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Homology of a certain associative algebra
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Abstract. Let R be a commutative ring, and let A be an associative R-algebra pos-

sessing an R-free basis B. In this paper, we introduce a homology Hn(A, B) associated

to a pair (A, B) under suitable hypotheses. It depends on not only A itself but also a

choice of B. In order to define Hn(A, B), we make use of a certain submodule of the

(n + 1)-fold tensor product of A. We develop a general theory of Hn(A, B). Various

examples of a pair (A, B) and Hn(A, B) are also provided.
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1. Introduction

Let G be a finite group. A family H of subgroups of G is regarded as
a simplicial complex (the order complex) associated to the poset H with
respect to the inclusion relation ≤. A complex H is called a subgroup
complex of G. One of the motivations of our earlier works [5], [6] is to
pursue the nature of subgroup complexes. An important thing is that a
poset (H,≤) can be naturally thought as a quiver. From this viewpoint, we
studied in [5] representations of path algebras of quivers.

In our subsequent paper [6], we investigated a homology Hn(Q;R) of a
quiver Q over a commutative ring R. Recall that Hn(Q;R) is defined by a
graded R-module

⊕
n≥0 Cn(Q) where Cn(Q) is the R-free module generated

by the set P(Q)n of paths in a quiver Q of length n. Here Q consists of the
same set of vertices of Q, and the set of non-trivial paths in Q as arrows.
Thus it can be thought that Hn(Q;R) is associated to the path algebra R[Q]
of Q which is an associative R-algebra possessing the set P(Q) of paths in
Q as R-free basis. In the present paper, we extend this situation to an
arbitrary associative R-algebra A with an R-free basis B, and introduce a
homology Hn(A,B) (n ≥ 0) determined by a pair (A,B) under suitable
hypotheses. Note that its structure depends on a choice of B, and that our
homology contains the notion of Hn(Q;R). We develop a general theory of
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Hn(A,B).
The paper is organized as follows: In Section 2, we recall some basic

concept on a quiver Q. Among them, a homology Hn(Q;R) of Q is a
model case in our investigation. In Section 3, we introduce, under suitable
hypotheses, a homology Hn(A,B) (n ≥ 0) of an associative R-algebra A

with respect to an R-free basis B. Note that Hn(A,B) is defined by a
graded R-module

⊕
n≥0 A[n] where A[n] is the R-free module generated by

a subset

B 6=0
⊗(n+1) := {b0 ⊗ · · · ⊗ bn | bi ∈ B, b0 · · · bn 6= 0} ⊆ A⊗(n+1)

of the (n + 1)-fold tensor product A⊗(n+1) of A. In Section 4, we provide
a homology Hn(D) of a certain subset D ⊆ ⋃

n≥0 B 6=0
⊗(n+1). If D is the

whole set then Hn(D) = Hn(A,B) holds. In Section 5, we extend our chain
complex to define a homology of degree −1. In Section 6, we see that our
homology is a natural generalization of Hn(Q;R). In Section 7, we deal
with various examples, and present some calculation. In Section 8, we focus
on an R-algebra defined by a semilattice L. In particular, we consider the
subgroup lattice of a finite group. Furthermore some relations with the
associated order complex of L are also examined. Throughout the paper,
let R be a commutative ring with the identity element. For a set X, denote
by R[X] the R-free module with basis X. For an R-module M and a subset
Y ⊆ M , the notation 〈Y 〉R means an R-submodule of M generated by Y .

2. Preliminaries

In this section, we review some basis concept on a quiver Q (cf. [2,
Section III-1], [6, Sections 3 and 5]). In particular, a homology Hn(Q;R) of
Q described in Section 2.3 will be fundamental in our consideration.

2.1. Quivers and paths
A quiver Q is a quadruple Q =

(
Q0, Q1, (s : Q1 → Q0), (r : Q1 → Q0)

)
where Q0 (6= ∅) and Q1 are sets, and their elements are called vertices and
arrows of Q respectively. Furthermore s and r are maps from Q1 to Q0. For
an arrow α ∈ Q1, if s(α) = a and r(α) = b then denote by α = (a → b)
or a

α→ b. Elements s(α) and r(α) are called the start and range of α

respectively. A path ∆ in Q is either a sequence (α1, α2, . . . , αk) (k ≥ 1) of
arrows αi = (ai−1 → ai) ∈ Q1 satisfying r(αi) = s(αi+1) for (1 ≤ i ≤ k−1),
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or the symbol ea for a ∈ Q0 which is called the trivial path. We also write

∆ =
(
a0

α1→ a1
α2→ a2 → · · · → ak−1

αk→ ak

)
and ea = (a).

