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Local solution of Cauchy problem for nonlinear

hyperbolic systems in Gevrey classes

By Kunihiko KajTant
(Received January 4, 1983)

Introduction

The Cauchy problem for nonlinear hyperbolic equations in Gevrey classes

was studies by Leray-Ohya (c.f. [8]). They assume that the character-
istics are of constant multiplicity or smooth. In this paper we shall remove
this restriction.

We consider the following equations for the unknowns u(x) =(uy ()
un(x)), T=(20, 21, -+, ) = (g, &) E R?*1,

(0. 1) Fi<x,DMiu(x)>=0 in 2, 4i=1,-,N

coe
’ b

b

where 2 is a neighborhood of 0 in R"*! and
D¥iu(z) = {D¥y(2), -+, D¥ex uy ()

D) = {(0/020 @/0m)" -+ (3o )onuy(2) ; o= oy aty -, a) M )

and M;; is a finite set of non negative multi indices.
We assume that {F;} is a Leray-Volevich system of order m, that is,
there exist non negative integers 7, -+, ny such that for ac M,

i
(0.2) la| =a+ay+ - +an<m+n;—n, §j=1,---, N.
Then we can prescribe the following Cauchy data to the equations (0. 1),
(0. 3) (0/0x) w0, &) = @ze(x’),  j=0,--,m—1, i=1, ..., N.
We introduce coordinate variables
Yij=.; aEM,;) in Rris, 4,j=1,--, N,
Ye=@y3;j=1,-,N)in R%, i=1,... N,
Yy=i; i=1,---,N) in R,

where 7;; is the number of the elements of M, ri=ry+ - +r;y and r=
it e .
We assume that F,(z,7), i=1, -y N are in Gevrey class s in z and
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analytic in y&V (V is a compact set in R), that is, there are positive
numbers C and A such that

(0. 4) | Dz D} Fi(x, y)| < CA"+%8 o] 14| 8]), z in 2, yinV,

for ac N**1, BN,

We define the characteristic matrix for {F;} as follows

Pij(x’ Y, E) :lal— +Z (a/aya> Fz(xs y) Ea ’ 2,]: 1, T N ’
R4 _

which is a polynomial in & of degree m-+n;—n,. We call the determinant
of {pi;(x,y,8)} characteristic polynomial and denote it by p(z, ¥, &). We say
that a system {F;} is hyperbolic in 2x V with respect to &, if the charac-
teristic polynomial p(z,y,&—+—1 4,&) does not vanish for (¥, ¢, A) in
X VXR*'XR\0 and p(z,¥,1,0)=1. Then p(z,¥,&, &) has only real
roots 2;(z, ¥, &) (j=1, ---, mN) with respect to &, for (x,,&) in GXV X R\O0.
Assume that the multiplicities of the roots 2;(x,¥,£&) do not exceed v for
any (x,Y,&)eG X V x R*\0.

For K a closed set in R", we denote by 74 (K) the class of all functions
u(a') satisfying

|D*u(x)] < CA'a] I,

for 2 €K and aeN*, and by 7*¢([0, T] x K) the class of all & times con-
tinuously differentiable function of z; in y§(K). We denote 7*® = U7*® and
A>0

7O = M ke

k20

We consider the Cauchy problem (0,1) with intial data (0.3). Then
we obtain following theorems,

THEOREM 0.1. Assume that {F,(x,y)} is a hyperbolic Leray-Volevich
system of order m, satisfying (0. 4), and that the multiplicities of the roots of
it’s characteristic polynomial do not exceed v. If 1<s<v(v—1)7%, then for
any initial data {¢;(Z)} in y°(K), there exist T >0 and K,CK such that
the Cauchy problem (0.1) and (0. 3) has a solution {u;(x)} in 1*®([0,T] x K,).

THEOREM 0.2. Assume that the conditions of Theorem 0.1 are valid.
Let {p;(2)} and {p;(2)} be in y®(K) such that ¢u(a))=¢u(x) for 2 €K,
CK. Let {wi} and {v}} be a solution of (0.1) with initial data {p;} and
{¢ji} respectively. Then there exists a positive number A such that

ui(x); = vi(x)t for xEIxER"“; 0< <Al =Y, ¥ €Ky .
l

Recently, in the linear case, the above theorems have proved by Bron-

shtein [2]. Kajitani and Nishitani [6] have given another proof.- To
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prove Theorem 0.1 and 0.2 we shall derive an energy estimate for the
linearized equations of (0.1) by methods in and apply Schauder’s fixed
point theorem.

§ 1. Preliminaries

4

We introduce the following notation; x=/(zy, Z1, ***» Zn)=(Ze &) in R*
and £=(&, &) is dual variable with a inner product b= 2. ik D=(D,,
Dy -, D), Dy=—A—1 8/3z; a=(ay, ay, -+, ) =(ate, ) in N™*', |a| =Za, EDi
— PR B e £, (DL = B2 &t e, &, (DY =R — Ay, KDY =h— Ao,
(h>0). We denote by W, ., where [, ¢ in R' and ~2>0, the class of func-
tions #(x) such that (D),<D'>u in L*R™Y). We put A=Az, T, h, £, D)
=(T — xy) (h +<(D"), where TER!, h>0 and r=s"!. We define eu(x),

edu(x) :e/l(.z‘o,D’) u(x) — Se[ix’€'+/i(a:0 ,T,h,5,6)] a(xo’ E’) dE' ,

where 2¢ =(2z)""d¢ and d@(xy, &) stands for a Fourier transform of « with
respect to . Denote by W4, all functions u(z) such that efu in W ;.
When [ is a non negative integer, for 2 =[0, To] X R*, (T,>0), we define
Wi.qn(82z), all functions u(z) such that Di(DYitau(j=0, .-+, 1), in L*27,)
and also define W ,(2;,) analogously.

LemMma 1.1, Let £ and g be in W4, where A=(T—x))(h+<D}),
T>0 and 0<x<1. Then if (n+2), ¢=0, and supp fC{xo< "Z’Il}, then the
product f-g is also in W4, and satisfies
LY 0l <Gl lwiga 9lwig,
where C, is independent of h.

