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Carleson inequalities on parabolic Hardy spaces
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Abstract. We study Carleson inequalities in a framework of parabolic Hardy spaces.
Similar results for parabolic Bergman spaces are discussed in [NSY1] (see also [NSY2]),

where 7-Carleson measures play an important roll. In the present case, T,-Carleson
measures are useful. We give an relation between these measures.
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1. Introduction

For an integer n > 1, let R = {(2,t) e R™! |z = (z1,22,...,2,) €
R™ ¢t > 0} denote the upper half space. For 0 < o < 1, let L) be a
parabolic operator

0? 0? 0?
() . _ a -4 4y
L' =0, + (—Ay)", Ay: 8x%+6x§+ +8x,%'

We say that a continuous function u on ]R?fl is an L(®-harmonic function
if L(®)y = 0 in the sense of distributions, which is defined later.

For 1 < p < oo, we denote by hE, := hE(R’™!) the set of all L(®)-
harmonic functions with ||u||,» < oo, where

1/p
lullag = sup </ |u(x,t)|pdx> .
>0 n

It is shown that h%, is a Banach space under the norm || - ||,» (see Section
2). We call h2, the a-parabolic Hardy space of order p.

Let 1 <p<ooand 1< qg< oo. We say that a positive Borel measure
[ on R’ffl satisfies a (p, ¢)-Carleson inequality on parabolic Hardy spaces
if the inclusion mapping from h® to Lq(RTfrH, dp) is bounded, that is, there
exists a positive constant C' such that

2000 Mathematics Subject Classification : 31B25, 35J05.



2 H. Nakagawa and N. Suzuki

HuHLq(RTl,dﬂ) < Cllullne (1)

holds for all uw € h2. To study (1), the following definition is useful.

Definition 1 Let p be a positive Borel measure on Ri‘“ and 7 be a
positive number. We say that p is a T.-Carleson measure if there exists a
positive constant C' such that

W(T@) (2, 1)) < CHn/2e0 2)
holds for all (z,t) € RT‘l, where
T (z,t) == {(y,s) eRY | |y — 2> + 5 < t}. (3)

We are now ready to state our main theorem.

Theorem 1 Let1 < p < g < oo and p be a positive Borel measure on
Riﬂ. Then p satisfies a (p,q)-Carleson inequality if and only if p is a
Ty /p-Carleson measure.

A Carleson inequality on parabolic Bergman spaces is already proved
in [NSY1] (see also [NSY2]). We discuss a relation between two inequalities
in Section 4. As a result, we will see that a positive Borel measure pu satis-
fies a (p, q)-Carleson inequality on parabolic Hardy spaces if and only if u
satisfies a (p’,¢')-Carleson inequality on parabolic Bergman spaces, where
(q/p)(n/2a) = (¢'/p")(n/2a + 1) (see Corollary 1 below).

Throughout the paper, we will use the same letter C' to denote various
positive constants; it may vary even within a line.

2. Preliminaries

In order to define an L{®-harmonic function, we recall how the adjoint
operator L(®) = -9, 4+ (—A,)® acts on C= (R ), where C2°(R'F ) is the
set of all C*°-functions with compact support on ]R’JF'H. Since it is trivial
when o = 1, we only consider for 0 < a < 1 here. Then (—A;)® is the
convolution operator defined by —c,, o p.f.|z|7" 2% where

Cna = 4%V 0(2n 4 a)/2)/ID(=a)|, |z| = (224 22 + -+ 22)V/2,
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and I'(+) is the gamma function. Hence for ¢ € CSO(RZ‘rH),

~ia 0 . —n—2a
L®g(x,t) = ——p(x,t) — cn,0 lim (plz+y,t) — oz, b))y~ >*dy.
ot 310 Jiy>6