A vertex a is identified with ea. Denote by P(Q) and P(Q)non respectively
the totality of paths in Q, and that of non-trivial paths in Q. For ∆ =
(α1, α2, . . . , αk) ∈ P(Q)non, define s(∆) := s(α1) and r(∆) := r(αk), and
denote by `(∆) the length k of ∆. On the other hand, for a ∈ Q0, define
s(ea) := a and r(ea) := a, and set `(ea) := 0. The notation P(Q)i (i ≥ 0)
stands for the totality of paths of length i. The path algebra R[Q] of Q over
R is the R-free module with P(Q) as basis, and a multiplication on R[Q] is
defined by extending bilinearly the composition

∆1∆2 :=

{
(α1, . . . , αk, β1, . . . , βm) if r(αk) = s(β1)

0 otherwise

of paths ∆1 = (α1, . . . , αk), ∆2 = (β1, . . . , βm) ∈ P(Q). Then R[Q] is an
associative R-algebra.

2.2. The closure of Q

For a quiver Q = (Q0, Q1, s, r), we extend maps s and r on P(Q)non as

s : P(Q)non −→ Q0 by ∆ 7→ s(∆),

r : P(Q)non −→ Q0 by ∆ 7→ r(∆).

Then Q :=
(
Q0,P(Q)non, s, r

)
forms a quiver which we call the closure of Q

(cf. [6, Definition 3.5]). The set of paths in Q is expressed as follows:

P(Q) =
{(

x0
∆1→ x1 → · · · → xk−1

∆k→ xk

) ∣∣ k ≥ 0, ∆i ∈ P(Q)non
}

.

Note that a sequence (∆1, . . . ,∆n) of paths ∆i ∈ P(Q)non is a member of
P(Q)n if and only if the product ∆1 · · ·∆k in R[Q] is non-zero.

2.3. Homology of Q

Let Q be a quiver. The path algebra R[Q] = 〈P(Q)〉R of the closure Q

is a graded R-module R[Q] =
⊕

n≥0 Cn(Q) where Cn(Q) := 〈P(Q)n〉R. Let
∂Q : R[Q] −→ R[Q] be an R-endomorphism defined by, for (∆1, . . . ,∆n) ∈
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Cn(Q) (n ≥ 2),

∂Q

(
x0

∆1→ x1 → · · · → xn−1
∆n→ xn

)

:=
(
x1

∆2→ x2 → · · · → xn−1
∆n→ xn

)

+
n−1∑

i=1

(−1)i
(
x0

∆1→ · · · → xi−1
∆i∆i+1−−−−−→ xi+1 → · · · ∆n→ xn

)

+ (−1)n
(
x0

∆1→ x1 → · · · → xn−2
∆n−1−−−→ xn−1

)
.

Furthermore, for (x0
∆→ x1) ∈ C1(Q) and (x) ∈ C0(Q), we set ∂Q(x0

∆→
x1) := (x1)− (x0) ∈ C0(Q) and ∂Q(x) := 0. Then (R[Q], ∂Q) forms a chain
complex, and a homology Hn(Q;R) := Hn

(
R[Q], ∂Q

)
(n ≥ 0) of Q over R

is defined (cf. [6, Definition 5.10]). Set (∂Q)n := ∂Q|Cn(Q) for n ≥ 0.

3. Homology of (A,B)

Let A be an R-algebra, that is, A is a left R-module, and is a ring such
that (ra)b = r(ab) = a(rb) for all r ∈ R and a, b ∈ A. All R-algebras are
assumed to be associative. Suppose that A is the R-free module with B as
basis. In this section, we introduce a homology Hn(A,B) of A with respect
to B under Hypothesis (P) below. This is a natural generalization of a
homology of a quiver stated in Section 2.3. A corresponding chain complex
is constructed by the tensor product of A. So we first prepare the related
notations.

Notation 3.1 For a non-negative integer n ≥ 0, denote by

A⊗(n+1) := A⊗ · · · ⊗A = 〈a0 ⊗ a1 ⊗ · · · ⊗ an | aj ∈ A (0 ≤ j ≤ n)〉R

the (n + 1)-fold tensor product of A over R. For a subset D ⊆ A, we
set D⊗(n+1) := {d0 ⊗ · · · ⊗ dn | dj ∈ D (0 ≤ j ≤ n)} and D 6=0

⊗(n+1) :=
{d0 ⊗ · · · ⊗ dn ∈ D⊗(n+1) | d0 · · · dn 6= 0}. Denote by

A[n] :=
〈
B 6=0
⊗(n+1)

〉
R

= 〈b0 ⊗ · · · ⊗ bn ∈ B⊗(n+1) | b0 · · · bn 6= 0〉R

an R-submodule of A⊗(n+1) =
〈
B⊗(n+1)

〉
R
. This is the R-free module with
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B 6=0
⊗(n+1) as basis. It is a convention that A[−1] := {0}.

3.1. Standing hypotheses
Let A be an R-algebra possessing an R-free basis B = {bλ}λ∈Λ ⊆ A.

We establish the following Hypothesis (P) on the product of base elements
under which we study throughout this paper.