Proor. We have

1 follrsgyn = 5_ 1" F DA SO, 0

<C % lle'h=I DY fD¥ glly, 0
Pl

<Ot 5 (e @Ay (an & 1) by (o 1) i

A

<Ch S [|K (o €, ) S €= (8 g S F (200 & — 1)
W A (of N2 Gy (20 o) iyl

where fy(x, &) and g, are Fourier transforms of Dff and D*’g with
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respect to 2/ and

Kz, ¢, h) = inf ete>=ac=m—aar [qers, ey st (o yle

7'€R"
Noting that (&)~ AE —)— Alf) =(T'— ) (& Y — <& —f Y= o S5) < —h T2
for 2, <T/2 and ((&')n<E —7 >a' (7 i< for g=0, we have

K(xy, &, h) <e™2, 2,<TJ2.

Hence we obtain by virtue of Hausdorff-Yong’s inequality,

191ty , < Ce™h2 37 16t 8> folf3 [1e€ (&5 g1

181>L

+ 2 11" Fll 1l &4 g 152)

1871<k

VA -

+1f sz;sﬂn/zm,q,hHgllw;,@.h}

S S llws LGl wn for I>n+2.

1.q.n°
LEMMA 1.2. Let f be in W, g in Wit and supp fC{x,<T).
Then if 1 is sufficiently large and q>0, the product fq is in Wb and
satisfies
f9llwse, , < CULFllwin gllwse, , »

where A=(T—x) (h+<{D"%), T>0, 0<t<1, and C is independent of h.
This lemma follows from [Proposition 2.7 in § 2.

LEmMMA 1.3. Let u(x) be in T4y and of a compact support in {xs Rr+1:
xy 20}, where [ a positive integer. Then there exists T>O0 such that Jfor
any gER' and h>0, u(x) is in WU, where A=(T —z) (h+<D'>), k=s"1.

Proor. Since « is in 749, u satisfies
|D u(x)] < CAF || 18
for a=(ay, ) in Nrti, o,<l. Hence
6% Divit(a &) = | e Dru(2) |
SCA ] Y,
for a=(ay, ) in N**1, @,<I, which implies

D5 (x0, &) < CUAKED MY, ay< 1,
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for any positive integer M, where <&>=(1+|¢|9"% Therefore,
| Dgou(x, €)| <inf C(AE > M < C, e~ iugien/fie
MeN

and

T2 LGS <§' >§L+<1-"o ] D(‘,’Od (xo, 5’ )I

< CZ(T, h) e(T—xoxe') <E’>l+q—ao |D3°d(:co, E’)I
< Gy(T, h) e {dglent e

if T—x,<A;¥/4 and z,>0, which implies our conclusion.
Next we mention the properties of hyperbolic polynomials.
LeMMA 1.4. Let p(z,8)= >, a.(2)&* be a hyperbolic polynomial with
lal=m
respect to &, which coefficients a,(z) are constant in the compliment of a
compact set in R and which multiplicity of roots is at most v. Then the

following properties hold,
(i) |p(2 &) SCLE™<ENL,  (n§ER,
(i) |p@(2, &) P (2 &) SCLEN", (2 9)ER™™, o] =1,

(ii]) [pw(2 &) (2 67 SCLEDT™, (3§ ER™™ o =1,
where C is independent of h and &,=(&—1(h+<& 5 €)s r=v(l —k).

The proof of {ii] and follows from Bronshtein [I].

§ 3. Pseudo-differential operators in Gevrey class

We introduce a class of pseudo-differential operators in Gevrey classes.
DEFINITION 2.1. Denote by S, a set of all functions a(x,§) in
C=(R?) such that

la® (L, &)
Al = S50 g <
lat+Bl<1

for each IEN, where pER!, and 0<6<p<1.

DEFINITION 2.2. Denote by S{b) a set of all functions a(x,§) € C*(R*™*?)
such that
lag (z, &)
lal{™? = sup . SN
S T (T
{a+BI<1

< oo
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Sfor each leN, where m, g=R!, 0<o<p<Ll.
We define o/ "), all functions a(d,&) satisfying

ain (2, &)
lalgp)”: sup l(ﬁ+r) s <
4 n I7l Is /&I \D—|a]
g AT ]
(x',§')€ER

Jor each lEN, and also define by Ce([—T,T]; L%, all functions a
(xos 2, &) satisfying

’

a -1
[l 2= sup (2 alzy )12k <00,
l.rozl <T

Jor leN and a=0 for |z >T.

As usual, for a symbol a(x, &) we define a pseudodifferential operator
a(z, D)’

a(z, D) u(z) = Sewfa(x, gaee,

where #(¢) stands for a Fourier transform of «(z) and & =(2z)-"*+vde.
We define a,(x, D) a transform of a(x, D) by e as follows

a,(x, D) = e*alz, D) e*.

LEmMMA 2.3. Let a(2,&) be in oA, ,. Then a2, D)=e'a(d,D')e*
where A=M(h+<D"}), £=s"' and |M|<(24n* A7, is a pseudo-differential
operator and its symbol a,(x,&) is in S, and satisfies

[

11—«

210 |l <Gla®, [ ]+z+1,

where C, is independent of a and h and [+] is a Gauss’ symbol.
It’s proof is refered to Proposition 2.3 in [4].

DEFINITION 2.4. Denote by o ®* all functions a(2, &) in C°(R* X Rn)
such that
/ |le*a® i (+5 ENlzzcan
“ang'O = Sf‘él)g, <%>£—|a| LiEs) < oo,
la+8i<1

for each IEN, where A=M(h+<{D>;), MR, 0<k<1 and pR' p=R.

ReMaArRk. If a(2, &)/ ®? and A=M(h+<{D";), M>0, then it follows
from Sobolev’s lemma that a(,&)=S%, and |a|{” <C||q|Z:A,.