A function h on Rﬁlfl is said to be L(®-harmonic if h is continuous,

/f/n (2, D)|(1 + 2]) "2 dadt < oo (@)

for every 0 < t; < t2 < oo and ffRnH h - E<a><p dxdt = 0 holds for all
+
¢ € CX(RY). Note that the condition (4) is equivalent to [[gnt1 |k -
+

Z(“)go] drdt < oo for all p € C(R) (see [NSS1]).
We use the fundamental solution W(®) of L(®) which is defined by

(27r)"/ et eir ge 50
W (z,t) =

0 t<0

where x - £ is the inner product of z and . It is known that when av = 1/2,
W(/2) coincides with the Poisson kernel on ]Rf“l, that is, for t > 0,

NG

(D72 (|z2 + ¢2)(n+1)/2° (5)

W2 (g, 1) =

Note also that W) (z,t) = (drt)~"/2e~121°/4t is the Gauss kernel. We
recall some properties of the fundamental solution (see [NSS1] and [NSS2]
for details).

For any compact set K in ]RSLFH, there exists a positive constant C' such
that

inf W (z,t) > C. 6
ot (z,1) (6)

For every positive t,

/ W (a2, t) do = 1 (7)
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and for any positive s,t with 0 < s < t,
Wz t)= [ W (z—y,t— W (y,s)dy. (8)
R’VL

By a change of variables, we see
W (1) = ¢~/ 2o (@) (1= /2y 1), (9)
The following estimate is useful: there exists a constant C' > 0 such that

t

W (z,t) < C :
(x7 ) — (t+ ‘x|2a)n/2a+1

(10)

It is known that the usual harmonic Hardy space H? on the upper half
space is naturally equivalent with the space LP(R™). The same identity also
holds in our case. For f € LP(R"), we set

n

PO t)i= [ W o~ yt) )y (11)

Then we have the following proposition.

Proposition 1 Let 1 < p < oo. For each w € hE, there exists a
unique function f € LP(R™) such that u = P®[f]. Conversely, for any
f € LP(R™), P[f] € hE. Moreover, | P [f]||z = || f|lze®n) holds.

Proof. By (7), (8) and (10), the assertion follows from a quite similar proof
to the usual harmonic Hardy space (cf. [S, p.62 and p.200]). Here we only
check that P(®[f] is L(®)-harmonic when f € LP(R"). Let ¢ be such as
1/p4+1/g=1. For 0 < t; < ty < oo, by (10) and the Holder inequality, we
have

[ [ oo e

<[ [ ([ ovee— t))Qdy)l/q

X || f1l Lo @ny (1 + |z]) "> dadt
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12 14 1/q
<C d
- /tl / </1R" (lz = y|? + t) (/20 )a y)

X || fl e @ny (1 + |lz]) ™" 2 dxdt

Wn1 oo 1/q
< C( n / Cn/2o¢—1(1 +C)—(n/2a+1)qd<-)
2 0

n

to
X ”f”LP(Rn)/ t_("/QO‘)(l/P)dt/ (1+ |z]) " 2de
t1
< 0

where w,,_1 is the surface area of unit sphere in R™. Hence by the Fubini
theorem,

/ / POf](a ) - B (e, 1) dudi
Ri“
- / / ( W (@~ y,0) () dy) L@ (e, ) ddt
R’i‘f’l Rn

_/ (/ W) (z —y, ) LD p(z, 1) dwdt) fy)dy
n Ri+l
= 07

because the fundamental solution is L(®)-harmonic. O

When u = P,[f], then |u(z,t)] < |[W(x — -, t)||za@m)||fllLr®n) holds
for 1/p+1/q = 1. This shows that a Cauchy sequence {u,} in h? implies
compact uniform convergence of {u,}, so that h? forms a Banach space.
This proposition also shows that A% /2 is just the usual harmonic Hardy

space HP.