Hypothesis (P) For i, j ∈ Λ, we express the product bibj in A as a unique
R-linear combination

bibj =
∑

λ∈Λ

αλ
i,jbλ for some αλ

i,j ∈ R.

(1) For any b0 ⊗ · · · ⊗ bn ∈ B 6=0
⊗(n+1) and 0 ≤ k ≤ n − 1, we have that

b0 · · · bk−1bλbk+2 · · · bn 6= 0 whenever αλ
k,k+1 6= 0 for λ ∈ Λ.

(2) For any i, j ∈ Λ such that bibj 6= 0, we have that
∑

λ∈Λ αλ
i,j = 1.

One might think that Hypothesis (P) is a little strange at first sight.
However this is quite natural for constructing our chain complex described
in Section 3.2.

3.2. Chain complex and homology of (A,B)
In order to introduce a homology H∗(A,B), we define a chain complex

depending on an R-free basis B.

Definition 3.2 Assume Hypothesis (P) (1). For integers k ≥ −1 and
n ≥ 1, we define an R-homomorphism µB,k : A[n] −→ A[n−1] by the formula

µB,k(b0 ⊗ · · · ⊗ bn) :=





b1 ⊗ · · · ⊗ bn if k = −1

b0 ⊗ · · · ⊗ bkbk+1 ⊗ · · · bn if 0 ≤ k ≤ n− 1

b0 ⊗ · · · ⊗ bn−1 if k = n

0 if k > n

for b0⊗· · ·⊗bn ∈ B 6=0
⊗(n+1). In the case of n = 0, a map µB,k : A[0] −→ A[−1]

is defined to be the zero map. It should be mentioned that an element

b0 ⊗ · · · ⊗ bkbk+1 ⊗ · · · ⊗ bn

=
∑

λ∈Λ

αλ
k,k+1(b0 ⊗ · · · ⊗ bk−1 ⊗ bλ ⊗ bk+2 ⊗ · · · ⊗ bn)
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where bkbk+1 =
∑

λ∈Λ αλ
k,k+1bλ is a member of A[n−1] :=

〈
B 6=0
⊗n

〉
R

because
of Hypothesis (P) (1).

Definition 3.3 Assume Hypothesis (P) (1). We define an R-endomor-
phism

∂B :=
∑

k≥−1

(−1)k+1µB,k :
⊕

n≥0

A[n] −→
⊕

n≥0

A[n]

of a graded R-module
⊕

n≥0 A[n]. In other words, ∂B is defined by

∂B(b0 ⊗ · · · ⊗ bn)

= (b1 ⊗ · · · ⊗ bn) +
n−1∑

i=0

(−1)i+1(b0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn)

+ (−1)n+1(b0 ⊗ · · · ⊗ bn−1)

for b0 ⊗ · · · ⊗ bn ∈ B 6=0
⊗(n+1) (n ≥ 1), and ∂B(b0) = 0 for b0 ∈ B 6=0

⊗1 = B.
In particular, ∂B is of degree −1, that is, ∂B

(
A[n]

) ≤ A[n−1]. Set (∂B)n :=
∂B |A[n] for n ≥ 0.

Proposition 3.4 Assume Hypothesis (P). Then the equality ∂B ◦ ∂B = 0
holds, namely

· · · (∂B)3−−−−→ A[2] (∂B)2−−−−→ A[1] (∂B)1−−−−→ A[0] = A
(∂B)0−−−−→ {0}

forms a chain complex.

Proof. We consider A := (∂B)2(b0 ⊗ · · · ⊗ bn) for b0 ⊗ · · · ⊗ bn ∈ B 6=0
⊗(n+1)

(n ≥ 2). Divide the image A into A = A1 + A2 + A3 where

A1 := ∂B(b1 ⊗ · · · ⊗ bn) = (b2 ⊗ · · · ⊗ bn)

+
n−1∑

i=1

(−1)i(b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn) + (−1)n(b1 ⊗ · · · ⊗ bn−1),
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A2 := ∂B

(
(−1)n+1b0 ⊗ · · · ⊗ bn−1

)
= (−1)n+1(b1 ⊗ · · · ⊗ bn−1)

+ (−1)n+1
n−2∑

i=0

(−1)i+1(b0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn−1)

− (b0 ⊗ · · · ⊗ bn−2),

A3 := ∂B

( n−1∑

i=0

(−1)i+1(b0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn)
)

.

Then it is straightforward to calculate that

A3 =
n−1∑

i=1

(−1)i+1(b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn)

+ (−1)n
n−2∑

i=0

(−1)i+1(b0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn−1)

−
∑

λ∈Λ

αλ
0,1(b2 ⊗ · · · ⊗ bn) +

∑

λ∈Λ

αλ
n−1,n(b0 ⊗ · · · ⊗ bn−2).