ProrosiTION 2.5. Let a(2,&) be in o ®*, where A= Mh+<{D>),
0<k<1l, M>0 and pER". Then a,«,D')=e'a(d,D)e* is a pseudo dif-
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Ferential operators and it’s symbol a,(x,&) belongs to S{¥), and satisfies

(2.2) ]al(”) < CLHaH[p Ai+n+1+z

for each leN, where C, is independent of h and [+] is a Gauss’ symbol.
Proor. It follows from that the symbol a,(z, &) is given by

asz, & = OS__SS e TGO gz 4y, &) dydy

where z, E€R" and os— || means an oscillatory integral. Hence we have
y g

by Taylor expansion,

az, 8= T a8 L@+ra(m 8 =r(w O +ralz )
where 1,(6)=a!"}{(Dzet¢t?=4®) _, and
ralz, €) = Z all Os_Sge—wwmeﬂ)—/«e)yaSla(a) (x+0y, &) dodydy .
=N 0
Noting that |DfZ,(§)] <C,,<Ep5 470177,
2y i< 2 (§)let el 1)
[7I<N a’+a’’=a
< Calal ff-’eflp)l+zv+n <5>n~m . »
On the other hand, we have

1 )
rld, §)= 2 T os~Sge"”“‘f*”’“”“)y,<5+77) ac, (x+6y, &) dodydy

=~ 7

#T<5+77) — e-—A(H—v) Dzy’ed(5+n) .

Abed= % v 3 (5)|[ e e rn dsd @t ou ¢ doayey

I ) [ereso=so e (e4n) P 6,7,

where
1 X ’
Fisih(z,6,7) = Xofe-m algy (x+ 0y, ) dydt
= [ [eoroiatzini, o Gr-ao
0

1
= [\ et a‘%:m( &),
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here d(y, ) stands for a Fourier transform of a(x, & with respect to z.
Noting that A(§47) — A(&)— A(y) <0 and

€ +7)] S Clepyamomviey,
i (. 8] < CX [ <7027 et |Fit (2, &, )|
<C@ie B [ pi-om et | gy dy
<coie ([ apiomone gonagy (4, ¢)) dody

<C@m T [ aptamor e ey . 6] dy

S CERA2M42 | a(Bh) iy s D/2 414N +labl 3

where we used <Oy, <<y, and A(n)<A(n) for 0<K<I<L1. If we take N
such that (1—&)N>|a|, we obtain

IrN (ﬁ)(xa &) < CEp ”aHEf’ |4+(n+1)/2]+N+|a+ﬂI+1

which implies (2. 2) with (2. 3).
Next we indicate the boundedness of pseudodifferential operators in

Wien and W2, which proof is refers to [5].

ProPOSITION 2.6. Let a(x, &) be in S0, where 0<6<p<1 and 6<1/2.
Then there exists a positive number C,, independent of h such that

||aw||w < Cl,qlalg:(fq)

1q:h ||uHW 1tmaptaik ?

for any u in Wiim pign where
(2. 4) My(l, q) =[(1—6/27*(1| + gl + L+ n+2)]+1
ly=[6(n+2) (o—8) 1] +1.
We denote by Ci([—T,T]: o/®?), where A=(T—x,)(h+<{D">%) all

functions a(z, &) such that ry&R'—a(x, £, €&) in o ?? is k times continu-
ously differentiable and a(z, £)=0 for |x)|>7, and we put

[ali® = sup [(8/0x) alxy, *, *)[$2:F .
0<j<k
|zl <T

Analogously we define C{([—T, T]; ¥9(R"), all functions a(x) such
that xy—a(xe, &) in 7§ (R") is k times continuously differentiable and a=0
for |z >T, and denote
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[als,ax= sup l(a/axo)ja(xo; s, ak—5 -
Il <t

Then [Proposition 2.5 and 2.6 imply directly

PrOPOSITION 2.7. Let a(x, &) be in CE([—T,T]; o®*, where A=
(T—z0) (h+<D>;). Then we have C,4 independent of h such that

|laul|we, , < Colalitiia |1u] Wit p n

for u in W, and I, =R such that My(l, q)<k, where

(2.5) M, ¢ =My, ¢ 1—r)™1+1+n+ Ml q),
and M,y(l, q) is given by (2.4).

PropPOSITION 2.8. Let a(x) be in C¥([—T,T1; 7$(R). Then if
0L T<(24n" Ay and £=s"", we have

”auHW;{lg,h < C[a]s,AO,MA(L,q) H“HW@{I(},,L ’

for any u in W2, Ml q<k, where M, q) given by (2.5 and A=
(T~ z0) (R4 <D

Applying the above Propositions, we calculate a norm of composite func-
tions in W4 ,.

PropPOSITION 2.9. Let a(z,y) be in C*(R™!x Bg), where Bp,={yER";
ly| <Ry and satisfies

a(x,0)=0
a(z,y) = ay) , |z > T,
|DzDfa(x, y)| < C, A" o[ gl ],

for any a=(ay, d)EN"Y, ay<k, BEN" and (z, YER" X Bg. Assume that
0<T<(24n* A)™! and v=(vy, -, v,) is in (WQ,)", where A=(T—x)(h+
(DY), k=s" and q=RY, M,(l, q)<k and satisfies

lollwgg, ={ Sllodbina) <@rAy,
then aov(x)=alx, v(x)) is in W3, and satisfies
llaov|lwin , < C(Ad),
where C(A,) is independent of h.

Proor. By Taylor’s expansion, we have
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alz,y) = ﬂ;oa(p) (x)¥*/B!

where a,(z)=(0/0y)*a(z,0). Then it follows from (2. 6) -that ag,(x) is in
Co([=T,T]; 7 and satisfies

(2.7) [aplsa,  <CiAF |8 !. V
Hence we have by Lemma 1. 1, [Proposition 2.7 and (2:7)

1 \ ;
ilaov| |W§{2,h <G ﬁgﬁr [atp)]s,Ao,M,,(z,@ (I I"’”W{{%},h)w

co

<G jZl(erllvllw;4q>_h)f <G,

where C; is independent of A.