3. Proof of Theorem 1

In this section, we will give a proof of Theorem 1. The “only if” part is
not difficult. It follows from direct computations of integrals of W(®). Let
1<p<oo,1l<q< oo and suppose that u satisfies a Carleson inequality
(1). We fix (z,t) € RT and put u(y, s) = W@ (z —y,t+s). Then u € hE.
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In fact, by (10),

lullzy, = sup W (2 —y,t + 5)Pdy
S Rn

t+ s p
< (C d
= i‘i%’/ . <<t+s+ \m—yr2a>n/2a+1> Y

n/2a—1

_ oW1 (n/20)(1-p) /°° iU
= t d
¢ 2a §1>110>( ) o (14mn)n/2a+p 1

< Ct(”/Qa)(lfp)

On the other hand, since |z —y|>* < t—s < t+s for every (y, s) € T®)(x, 1),
(6) and (9) show

/211 T — —n/2a —n/2a
u(y, s) = (t+ s) /2 ( ><(t+s)ffm,1>>0(t+s) /20 > O(2t) /2

with some constant C' > 0. This implies that
oy 2 [ 0oty ) 2 O ),

Hence the inequality (1) gives us

20T (2, 0)1 < Cllull pyganst g < Cllully, < OO0,

,dp)
which shows p is a Ty /,-Carleson measure. Here we remark that we do not
assume p < ¢ in the above argument.

To show the “if” part, we use a Luecking’s idea (see [L]). In the sequel,
we denote by B(x,r) the ball with center x and radius r in the boundary of
upper half space, that is B(z,r) = {y € R" | |z —y| < r}. For an open set
E in R", we set

E = {(z,t) e R"™ | B(z,tY/?*) C E}. (12)

Let (z,t) € RTT'. When o < 1/2, then (t — s)1/2e < ¢1/20 — g1/2a <

—

(2t—s)1/2% holds for 0 < s < t. Hence T(®) (x,t) C B(x,t1/22)  T(®)(z, 2t).
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When a > 1/2, then t1/2® — s1/20 < (¢ — 5)1/20 < (2¢)1/2¢ — 51/22 holds for
0 < s < t, and hence B(z,t1/22)  T(®)(x,t) C B(x, (2t)!/2®). Therefore
B, (1/2)"/2) € T (@,1) € Bla, (20)/2*) (13)

holds for all 0 < o < 1.
Let 1 < p < 0co. We also use the maximal function M f, which is defined
by

M (x) = sup — F@)ldy.

>0 " JB(x,r)
for f € LP(R™). It is known that

M fllLe@ny < Cpn

| fll L ®m) (14)

where C,,,, = 2(5"p/(p — 1))/P (see [S, p. 5]).
Now we return to the proof of the “if” part. Assume that 1 < p < ¢ < 00
and p is a Ty /,-Carleson measure. Then by (13),

H(B(;tl\/m)) < ¢t(n/2a)(a/p) (15)

with some constant C' > 0. We use the following notations. For u € h% and
x € R", we set

@)= sup [uly,s) (16)
(y,5)€Q(x)

where Q(z) := {(y,s) € RT™ | |y — 2| < s¥/22} and for A > 0, we set
Ey\ :={z eR" |u*(z) > A},
Gy = {(z,t) e R | Ju(z,t)| > A}.

Let (zg,t9) € G and take any z € B(a:o,t(l)/ga). Since (zo,t0) € Q(z), we

have u*(z) > A, and hence B(xo, t(l)/m) C E). This shows

G, C Ey. (17)
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For subsets X and Y in R™, we denote by 0X the boundary of X, by
diam(X) the diameter of X and by dist(X,Y’) the distance between X and
Y. Since u* is lower semicontinuous, F) is an open set. Hence we have the
following Whitney decomposition;

by = U Qrk, (18)
k=1

where {Qy} are closed cubes whose sides are parallel to the axes and whose
interiors are mutually disjoint, and satisfy