Thus A = 0 if and only if
∑

λ∈Λ αλ
0,1 =

∑
λ∈Λ αλ

n−1,n = 1. So the assertion
holds from Hypothesis (P) (2). ¤

Definition 3.5 Let A be an R-algebra possessing an R-free basis B.
Under Hypothesis (P), denote by H∗(A,B) := Ker ∂B/Im ∂B the factor
R-module. We call H∗(A,B) a homology R-module of A with respect to B.

Remark 3.6 Suppose that B or B ∪ {0} is a semigroup with respect
to a multiplication defined on A. Then B satisfies Hypothesis (P) since
b1b2 ∈ B ∪ {0} for any b1, b2 ∈ B.

Remark 3.7 Since a map ∂Q in Section 2.3 deletes a vertex xi (0 ≤ i ≤ n)
in order of index, it is quite natural from a viewpoint of simplicial com-
plexes. On the other hand, by identifying paths (∆1, . . . ,∆n) ∈ Cn(Q) with
elements ∆1 ⊗ · · · ⊗∆n ∈ (P(Q)non)6=0

⊗n of the tensor product, it is thought
that ∂B in Definition 3.3 is an algebraic generalization of ∂Q concerning path
algebras.

Remark 3.8 Recall that the standard complex or the bar construction of
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A (see [4, page 175]) is obtained from an R-homomorphism (bar resolution)
dn : A⊗(n+1) −→ A⊗n defined by

dn(a0 ⊗ · · · ⊗ an) :=
n−1∑

i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

for all a0 ⊗ · · · ⊗ an ∈ A⊗(n+1). This is independent of a choice of B.
In this situation, if we add to dn an operation of cutting out both ends a0

and an as in Definition 3.2 then, for example, an element a := α0a0⊗α1a1 =
α0α1(a0⊗a1) (αi ∈ R) goes to respectively α1a1− (α0α1)(a0a1)+α0a1 and
α0α1(a1−a0a1 +a0) which are different. This implies that the image of a is
not uniquely determined. Furthermore the zero element 0 = 0⊗a1⊗a2 goes
to a non-zero element (a1⊗ a2)− (0⊗ a2) + (0⊗ a1a2)− (0⊗ a1) = a1⊗ a2,
a contradiction.

In order to avoid that trouble, we need to deal with (∂B)n : A[n] −→
A[n−1] in Definition 3.2 which depends on an R-free basis B 6=0

⊗(n+1).

The following result on the image Im(∂B)1 will be applied in Section
7.4.

Proposition 3.9 Assume Hypothesis (P). If A contains the identity ele-
ment 1A and 1A ∈ B then we have that

Im(∂B)1 = 〈1A, (b− 1A)(c− 1A) | b, c ∈ B, bc 6= 0〉R.

Proof. Recall that (∂B)1 : A[1] −→ A[0] = A where A[1] =
〈
B 6=0
⊗2

〉
R
. For

any b⊗c ∈ B 6=0
⊗2 , we have that (∂B)1(b⊗c) = c−bc+b = 1A−(b−1A)(c−1A).

By our assumption, 1A ⊗ 1A lies in B 6=0
⊗2 . Thus (∂B)1(1A ⊗ 1A) = 1A. This

completes the proof. ¤

3.3. Cohomology of (A,B)
By the usual way, we can define a cohomology H∗(A,B) of (A,B) as

the dual of H∗(A,B).

Definition 3.10 Let A be an R-algebra possessing an R-free basis B.
Under Hypothesis (P), let

dB :
⊕

n≥0

HomR(A[n], R) −→
⊕

n≥0

HomR(A[n], R)
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be an R-endomorphism of a graded R-module
⊕

n≥0 HomR(A[n], R) defined
by

dB(f) := f ◦ (∂B)n+1 : A[n+1] (∂B)n+1−−−−−→ A[n] f−→ R

for f ∈ HomR(A[n], R) (n ≥ 0). Then dB is of degree +1 with the property
that dB ◦ dB = 0. Denote by H∗(A,B) := Ker dB/Im dB the factor R-
module. We call H∗(A,B) a cohomology R-module of A with respect to B.
Set (dB)n := dB |HomR(A[n],R) for n ≥ 0.

Example 3.11 Let Z be the ring of all rational integers. Let A := Z[G]
be the group algebra of a group G over Z. Since a Z-basis G of A is a group,
G satisfies Hypothesis (P). Recall that A[n] :=

〈
G 6=0
⊗(n+1)

〉
Z = 〈G⊗(n+1)〉Z

(n ≥ 0). Then we have the following chain complex

{0} −→ HomZ(A[0],Z)
(dG)0−−−→ HomZ(A[1],Z)

(dG)1−−−→ · · ·

Here we consider H0(A,G) := Ker(dG)0. For f ∈ Ker(dG)0 ⊆
HomZ(A[0],Z), we have that 0 =

(
f ◦ (∂G)1

)
(a ⊗ b) = f(a + b − ab) =

f(a) + f(b)− f(ab) for any a⊗ b ∈ G⊗2. Denote by eG the identity element
of G. Then f(eG) = 0 and f(gg−1) = f(g) + f(g−1) for g ∈ G, so that,
f(g−1) = −f(g). This yields that f(G′) = {0} where G′ is the commutator
subgroup of G. Thus H0(A,G) = {0} if G is a perfect group. On the other
hand, suppose that G is finite. Take an element g ∈ G of order m ≥ 1.
Then 0 = f(eG) = f(gm) = mf(g) and f(g) = 0. Thus H0(A,G) = {0} in
the finite case too (see also Remark 7.9).