Let Q be a cube consisting of z in R**! with each lzj|<1j=1, -, n+1,
and Q,(k=1,---) an enumeration of tranlates of Q centered at the integer
lattice point g® of R**. Let §(z) in C(R**Y) be supported in Q, and ¢;(x)=

0(x—g?) X[élg(x_g(m)z]_l’? and 1(z)eCyR*) such that X=1 on Br =
{xrERY || <R)}. We define ¢u(z, &), j, k=0,1, ---, -
P, §) = (1 —-X(x)) (X2+(1 —X)2>_”2
©o; =P =0, j, k=12, ...
2a(3,€) = 05((€4 - %) E %) ul) 1(2) (2341 — 1)2) o
J k=1,2, ...,

where x,=(zy, 2’ +grad, (¢>;) (if there is no confusion we write also =
e're”) and 0<o<1/2. Then we have

LeMMa 2.10. {pu(x, &)} 1=01,.. satisfies

3 Y oulx, E2=1, on RixRe,

L
I
o
<.
Il
o

[}

2.8) | 2. L lﬂo(ﬁc)(ﬂ) (z, 5’)| < Cgﬂ (g Hglpi-a-alal

k=1 j=
on R"™!XR" for (a, ) N**1x N» '
It follows from (2.8) that ¢\ (z, &) is in S&o-a—oled ypiformly in

(7, k), if we take 0<¢<1/2. Therefore we obtain the following proposition
by Lemma 2.1 and [Proposition 2. 6,

ProrosiTiON 2. 11, Let {p;(x, D)} be pseudo-differential operators with
symbols {p(x, §)}. and 0<e<1/2. Then there are positive numbers C and
hy such that S '
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CHlely g < 2ol < Clllr, g

for any u in W, 4, and hZ=h,

We put
(2.9 x = Zp(D) = g® +gP D77, , R=1,2,---.
If there is no confusion, we write also x;,=¢% —I—g”’(& >7°.  Since the support

of ¢u(x,¢) is contained in {(z, E’)ER"“XR"; | 20— 2] < <ED7Ys (=)
o(z, &) is in S&1 uniformly in (j, k). Hence we have

ProrosiTION 2.12. (c.f. [5]). Assume that
am(x, §) = sz (X4— 2 0)" b i, §)

where by(x, &) is in S\%P uniformly in (7, k). Then we have a positive
number C,, independent of h such that

(2.10) Zz: ZJ lamemellw, 40 < C[Sjgcp 1B sel SN2l pveon?
(2.11) 17:41 ,§1||[ajk, o] Ui, o0 S C[Sjl:l%) L L
where

@1 M, ¢ =Ml g+2[n2"+1] +z[ ml gl bnt Ml +1]

and My, q) is given by (2.4).

LeMMA 2.13. Let a(x, &) be in Co([—T, T); & @*) or in C&([—T, T];
.g{“ )y where A=(T—x,) (h+<D'>;). Then

alz, D'Y—a(zu D') = Z G (zj D') (2 — 22)"
+ 22 Quala) (z, )(x zm)*+Rau(a) (x, D')

la]=2

where zj=xulD') is given by (2.9) and Qir.(a) (x, &) in Co([—T,T];
2 @) (or Co([=T, T1; &P and Ry(a) (x, &) in Co((=T, T]; L *77)
(or Co([—T,T]; &) uniformly in (j, k) respectively, and it holds for
leN,

212 sup [Qu(@l) <Gilalft  (or [alih,is

213 sup [Ru(@lir™* < Gilalfty (or [a]i®142)

where C, is independent of h.
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Proor. By Taylor expansion, we have
a(x,§)—a (xjk &), 5') = Zilam (Erjk’ &) (x— )"

1t |
& WS‘oa(w <xjk+0(x_xik)’ E,> (=) dE .

|a]=2

Hence we obtain

Qira(a) (z, &)= S: A <xjk +0(x _‘ x]‘k), 5’) db’/a !

and
Ryx(a) (&) = 3 3¢ (aco (2(6), )

+ 2 os—” Y Qika(@) (2, & 1) (x+Y — 2 50) dydyf

la| =2

= 21 Qua(@) (z, €) (x—z)*,

laj=2

which satisfy (2.12) and (2.13) respectively.
Noting that e’a(z(D’), D) e *=a(z, D'), we have,

CorOLLARY 2.14. Let a(x,&) be in Cy([~T, T1; &) or Co([—T, T];
L E) n)y where A=(T—x) (h+<D'>:). Then we have

214 alzD)=a(zaD), D)+ % aw(m D) ("
+ 2 Qua(@li(= ,D><x4—x,-k> + Syl D),

where Q.(a)(x, &) is in S&7 and Si(@)alz, &) in S&HY uniformly in (7, k)
and satisfy

(2.15) |Qire(@d P < CilaliByao—14ns142
(or [a]sﬁo,[(l+2)(1—:)"]+n+l+2)
(2. 16) [Sjlc(a)/tlgo’p_l) <G [a]Ef)z’fz)))(l—:)—‘J+n+l+2

(or [a]g?z)io,[(l+2) 1=0="T4n4142) -

PrOOF. (2.15) and (2. 16) follow from (2. 12), (2. 13) and [Proposition 2. 5,

LeMMmA 2.15. Let a(x,&) be in Co([—T, T]; o/ PP) or C3([—-T,T];
AL Lhn)s where A=(T—z) (h+<D'>:). Then we have,

(2 17) [a/v @jk] :l Zl{a(a) (xjk, D,) +lﬁlz=la(ﬁ) (.’L‘jk, D,) (xzk)(“’}gojkm (x, D')

al=

+Tp(a)(x, D),
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where Ty(a)(x, &) is in S22.0 and satisfies

(2.18)  DIT(@) ullir, g0 < Cra{[al %o 11w, gypsn)

(07' {[a]s 4,,M,0,0 HuHWl,qup_l,h}z)
where
219 Myhg=[(M(g+2)1—8"]+n+ M 9+2,
and M;(l, q) is given by (2.11).
Proor. We put

cjk(x, D’) = aA(x’ D’) - a(let» D,)
:;a|z=:1a(a) (Zjis D) (24— 2 32)"
+laIZr—:2ija(a)A(x, D,) (xA_xjk)a'l'Sjk(a)A(x, D’> .
Then it follows from (2.15), (2.16) and (2.11) that

(2. 20) jZ,;:cH[Cjk’ | uHWl ok < C{ sup | acw (T ')1531 (1.9 } ||u||W,,q+p_l_h

Jokylal=1,
2

4 Cua{ 5P QDR 1l o)
+Ciq {suplSjk(a)AIS‘};ﬁ‘,B|Iu||wl,q+p_z+,,h}2
< Coo{lalZho 1ullw ermn) -
On the other hand,
<[a (xjk(D’>’ D'>’ %‘k]) (z, &) :[alZ:laﬂc(") (&) @i (2, §) +Ei(x, §) 5
where az(€)=a(z(f), &) and
En(z, &) = os—jS e an(@ +1) pulz+y, §) dy df
— 2 au () ez, §)

la]=1
zos—SSe w5 R +7;)S:¢jk<x+ay, &) dody' dy .

