\frac{\epsilon}{2q}+\frac{1}{2}=\frac{1}{r}

With a small change of notation for \epsilon , this is the result stated in the Lemma.

To complete th^{\{ep}^{1roof} of the Theorem, we now observe that if inclu-
sion for ||u||_{2} holds in L^{p}(t_{0}, \infty) with p<4 , we can by the lemmas secure

convergence of ||\nabla u||_{2} in L^{q}(t_{0}, \infty) for some q< \frac{4}{3} and for ||Zu||_{2} in L^{r}(t_{0}, \infty)

for some r< \frac{4}{5} . Reference to the path length calculations of Section 4

shows this suffices to establish ||u||_{\infty}\in L^{1}(t_{0}, \infty) . Explicitly, we have, with
\eta=8\epsilon/5 , \xi=8\epsilon/3 ,

\int_{t_{0}}^{\infty}||u||_{\infty}dt\leq K(\epsilon)\int_{t_{0}}^{\infty}[||Zu||_{2}^{1/2}||\nabla u||_{2}^{1/2}+||Zu||_{2}^{1/2-\epsilon}||\nabla u||_{2}^{1/2+}.]dt

\leq K(\epsilon)\{[\int_{t_{0}}^{\infty}||\tilde{\Delta}u||_{2}^{4’5}’ dt]^{6/8}[\int_{t_{0}}^{\infty}||\nabla u||_{2}^{4}/3dt]^{s/8}

+[ \int_{t_{0}}^{\infty}||Zu||_{2}^{4/5-\eta}dt]^{\mathfrak{g}/8}[\int_{t_{0}}^{\infty}||\nabla u||_{2}^{4/3+\xi}dt]^{s/8}\}<\infty

under the conditions established. When 4\nu c>1 , a range of positive values
for \epsilon, \eta , \xi, \cdots is possible and this suffices for the estimates. This completes
the proof of the theorem.

THEOREM 4. If the domain f2 satisfies a Poincar\’e inequality
||u||_{2}\leq C||\nabla u||_{2} or equivalently has a positive lowest eigenvalue, then the
path lengths are essentially uniformly bounded as in Theorem 3.

This conclusion is immediate, since the hypothesis of the Theorem is
satisfied for t sufficiently large.
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Particlepath length estimatesfor the Navier Stokes equations in three space dimen sion 471

References

[1] R. A. ADAMS and John FOURNIER: Cone Conditions and Properties of Sobolev
Spaces, Journal of Mathematical Analysis and Applications 61 (1977),

713-734.
[2] L. CAFFARELLI, R. KOHN and L. NIRENBERG: Partial Regularity of Suitable

Weak Solutions of the Navier Stokes Equations, Comm. on Pure and
Applied Math. 35 (1982), 771-831.

[3] G. F. D. DUFF: Bounds on Particle Motions for the Navier Stokes equations

in three space dimensions, C. R. Math. Reports, Acad. Sci. Canada 4
(1982), 37-42.

[4] C. FOIAS, C. GUILLOP\’E and R. TEMAM: New a priori estimates for Navier
Stokes equations in dimension 3, Comm. in P. D. E. 6 (1981), 329-359.

[5] J. G. HEYWOOD: The Navier Stokes Equations, On the Existence, Regularity
and Decay of Solutions, Indiana Univ. Math. Journal 29 (1980), 639-681.

[6] O. A. LADYZHENSKAYA: The Mathematical Theory of Viscous Incompressible
Flow, trans., New York, 2nd ed. 1969.

[7] J. LERAY: Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta
Mathematica 63 (1934), 193-248.

[8] V. SCHEFFER: The Navier Stokes Equations on a bounded domain, Comm.
Math. Phys. 73 (1980), 1-42.

[9] M. SHINBROT: Lectures on Fluid Mechanics, New York (1973), 222 p.

Department of Mathematics
University of Toronto

Toronto, Canada


	1. Introduction
	2. The Navier Stokes equations ...
	3. The main estimate
	THEOREM 1. ...

	4. The path length estimates
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	References