4. Homology of a subset D
Let A be an R-algebra possessing an R-free basis B. Assume Hypothesis

(P). In this section, we provide a homology Hn(D) of a certain subset
D ⊆ ⋃

n≥0 B 6=0
⊗(n+1). This contains the notion of Hn(A,B) discussed in

Section 3.

4.1. ∂B-invariant subsets
We begin with the definition.

Definition 4.1 For a subset D ⊆ ⋃
n≥0 B 6=0

⊗(n+1), we say that D is ∂B-
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invariant if ∂B(〈D〉R) ⊆ 〈D〉R.

Proposition 4.2 Let D ⊆ ⋃
n≥0 B 6=0

⊗(n+1) be a ∂B-invariant subset. Put

Dn := D ∩B 6=0
⊗(n+1) (n ≥ 0).

(1) The union D =
⋃

n≥0Dn is disjoint, and we have a graded R-submodule

〈D〉R =
⊕

n≥0

〈Dn〉R ≤
⊕

n≥0

A[n].

(2) We have that ∂B(〈Dn〉R) = ∂B(〈D〉R∩A[n]) ⊆ 〈D〉R∩A[n−1] = 〈Dn−1〉R.
The restriction

∂B,D := ∂B

∣∣
〈D〉R :

⊕

n≥0

〈Dn〉R −→
⊕

n≥0

〈Dn〉R

is an R-endomorphism of 〈D〉R of degree −1 with the property that
∂B,D ◦ ∂B,D = 0. The following is a chain complex :

· · · (∂B,D)2−−−−−→ 〈D1〉R (∂B,D)1−−−−−→ 〈D0〉R (∂B,D)0−−−−−→ {0}
· · · ∩ ∩ ‖
· · · (∂B)2−−−−→ A[1] (∂B)1−−−−→ A[0] (∂B)0−−−−→ {0}

(3) Let

dB,D :
⊕

n≥0

HomR(〈Dn〉R, R) −→
⊕

n≥0

HomR(〈Dn〉R, R)

be a map defined by dB,D(f) := f ◦ (∂B,D)n+1 for f ∈ HomR(〈Dn〉R, R)
(n ≥ 0) as in Definition 3.10. Then dB,D is an R-endomorphism of
degree +1 with the property that dB,D ◦ dB,D = 0.

Proof. Straightforward. ¤

Definition 4.3 For a ∂B-invariant subset D ⊆ ⋃
n≥0 B 6=0

⊗(n+1), denote by

H∗(D) := H∗
(
(A,B),D)

:= Ker ∂B,D
/
Im ∂B,D,

H∗(D) := H∗((A,B),D)
:= Ker dB,D

/
Im dB,D



Homology of a certain associative algebra 237

the factor R-modules. We call H∗(D) and H∗(D) respectively a homology
R-module of D, and a cohomology R-module of D.

Remark 4.4 The whole set D :=
⋃

n≥0 B 6=0
⊗(n+1) is clearly ∂B-invariant. In

this case, Dn = B 6=0
⊗(n+1), 〈Dn〉R = A[n], and 〈D〉R =

⊕
n≥0 A[n]. It follows

that Hn(D) = Hn(A,B) and Hn(D) = Hn(A,B). Thus Hn(D) contains
the notion of Hn(A,B).

Remark 4.5 Suppose that B is a semigroup. If a subset D ⊆⋃
n≥0 B 6=0

⊗(n+1) satisfies µB,k(D) ⊆ D ∪ {0} for all k ≥ −1 where µB,k is
defined in Definition 3.2, then it is clear that D is ∂B-invariant. We call
such D a “µB-invariant subset”.

4.2. A-module actions
Let V be an A-module, that is, V is a left R-module and a right A-

module (A considered as a ring) such that (rv)a = r(va) = v(ra) for all
v ∈ V , r ∈ R, and a ∈ A. Then there exists the associated algebra ho-
momorphism ϕ : A −→ EndR(V ) which is a ring homomorphism and an
R-linear map. This can be extended to an R-homomorphism

ϕ : A⊗(n+1) −→ EndR(V )⊗(n+1) (n ≥ 0),

using the same notation ϕ, defined by ϕ(a0⊗· · ·⊗an) := ϕ(a0)⊗· · ·⊗ϕ(an).
Recall that A = 〈B〉R. Then an R-subalgebra ϕ(A) = 〈ϕ(B)〉R ≤ EndR(V )
is generated by a set ϕ(B).