Noting that a;(¢) is in S{%%) unlformly in (7, k), and ¢u(x, &) satisfies (2. 8),
we obtain by virtue of [Proposition 2.6,

~ 2
T l1ege il g < G o{sup 12l R0 |2 llw, grpscon]

2
< Cooflal %o uunw,,m_z(,_,),,,} :
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which implies (2.18) with (2. 20).
Thus summarizing up, we obtain,

m

ProposiTiON 2.16. Let a(x, &)= Z a;(z, &) &7~ be polynomial in & of

" which coefficients afx, &) =b{x, $’)—|—cz( z,&)+df¢), where b; is in C3([—T, T];
LG, ¢, in Co([=T, T1; ¥y, and dy in S, respectively, and A=
(T—x) (h4H<D'>), k=s" and 0K T<(24n* A% Then a,(x,§) is in S0
and satisfies,

(2- 21) {a(xjk(D,)’ DA) _ad(x’ D)} %k(x, D') + [am §Djk]
= 2} aw(xm Di) (x4— i) 0 1( s D)

la] =1

+ Z {a(“’ (xjk, DA) +|ﬂf\_‘_=,1a(ﬁ) (xjk, DA) xg(/?) (D)} gojk(a) (x’ D)

Ja]=1

+Rjk(a) (z, D),

where Ry(a)(x, ) is in S5 and

(2.22) jZkHRjk( a) uHWL or S <G q{suP [bi]ﬁ,?t) q)+sup [Ct]M,(z 0
+sup AT o] S

where M,(l, q) is given by (2.19).

Proor. We have

a,(z, D)=}, e*a;(x, D') Dy ~*e™*

Ze
= 5 aule, D) (Do,

Since ay (x, &) is in S{%% and &7y =(§— V=1 &)™t in ST, it is clearly
that a,(z, §) is in Sm:9  Moreover for a(z, D), (2.14) and (2. 17) are valid.
Noting that e‘a(z;(D'), D) e*=a({xsu, D)), we have

(2.23)  aix D)—alem D) = 3 (bulz, D) — bz D)) Dt~

=0

+ g} <C¢,,(x, D') "‘"Ci(xjk, D’)) DoT—i

= Y aw (T D) (24— 20)"

|a|=1

+ 3 { 2 Quelbitedul( D) (4= x50+ Sse(bitc)a} (Dod™

1=0 ‘|a|=2

= | J=1a(") (xjk’ DA) (xa—xjk)"'i"sjk(x, D) .
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It follows from Corollary 2.14 that S (z, D) ez, D') satisfies (2.22). On
the other hand we have

[as o] = [aA a(xs, D), ¢yk]‘|‘[ (z % D), (ij] .

It follows from that [Proposition 2. 12 that [a,— alx, Dy), pj] satisfies (2. 22).
The last term .is

@.24)  [alzs D)), ou]= 5{alzn D) DI~ o4l

—l—[ai(xjk,D) 90170] a l} ’

Noting that [ngln_i, ngk] = (m — Z) (DoA)m_.i(D‘)SDjk) (x, D’) +§Djki(x7 D'), Where (iji(x, E)
is in S{7;72%) uniformly in (j, ) and satisfies from (2. 8),

% Il @ €)] < Cp@rpi-tome (g ygaorevan
Hence we have from (2.24) and (2. 17),
| (s D), o) =4 l{a(“’ (s Da)+ 2 ac (2w Do) =)
X @jrc (2 D)+ Tla) (z, D),

where
Tul@)(x, D)= 3 {a(2s D) ggus(x, D)+ Tinlag) D~
+ @Zo AT_] Ap) (x]k’ DA) [x;k O jcars Dot i] .
Hence

2N Tw(@ ully, 0 <Cuo Xy E (1D llpeetel
ik Le ik i=0
+ 2 (1l D2 prscor D~ el )

+ 1T j(ay) DoT_lu”%’m’h} '

L+i,q,h>

Since z§(§) is in SG3*P uniformly in ( J> k), it follows from
2.11 that

DN ogucor DRV lly,, o < Crglltdlly o

Noting that Ti(@)="T (b)) + Ti(c) + T 1(dy), we have by Lemma 2. 15

jZ;;Hlec(ai) Dot~ ully, 0 < Cz,q{[bi]%;(Az) o+l + ldilﬂiu,q)}z

XH HWL-I-?TL q—lh
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Thus we obtain
Rji(a) = Su(x, D) pju(x D)+ T(a) (z, D),
which satisfies (2. 22).

§ 3. Quasilinear case

We at first consider a following quasilinear equation of unknown u(z),
Jp(x, D™y, D) u(x) = b(x, D™ 'u),
|(3/62)) (0, £) =0, j=0,1,--,m—1,

where p(z,¥,£) is a hyperbolic polynomial with respect to &. Here we

assume that the coefficients a.(x,vy) of p(x,y,§) satisfy (0 4) for (x,¥) in
GxV. Let 6(x)=0y(x), -+, 0:(x)) be a mapping of R**! to G such that

Ix for |x| <Ry2,
o for |z| =R,

and each 6;(x) (1=0, ---, n) be in y{(R**), and p(x) be a function in C2(R*Y)
such that {pdz=1 and 2(x) y§(R**) such that X(x)=1 on | x| < Ry/2, X(x)=0
for |x|>R,. We put

(3.2) p.(x, D™u, D) = p(6(x), pHXD""*w), D)
223QQWMMHWWDD,

la]=m

3.1)

where p,(x)=e P p(e"'x). Then, if « is in Wi ,, where A=(T—z,) (h+
KD, k=s"Y, 0<T<min ((24n* A~ Ry), then pXXD™ u) in W, 1.4 for
any [, ¢ in R' and ¢>0, and satisfies for ‘I and ¢,

Hpe*XDm lu”Wi‘( m41.4.n X COHuHWf(‘é?h .

where C, is independent of h and e. Therefore it follows from
2.9 that if I>n+3, >0 and « is in W/{p, satisfies

(3.3) ||uHWL£"éh < (2rA.Cy)71,
then a,(0(x), p+XD™ 'u)—a,(6(x),0) is in Wi .14 and
G4 a6, prtD" )~ a6, O)lwpig 00 < CLAN

where A=(T—xz,) (h+<D'>;), k=s"! and
(3. 5) 0<T<mm«MwAya&)

Moreover for I>] or ¢>§, we have
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(3. 4), 1.6, pA D™ u)—a (6, Ollwes.,, , . < ClAoe),

for ¢>0, where C(A,¢) depends on ¢ but does not on A.