(see [S, p.16]). Then there exists a constant C' > 0 such that

Exc |JOQk (19)
k=1

where C'Qy is a cube with C times diameter and the common center as

Q. In fact, take (z,t) € E,. Since B(z,t'/2*) C E\, we choose tg > t

such that dist(B(:U,t(l)/Za),aEA) = 0. By (18), z € Qy, for some integer

ko > 1. Let zo be the center of Qr, and zp be a point in @y, such that
dist(Zo, 0Ey) = dist(Qk,, OEx). Then for any y € B(x, té/za), we have
ly —xo| < |y — | + [z — 20|

< t(l)/2a + diam(Qp,)

< |1‘ - .%0’ + diSt(QkO, aE)\) + diam(QkO)

< diam(Qp, ) + 4diam(Qy, ) + diam(Qy, )

= 6diam(QkO).
This shows that y € CQk,, where C' = 12y/n. Since y is an arbitary point in
B(x,té/za), we have B(z,t!/%%) C B(m,t(l)/2a) C CQy,, and hence (z,t) €
CQy,. This shows (19).

Next we estimate the LP norm of u*. There exists a positive constant
C such that for every u € h?,
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lw" ] Lo @ny < Cllullng - (20)

In fact, as in Proposition 1, we take f € LP(R") such that u = P(®)[f] and
let x € R™. Take (y,s) € Q(z) and z € R™ arbitrarily. Then

s+ — 22 <s+ (v —y| + |y — 2])?* < s+ (52 + |y — 2[)>
< (220‘ + D) (s+ |y — z|2“).

Hence by (5), we have

(o) < [ @IV~ 25)ds

s|f(2)]
< d
<C en (5 + |y — 2[Poyn/za+t F
e s|f(2)] I

o0
e
m=0

where

s|f(2)]
Iy := d
" /|x—z|<sl/2°‘ (5 + |$ - Z‘Qa)n/QaJrl -

I ;_/ sl (2) N
m (2m—15)1/20 < |g—z|<(2ms)1/20 (3 + ’x _ Z‘Qa)n/2a+1
(m=1,2,...).
Then
s|.f(2)] A /
I < d — n/ o d < M
0o /|7U—Z|<Sl/20‘ sn/2ot e |z—z|<st/2e ‘f(z)’ z < Mf(z)
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s|f(2)]
I, = d
" /(2m15)1/20‘§|1;_Z|<(2m5)1/2a (3+27H*18)n/2a+1 z
1 1 /
< z)|dz
>~ (1+2m—1)n/2a+1 Sn/2a ‘$_z|<(2m5)1/2a ’f( )’

< 2—m2(n/2a+1) (2m5)—n/2a/ |f(Z)| dz

|x—z|<(2ms)1/2e

< 27m2(n/2a+1)Mf(x)

implies
o0
Z Im < 2(n/2oz+1)]\4f(x)7
=1

and hence |u(y, s)| < C M f(z) holds. Since (y,s) € Q(x) is arbitrary, we
have u*(z) < CM f(x) for all z € R™. This and (14) show (20).

Now we will finish the proof of the “if” part. By (15), we see ,u(@) <
C|Q|%/? for every cube @Q, and hence (17), (18) and (19) show

(@) < u(By) < Z ) < CZ Qx| < CIEA|"P,  (21)
k=1

because ¢/p > 1, where |G| denotes the volume of a Borel set G in R™. Then
by (21)

HuHiq(Ri“,du) // a: t |q d,u(x t) = q/ N(GA))\qild)\
2k+1

<c/ |Ex|7PAT AN = C Z / | Ex|7/PAT 1N

2k+1

<C Z / ’E2k|q/p2(k+1)(q—1)d)\

oo
<C Z 2(k+1)q|E2k|q/p.

k=—00
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On the other hand,
0 ey = [l @PPdo=p [ BN
R 0
> B |2(F=D(=1) 7y
>p Zoo/’“ =y

— Z 2k=1)p| 7, | :2% 21| By .

k=—o0 k=—o0
Since p < ¢, we have

oo

r/4q
[ o gC’( > 2(k+1)q,E2k‘q/p)
—+ ’

k=—oc0

<C Z 2(k+1)p|E k| < Cllu* ||Lp(Rn

k=—o0

This together with (20) gives us the Carleson inequality (1). This completes
the proof.