Lemma 4.6 Suppose that ϕ(B) is an R-free basis of ϕ(A).

(1) ϕ(B) satisfies Hypothesis (P) (2).
(2) Suppose that ϕ

(
B 6=0
⊗(n+1)

) ⊆ ϕ(B)6=0
⊗(n+1) (n ≥ 0). Then ϕ(B) satisfies

Hypothesis (P) (1).

Proof. (1) Suppose that 0 6= ϕ(bi)ϕ(bj) = ϕ(bibj) for some bi, bj ∈ B. In
particular bibj 6= 0. It follows that

∑
λ∈Λ αλ

i,j = 1 by Hypothesis (P) (2) on
B. Since ϕ(bibj) =

∑
λ∈Λ αλ

i,jϕ(bλ), the assertion holds.
(2) For ϕ(b0) ⊗ · · · ⊗ ϕ(bn) ∈ ϕ(B)6=0

⊗(n+1) and 0 ≤ k ≤ n − 1, we
have that ϕ(bk)ϕ(bk+1) =

∑
λ∈Λ αλ

k,k+1ϕ(bλ). Since B satisfies Hypothesis
(P) (1), if αλ

k,k+1 6= 0 then b0 ⊗ · · · ⊗ bλ ⊗ · · · ⊗ bn lies in B 6=0
⊗n. Thus
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ϕ(b0) ⊗ · · · ⊗ ϕ(bλ) ⊗ · · · ⊗ ϕ(bn) = ϕ(b0 ⊗ · · · ⊗ bλ ⊗ · · · ⊗ bn) belongs to
ϕ
(
B 6=0
⊗n

) ⊆ ϕ(B)6=0
⊗n. This completes the proof. ¤

Lemma 4.7 Let V be an A-module with the associated algebra homomor-
phism ϕ : A −→ EndR(V ). Suppose that ϕ(B) is an R-free basis of ϕ(A),
and that ϕ

(
B 6=0
⊗(n+1)

) ⊆ ϕ(B)6=0
⊗(n+1) (n ≥ 0). For a ∂B-invariant subset

D ⊆ ⋃
n≥0 B 6=0

⊗(n+1), the followings hold :

(1) ϕ(D) ⊆ ⋃
n≥0 ϕ(B)6=0

⊗(n+1) is ∂ϕ(B)-invariant, so that, H∗
(
ϕ(D)

)
is de-

fined.
(2) ϕ induces an R-homomorphism from H∗(D) to H∗

(
ϕ(D)

)
.

Proof. Note that ϕ(B) satisfies Hypothesis (P) by Lemma 4.6.
(1) For any n ≥ 0, we have the following commutative diagram:

A[n]

ϕ(A)[n] =

=

〈
ϕ(B)6=0

⊗(n+1)

〉

〈
B 6=0
⊗(n+1)

〉

〈
ϕ(B)6=0

⊗n

〉

〈
B 6=0
⊗n

〉

=

=

ϕ(A)[n−1]

A[n−1]

ϕϕ

µB,k

µϕ(B),k

Since ϕ◦µB,k = µϕ(B),k◦ϕ for all k ≥ −1, we have that ϕ◦∂B = ∂ϕ(B)◦ϕ
(see Definition 3.3 ). Thus

∂ϕ(B)

(
ϕ(〈D〉R)

)
= ϕ

(
∂B(〈D〉R)

) ⊆ ϕ(〈D〉R) = 〈ϕ(D)〉R.

(2) Straightforward. ¤

Example 4.8 (AQ-module action) Let AQ := R[Q] = 〈P(Q)〉R be the
path algebra of a quiver Q = (Q0, Q1, s, r), which is the R-free module with
basis B := P(Q). Let V := R[Q0] be the R-free module generated by Q0.
First we recall an action of AQ on V introduced in [5, Section 3.1]. Let
w : Q1 −→ R be a map which we call a weight function on Q1. Then w can
be extended on non-trivial paths by setting w(∆) :=

∏k
i=1 w(αi) for ∆ =

(α1, . . . , αk) ∈ P(Q). It is a convention that w(ea) := 1 for a ∈ Q0. Let A◦Q
be the opposite algebra of AQ. Then we regard V as an A◦Q-module induced
by an algebra homomorphism ρw : A◦Q −→ EndR(V ) which is defined by
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ρw(∆) : V −→ V ; a 7→ a∆ := w(∆)δa,s(∆)r(∆)

for ∆ ∈ P(Q) and a ∈ Q0. Note that (ρw(∆1)ρw(∆2))(a) = (a∆2)∆1 =
a(∆1∆2) = ρw(∆1∆2)(a) for ∆1,∆2 ∈ P(Q) and a ∈ V . Here we assume
that ρw(B) = {ρw(∆) | ∆ ∈ P(Q)} is an R-free basis of ρw(A◦Q) = 〈ρw(B)〉R.
If w ≡ 1 namely w(α) = 1 for any α ∈ Q1, then this assumption always
holds. Now we have the following.