Now, instead of (3. 1) we consider the Cauchy problem for p,(x, D™ 4, D)
as follows,

JP«(-T, Dm_lu’ D) v(x) :f(x), xE[O, T] X R'n s
|(6/6x) u(0, 2) =0,  j=0,-, m—1.

If u(x) is given, then (3.6) is an equation for v(x). Assume that u(z) in
Wi, satisfies (3.3), where 4=(T —x,) (h+<D'>;) satisfies (3.5), and [ is a
large integer and ¢>0, fixed, and that the coefficients a .z, ) satisfy (0. 4)
and p(x,v, &) is hyperbolic with respect to §. Then q,(z, &=p,(x, D" u, &)
is also hyperbolic with respect to &, and it follows from Lemma 1.4 that
there exists a positive constant C= C(Hu[lw<1>h) such that

(3. 6)

(3.7) la.(z, §)71 < CLE™<E s,
N : (a) (x’ $A> N
(3.8) W &G Ok
Ae(a) (x9 EA) 1—«
(3.9) W<C<{:’>h¢ ‘

for |a|=1, xR, E1=(6o—i(h+<ED0), &), EER™, where k=51, t=y(1—k)
and v is the maximal multiplicity of roots of «,.

THEOREM 3.1. Assume that the above condztzons for p are valid and
[ is a large integer and §>t. Then for any |, q in R* and ¢>0 there
exist positive numbers h=h(l, q,¢) and C=C(l, q,¢) such that for u in Wig .,
satisfying (3.3) and any v in Wf,’?,n

(3' 10) HUHWV& A Cll, g, ¢ &)l|p.(s, D™ 1y, D) V|| wa

-m.q+r.h

where A=(T —x,) (h+<D’>h) £=s"!, 0<s<v(w—1)"' and T satisfies (3.5).
In paticular if 0<I<i+1 and O<q<q 7, then h(l, q,¢) and C(l, q, ¢) do not
depend on e.

For the adjoint operator p{*) of p,, we obtain analogously,
THEOREM 3.2. Assume that the conditions of Theorem 3.1 are valid.

Then for any I, q in R' and ¢>0 there exist h—= h(l,q,¢) and C=C(l,q,e)
such that for u in W3, satisfying (3.3) and for any w in W34,

[l lwip, < €L, g, 118+, D™ 1ut, D) w]| =

1.4:h — I~-m,q+c.h *
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Therefore it follows from that [Theorem 3.1 and [Theorem 3.2 that by

virtue of Riesz’ theorem we obtain an existence theorem (c. f. [4]) as follows,

THEOREM 3.3. Assume that the conditions of Theorem 3.1 are valid.
Then if 0<I<[+1 and 0<q<{§—r, there exist h=h(l, q) and C=C(l, q) such
that for any u in W}3§, satisfying (3.3) and for any f in W, sren we
have a unique solution v in W%, of the following equation,

(8.11)  p(6(x), xD"'u(z), D) v(x) =flz),  x in Rw*,
and v satisfies

ol , < CL QI f llwity, gren -

Since the conditions of Theorem 3.3 are invariant under Holmgen’s
transforms, the solution of (3.11) with zero initial data has a finite propaga-
tion speed. Therefore we obtain the following (c.f. Theorem 4.5 in [4]),

THEOREM 3.4. Assume that the conditions of Theorem 3.1 are valid.
If the support of f is compact in [0, o) X R*, then the solution v of (3.11)
has a compact support in [0, Ty] X R*=Qy, for Ty>0 and satisfies

(3.12) 1211w e ncory < CU QIS Wit gm0z, -
Sfor 2m+(n+1)/2<1<i and t<q<d.
Proor orF THEOREM 3.1. We put
a,(z, D) =p.(x, D™ 'u, D)
g=e¢“a (x,D)v=a,lx,D)w, w=e'v,
au(x,D)=e'ae,  auD) =a(zuD),D,)
D, = ¢'De" = (Dy—i(h+<D')3), D)
where z;(D) is given by (2.9). Then applying ¢j;(x, D') to g and noting
that e’a,(zu, D) e*=a,(xjx, D,)=a, (D),
a,54(D) g ju(x, D) w = (a:jk<D) —a,4(, D)) onwtlau, o] w
+oun(x, D) 9(x),

where [ , ] stands for a commutator. Since a,;(6)=a,(x;(£), &) satisfies
(3.7), there exists the inverse a,;(D)™* of a,;(D) in W;,, Hence from
(2. 21) we have
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(3.13) QW = a,j]‘;(D)—l[ 2 {aem(xjm D)) (x,— zg) 0w

|a]=1

T | ;1{612“) (z Do+ lgllas(p) (42, D) x%?} Pt W

+Rala) (, D) whpu(z, D) g(a)]

Since for lal :1 a, (xjk(el)’ EA)_I aEa) (xﬂc(s’)! &A) and a, (xjk(sl)’ EA)_la-(a) (xjk(el)9 E )
satisfy (3. 8) and (3.9) respectively, we obtain .

|l e 0] ﬁvl,q,h < C[Iélll(xa—xﬂ)“m w||%7l,q+‘_,,,h
+ | ; 1{| [ w| I%’Vz,q—x,h_l_ ”;J |x_ﬁj(]?)§0jk(¢) w| ﬁvz,qh—x,h}
a|= =

+ 1R (@) il gy T 107010, 0]

where C is independent of h. Noting that (x5,) =(0/08)*(x;(&')") is in
S&«P uniformly in (j, k), we obtain from [Proposition 2. 12,

(319 Dlenwly, 0 < ClIwll, a1l on @l

+ LR (@) wllr, g1 Il | A—
where C is independent of ¢ and . We decompose
a,(x, D) = p(6(x), p. 42 D™ 1w, D)
= p(0(2), p.xXD™'u, D) —p(0(x), 0, D)
+ p(6(x), 0, D)—p(0, 0, D)+ (0, 0, D)
b.(x, D)+c(x, D)+d(D).