4. A relation between T, -Carleson measures and 7-Carleson
measures

We recall a result for parabolic Bergman spaces. For 1 < p < oo, we
denote by b2, := b2 (R’™) the set of all L(*)-harmonic functions u with
||u||L,,(R1+1) < 00, where

1/p
[ (// (@, 1) \dedt> |

We call b2 the a-parabolic Bergman space of order p. As in the Hardy
case, b¥,, coincides with the usual harmonic Bergman space on the upper

n+1
R+

1/2
half space. Let u be a positive Borel measure on and 7 be a positive
number. We say that p is a 7-Carleson measure if there exists a positive

constant C' such that
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QW (a, 1)) < Cn/2etr (22)

holds for all (z,t) € R, where

QW (x,t) == {(y1,y2, -, Yn,5) ERIT |t < s <2,

lyi — x| < t1/2a/2,i = 1,27...,n}.

Carleson inequalities on parabolic Bergman spaces are studied in [NSY1]:
Let 1 <p < ¢ < oo and i be a positive Borel measure on R’frﬂ. Then p is a
q/p-Carleson measure if and only if there exists a positive constant C' such
that the inequality

HuHLq(Ri“,du) < CHU||LP(R:+1) (23)

holds for all u € b2.
We have the following proposition.

Proposition 2 Let p be a positive Borel measure on RT‘I. For >0,
we set 7, := 7(n/2a)/(n/2a+ 1). Then

(a) if u is a T--Carleson measure, then u is a 1,-Carleson measure,
(b) if 7 > 1 and p is a 7p-Carleson measure, then p is a Tr-Carleson mea-
sure.

Proof.  Since Q') (z,t) C T (x, ((n/4)* +2)t) for (z,t) € R, we have

wamieon<a(ro(s ((2) +2)9)
n\ (n/2a)T
< C(<4> + 2) t(n/2a)T < Ct(n/2a+l)'rb’

which shows (a). To show (b), we set
Ty, = {(y,s) € T (x,1) | /2" < s <t/2%}

for k= 0,1,2,... and take a natural number c(k) such that (2(k+1/2e+1) 4
1" < e(k) < 2(k+1)/2042)n Gince
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[(t _ 75/2/&4-1)1/2(1

(t/2k+1)1/2a ] +1 < o(k+1)/2a+1) 4 4

where [t] is the largest integer smaller than or equal to ¢, we can choose c(k)
points {(z.i,t/28T1)} in T}, such that Ty C U;:(:kl) Q) (x4, t/2F1). Hence

oo c(k)

(T (,) <3 p(T) <30 (@ (i, t/25H))

k=0 k=0 i=1

oo c(k)

< Z Z C(t/2k+1)(n/2a+1)7—b

k=0 i=1

<(C Z 2((k+1)/20‘+2)n(t/2k+1)(n/2a+1)7’b

k=0
< Ct(n/Za)T Z 2k(n/2a—(n/2a+1)’rb).
k=0

Since n/2a— (n/2a+ 1)1, = (n/2a)(1—7) < 0, p is a Tr-Carleson measure.
(]

Theorem 1 and Proposition 2 give us the following corollary.

Corollary 1 1 < p < g < oo andlet 1 < p' < ¢ < oco. Sup-
pose that (n/2a)(q/p) = (n/2a + 1)(¢'/p") holds. Then for every posi-
tive Borel measure p on RT‘I, there exist positive constants C' and C'
such that ||uHLq(R1+1’d#) < Cllullpz holds for all w € hE if and only if

HUHLQ/(Riﬂ, ) < ' u||Lp/(Ri+1) holds for all u € b? .
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