• Since B ∪ {0} is a semigroup, B satisfies Hypothesis (P).
• For ∆0 ⊗ · · · ⊗ ∆n ∈ B⊗(n+1), we have that ρw(∆0 ⊗ · · · ⊗ ∆n) :=

ρw(∆0) ⊗ · · · ⊗ ρw(∆n) ∈ ρw(B)⊗(n+1). Recall that ∆0 · · ·∆n 6= 0
if and only if ρw(∆0) · · · ρw(∆n) = ρw(∆0 · · ·∆n) 6= 0. This implies
that ρw

(
B 6=0
⊗(n+1)

)
= ρw(B)6=0

⊗(n+1).

• Take the whole set D :=
⋃

n≥0 B 6=0
⊗(n+1). Then D is ∂B-invariant (cf.

Remark 4.4).

By Lemma 4.7, ρw(D) =
⋃

n≥0 ρw

(
B 6=0
⊗(n+1)

)
=

⋃
n≥0 ρw(B)6=0

⊗(n+1) is
∂ρw(B)-invariant, and H∗

(
ρw(D)

)
is defined. It is clear that H∗

(
ρw(D)

)
=

H∗
(
ρw(A◦Q), ρw(B)

)
.

Remark 4.9 (Up-Down algebra) Let Q = (Q0, Q1, s, r) be a quiver. For
each arrow α = (a → b) ∈ Q1, we define the symbol tα. Set Qud

1 := Q1 ∪
{tα | α ∈ Q1}. Then

Qud :=
(
Q0, Qud

1 , (s : Qud
1 → Q0), (r : Qud

1 → Q0)
)

forms a quiver where s and r are extended on Qud
1 as s(tα) := r(α) = b

and r(tα) := s(α) = a for α = (a → b) ∈ Q1 (cf. [6, Definition 3.1]). Thus
tα = (b → a). Note that P(Q) ⊆ P(Qud) =: B.

(1) In Example 4.8, if we just replace Q with a quiver Qud = (Q0, Q
ud
1 , s, r)

then we have ρw(A◦Qud) = 〈ρw(∆) | ∆ ∈ B〉R ≤ EndR(V ). This R-
algebra ρw(A◦Qud) coincides with the “Up-Down algebra” UD(Q,w;R)
of Q with respect to w over R, which is first introduced in [5], and is
investigated in it. Thus a homology of UD(Q,w;R) can be understood
in our setting on module action under the assumption that ρw(B) is an
R-free basis of ρw(A◦Qud).

(2) Suppose that Q is finite. Suppose further that {∆ ∈ P(Qud) | s(∆) =
a, r(∆) = b} 6= ∅ for any a, b ∈ Q0, and that w ≡ 1. Then, by [5,
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Corollary 3.13], UD(Q, 1;R) is isomorphic to the total matrix algebra
M|Q0|(R). In particular, for a quiver Q defined as a

α−→ b, we have
that UD(Q, 1;C) ∼= M2(C). In Section 7.2, we will consider homology
of matrix algebras.

5. An extension of a chain complex

Let A be an R-algebra possessing an R-free basis B. Assume Hypothesis
(P). In this section, we introduce an extension of a chain complex. This
idea will be applied to a realization of a homology of a quiver in the next
Section 6.

Lemma 5.1 Let D ⊆ ⋃
n≥0 B 6=0

⊗(n+1) be a ∂B-invariant subset, and let

· · · (∂B,D)2−−−−−→ 〈D1〉R (∂B,D)1−−−−−→ 〈D0〉R (∂B,D)0−−−−−→ {0}

be the corresponding chain complex in Proposition 4.2. Suppose further that
there exist an R-module M and R-homomorphisms s, r : 〈D0〉R −→ M such
that

• s(xy) = s(x) and r(xy) = r(y) for all x, y ∈ D0 ⊆ B with xy 6= 0.
• r(x) = s(y) for all x, y ∈ D0 ⊆ B with xy 6= 0.

Let (∂M
B,D)0 := r − s : 〈D0〉R −→ M be an R-homomorphism. Then

· · · (∂M
B,D)2−−−−−→ 〈D1〉R

(∂M
B,D)1−−−−−→ 〈D0〉R

(∂M
B,D)0−−−−−→ M −→ {0}

forms a chain complex where (∂M
B,D)n := (∂B,D)n for n ≥ 1.