Then we have

b(w D)= $ibulz, D) D8 = T b (a) D,

Ja]=m

where b,,(2)=a,(0(x), p.xXD™ 'u)—a,(0(x), 0) satisfies (3. 4) and (3. 4),. Hence
by(x, &) is in Co([—T,T]; o%*) and satisfies

[bsi]gi’/l) S CSllp Hb,allw(/ﬂ

1.0 °

Noting that the coefficients of ¢(zx, D) and d(D) do not depend on ¢ and ,
and that the coefficients c;(x, &) of &8~ in c(x, &) is in C¥([—T, T]; P4 n)
we obtain by virtue of (2. 22) in [Proposition 2. 16,
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(3. 15) Z HRjk(aa) wl|zwl_m,q+,,h < C[ sup {[bsi]sl}z(l,—m,q+r) + }Cifgzo,Mg(z—m,qh)
Jk

0<i<m
1 Da-maro | [ 110l s r -
Thus if we take ¢ (0<0<1/2) such that
p=inf {k+0—1,k—0,x 1—7} >0,
we have from (3.14), (3.15) and (3. 4)

12l g < Coa(1+Cle, A)Vh¥|wlly, .+ Cogllglr, oo
Hence if we choose A such that
Cog(1+Cle, A9) > < 1/2,

we obtain the estimate (3. 10).
Next we shall prove (3. 10) for a positive integer /. Applying D= (|a| =)
to g, we have

a.4(z, D) D*w = a.,(x, D), D*|w+Dg=g,.
Then by virtue of (3.14) and (3.15) we have
(3.16) 11D wlfy, 00 < Col1+ 50 bl ) A IID" 0l ,,
+Cllg.l1%

—m,q+z,h

where C, is independent of ¢ and 4. For g. we have

HgaHzW_m,q+r,h < Hg‘ ,%Vl_m,q+r,h+ ”[asd’ Da] w”%’l’_m,(ﬁ.,,h ’

and

(3.17) Haws DT wllw_p gy <N buss DT w0llw_, . +lllcs D] w0l

—-m,q+v,h "

Since (c,) (x, €) is in S{%P, we have from [Proposition 2.6,

318 lleo DT wllw_p gy,0 < Clltellw,, ... <Ch*lelly, .,

where C is independent of ¢ and A.
Finally we shall estimate [b,,, Dr] w. We have
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[boy D] w=— ¥ (?)b.ﬂ,xx, D) Dw

0#7<a

= — Z(a) bpacy () DiD* " w
T \7/18I=m

(“) (DY b)) D* D5 v+ DF oD% by,
18l=m 0<r<a\ T

where D_,=e*De’. Hence we have

|I[6. D] wllw

<
—m,q+r,h ==

”(DT—A bcﬂ) (D"Di}"’l})“w_(_%g,ﬁ_,,h :

0<7<a,|Bl=m

For 0<|y|</, (determined later on), we obtain by virtue of [Proposition 2.7,

I(D1b.) (DP D2 O)| Wt gy
S CUDLabfllwip, o gres.guen | 1PHWA e
< Cllbul W, qrersio.gr-n PP gpes -

For |y| >, we have analogously,

(DL4b.s) (DP D= O Wt} gyem
< C| IDﬁD(:?lf‘vHW%‘;(_m,q.H),q_;.r,hHbaﬁnwiﬁn,qw,h
S CllVW, oo rimtity gren 1Oetl Wity g -
Therefore if [>2M,(—m, §)+m, we can choose [, such that
M—m, ¢+l <I—m+1,
M(—m, §)+m—L,< -1,
and we have from (3. 4) for |a|=l<2+1 and g+7<4g,
(3.19)  [l[bus D wliw_p,gyon < Clivllws g,.., < Ch*lltellmis,

where C is independent of A and e Thus we obtain from (3 16,) (3.17),
(3.18) and (3. 19),

(3.20)  lwwllw,,p < CH*{1+5UD 10l gr.0.) 12011,
+Cliglw, e

where C is independent of A and . If [—m+1>M,(—m, §), then we have
by (3.4) and (3. 20)

ollwen , < CUS Wity gpen ?
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for any h>h,, where C and h, are independent of ¢. Thus we have proved
Theorem 3. 1.

Now we return to the equation (3.1). By Taylor’s expantion, we put

M
#(x) = u(x)— jZ_O(a/axo)"u(O, )z (5 ).
Then we can regard (3. 1) the equation of #(x) and if we take M sufficiently
large, we may assume without loss of generality
(3.21) b(z, D" 'u) = 2™ 1h(x, D" 1y) .

Let Z(x) be in ¥ (R**Y) such that X=1 for |z|<R)/2 and X=0 for |z| >R,
Then if « is in W%, satisfying (3. 3), it follows from Lemma 1.3 and Pro-
position 2.9 that Xb(x, D™ u) is in W%, 4,. We denote by B(T, R) all
functions «(x) in W;%, satisfying

(3 22) HUI |W§A‘%h < (ZrAOCg)—l ,
and

(3.23)  {suppu} N {m< Ty C[0, T X {|2/|<R}.

We define an operator K of B(T,, R) to B(T,, R) such that for K(u) is the
solution of the following equation,

p(ﬁ(x), D™y, D) v(zx) = X(x) b(x, D7), z,>0,
Div(0,2)=0, j=0,---,m—1.
Then it follows from (3.12) in [Theorem 3. 4 that

(3. 24)

K (@)l wis < Cllzbllwie

[.4.n(ur) —m, G, (97,

—m+1 f
< Gillxg™ b”“’fﬁn,zﬂr,h(un)
< Cz To l Ibl IWéf;n,qu,,h(nTO)
<

GT,<(2rAG)™?,

if we choose T, sufficiently small, and that also K(u) is in W74, .(27)

and {K(u); u€B(T,, R)} is a bounded set in Wi{{j 4_.,(27). Moreover if

we take R suitably, it is clearly that K(z) has the property (3.23). Since

<1, it follows from Relleich’s theorem that the image {K(«x); u= B(T,R)}
(A

is compact in W;%,(27). Therefore by applying Schauder’s fixed point
theorem, we know that K has a fixed point in B(T,, R). Thus we have,
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THEOREM 3.5. Assume that the condition of Theorem 3.1 are valid.
Then for any large integer 1 (I> My(—m, 7)) there exists a positive number
h such that there is a function u(x) in W2, satisfying (3.1) in a neigh-
borhood of 0 in R

§ 4. Proof of Theorem 0.1

We shall reduce the nonlinear equations (0.1) to the quasilinear ones

following Dionne [3].
We put

ij(x’ Y, D> = Z ija(x’ y) D+ ’
aEMjk

and

U=(U, Uy, -+, Upyy) » U =Uy -+ Uwm)y i=0,1,---,n4+1,
4.1) U;;=0/ox; U;, j=1--N,i=0,1,---,n,

Upni1=u;, j=1,--N.
Differentiating (0.1) by z;

N
(4.2) lejk(x, D"iu, D) Uyi+ Fy (x, D"iu) =0,
k=
’ j:l,;..’N’ i:O’...,n.

By Taylor’s expansion,

M=

(4. 3) Fj(x, DM]u) '_F(x’ 0) = ij(x, DMju’ D) Ukn+1

k=1

—I—Gj(x’DMju)’ jzlv'“,N’

where Gj(z, y)=51§ 2. Fuy (x, 09) y.d6.

0i=1 aEMji
Here we can assume without loss of generality that
(4. 4) m+n,—n; >1,  j, k=1,--, N,

In fact, if it is not so, we choose a positive integer 7’ such that m-+m' +
n,—n; =1 for all j, k. Then we operate a strictly hyperbolic operator p;(D)
of order »' to F;=0,

(4.95) pi(D) Fi(x, D¥iu) = Fy(x, DZiu) =0, j=1,-,N.
Then it is clearly that
[a[ <m+m’+nk——nj for aEMjk.

and the characteristic polynomial #(x,v, &) for {F} is
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P, =[1 246 e 2.9,

of which maximal multiplicity is same to one of p(x,¥,&), if we choose
pi(§) suitably. It is evident that the equations (0. 1) are equivalent to (4.5).

Let ¢,=(0, ---,0,0, i1, 0,:--,0) be a unit vector in R**, We put
l(@) =inf (/; a, #0) for a#0,
r(a) = ey for a+0.
For ae M}, we define
Bla) =a—r(a), ac My, |a| =m+n—n;.
Then we can rewrite
D"y, = {D*ix Uy, i =0, ---,n+1}, j, k=1,---,N,
where
{BeMy;iacs My, |a) =m+n,—n;, s.t.
Lj. = B=pa), i=la}, i=0,-n,
BEMy; |8l <m+m—ng}, i=n+l.
Then we have evidently
(4.6) |Bl<m—1+n—n;, geLi,, for 1=0,1,---;n+1, 5, k=1, -+, N.
We define
DA U={D"«Uy; i=0, -, n+1, k=1, -, N}.

Now we obtain the following equations,

5 pa( DU, D) Up = By(x, D),
(4.7) - j=1,-+N, i=0,1, =, n+1.
D{U;(0, ) =0, t=0,--,m—1,1=0,---,n+1,
where we may assume that the initial data are zero and Bj; satisfies
(4. 8) Bji(x, y) = 2l By(x, ) .

Moreover we assume that the coefficients of p,(x, ¥, &) and By(z,vy) satisfy
(0.4). Then we consider the linearized equations of (4.7) as follows

(4° 9) JZi:]ij (0(:1:), XDL] U, D) Vki — XBji(x, .DL1 U) ,
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where 6(x) and X(x) are given in § 3.

THEOREM 4.1. Assume that | is a large integer, §>t, and Uj(x) is
in Wi%, satisfying B

(@10 ST, 5,1 <@GA)™.
Then the following energy estimates hold
N
(4.11) JZL: HVjinWl(_f_?nj_q,h <G ;inZJlek Vki”%}iﬁ’mﬂj,“,,h

for 2mN+(n+1)/2+1<I<i+1, 0<g<gd—r.
Proor. We put

N
fin= kZ::lek Vi -

Then we have for |a| =/,

(4 12) k}_‘:lpjk(Da Vm) = — Zk: [ij, Da] Vk1,+Daf,7z :fji .

It follows from (4.10) and [Proposition 2.9 that the coefficients of (p(z,
DU, D)—pulx, 0, D)) are in Wi, 4 Hence we have by Lemma 1. 2,

(4.13) HZk: [P x> D] Vki[l%"’%”;—m.ﬁr,h <C Zk: HVMHZW%)nk—l.qw,h .

We put

D+ V= 3 Hy(z, DU, D) W,
t=1

where {Hy(x,¥,£)} is the cofactor matrix of {p;(z,y,§)}. Hence
(4.14) %pjk(x, D%iu, D) Hy,(x, D*U, D) =d;,p(x, DU, D)

+7u(x, DU, D),
where p(z, vy, &)=det {p (x,¥, &)} is hyperbolic in & of order mN and
(4. 15) order Hy < mN—ng+n;—m,
(4. 16) order 7 < mN—ng+n;—1.

Hence by (4.12) and (4 13)

p(6(2), xD*U, D) W, = — S Wetfo.
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Therefore by virtue of [Theorem 3.1, (4.13) and (4. 16) we have
Y 2 : ¥ : ., x 2 .
jZ::1 | |WjHWg,43v_m+nj,q,h <qu§1 | § 7 Wi ‘*‘fji||uf§{’]?_m,q+,,h )
SO{ZIWilrsty men vt T Vil ity agon
T ZJ: “fﬂl \%ii%j—m.qwfh} ’
where C is independent of h. Since <1, if A is large, by (4.15) we have
j%llvjdl% hjan < g”Hikalleifl’nj,q,h
< CZ HWJ'HZW(A)mN—m+nj,q,h
J
< Coal ZIVillrigao.gvent TSI lritnrn arens

which implies (4.11).
It follows from [Theorem 4.1 that the linearized equations (4.9) have
a solution V={V,} (c.f. Theorem 4.5 in [4]).

We define an operator K as
KU) =V,

and denote by B(T,, R) all functions U(x)={U,;}, U;; in W¢Z, 5a.0([0, To] X R”)
satisfying (4.10) and

supp U N {xe<To} C[0, To] X {|2| <R} .

Then K is a compact operator in B(Ty, R), if T, and R are chosen suitably.
Therefore (4.7) has a solution U={U,;} and {U,,,, satisfies the equations
(0.4) in a neighborhood of 0 in R**'. Thus we have proved Theorem 0. 1.
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