Proof. It is enough to show that (∂M
B,D)0 ◦ (∂M

B,D)1 = 0. For any b0 ⊗ b1 ∈
D1 ⊆ B 6=0

⊗2 , by using our assumptions on s and r, we have that

(
(∂M

B,D)0 ◦ (∂M
B,D)1

)
(b0 ⊗ b1) = (∂M

B,D)0(b1 − b0b1 + b0)

=
(
r(b1)− s(b1)

)− (
r(b0b1)− s(b0b1)

)
+

(
r(b0)− s(b0)

)

=
(
r(b1)− s(b1)

)− (
r(b1)− s(b0)

)
+

(
r(b0)− s(b0)

)

= r(b0)− s(b1) = 0.
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This completes the proof. ¤

Definition 5.2 Under the situation of Lemma 5.1, there exists an R-
endomorphism

∂M
B,D : 〈D〉R ⊕M −→ 〈D〉R ⊕M

of a graded R-module 〈D〉R⊕M of degree −1 with the property that ∂M
B,D ◦

∂M
B,D = 0. Denote by

HM
∗ (D) := HM

∗
(
(A,B),D)

:= Ker ∂M
B,D

/
Im ∂M

B,D.

Note that HM
n (D) = Hn(D) for all n ≥ 1, and that HM

0 (D) and H0(D) are
not necessarily equal. Furthermore HM

−1(D) := M/Im(∂M
B,D)0 of degree −1

is newly defined.

Lemma 5.3 Suppose that B is a monoid, that is, it is a semigroup having
the identity element 1B. Suppose further that 1B is contained in D0 ⊆ B.
Then s = r. In particular, HM

−1(D) ∼= M .

Proof. For any x ∈ D0, since x1B = 1Bx = x 6= 0, we have that r(x) =
s(1B) and r(1B) = s(x) by the definitions of s and r. Furthermore r(1B) =
s(1B) since 1B1B = 1B 6= 0. This implies that s = r is a constant map. The
proof is complete. ¤

6. A realization of Hn(Q;R)

Let AQ := R[Q] = 〈P(Q)〉R be the path algebra of a quiver Q =
(Q0, Q1, s, r). Let A]

Q := 〈C〉R be a subalgebra of AQ generated by
C := P(Q)non. Note that A]

Q is not unital. Since C ∪ {0} is a semigroup, C

satisfies Hypothesis (P). In this section, we see that a homology Hn(Q;R)
of Q (see Section 2.3) is realized as a homology of a subalgebra A]

Q with
respect to C as in the following.

Proposition 6.1 Let Q be a quiver. Then there exist an R-module M and
R-homomorphisms s, r : A]

Q −→ M such that HM
n (A]

Q, C) ∼= Hn+1(Q;R) for
all n ≥ −1.

Proof. As in Remark 3.7, C 6=0
⊗(n+1) can be identified with the set P(Q)n+1
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of all non-trivial paths of length n + 1 in the closure Q of Q. Thus we may
assume that C 6=0

⊗(n+1) = P(Q)n+1 (n ≥ 0). A path of length 0 is a trivial

path. It follows that (A]
Q)[n] :=

〈
C 6=0
⊗(n+1)

〉
R

= 〈P(Q)n+1〉R = Cn+1(Q).
This yields a chain complex

· · · (∂C)2−−−→ (A]
Q)[1]

(∂C)1−−−→ (A]
Q)[0] −→ {0}

· · · ‖ ‖
· · · (∂Q)3−−−−→ C2(Q)

(∂Q)2−−−−→ C1(Q)
(∂Q)1−−−−→ C0(Q) −→ {0}

Note that (∂C)n = (∂Q)n+1 for n ≥ 1. Therefore Hn(A]
Q, C) = Hn+1(Q;R)

for all n ≥ 1.
On the other hand, let M := R[Q0] be the R-free module generated

by Q0. We identify a vertex a ∈ Q0 with a corresponding trivial path
ea ∈ C0(Q) in Q, so that, M = C0(Q). Define R-homomorphisms

s : (A]
Q)[0] = A]

Q −→ M by ∆ 7→ s(∆) for ∆ ∈ C = P(Q)non,

r : (A]
Q)[0] = A]

Q −→ M by ∆ 7→ r(∆) for ∆ ∈ C = P(Q)non.

These maps s and r clearly satisfy the two conditions in Lemma 5.1. Thus
we have a chain complex

· · · (∂M
C )2−−−−→ (A]

Q)[1]
(∂M

C )1−−−−→ (A]
Q)[0]

(∂M
C )0−−−−→ M −→ {0}

· · · ‖ ‖ ‖
· · · (∂Q)3−−−−→ C2(Q)

(∂Q)2−−−−→ C1(Q)
(∂Q)1−−−−→ C0(Q) −→ {0}

where (∂M
C )0 := r − s : 〈D0〉R −→ M coincides with (∂Q)1. It follows

that HM
0 (A]

Q, C) = H1(Q;R) and HM
−1(A

]
Q, C) = H0(Q;R). The proof is

complete. ¤

7. Examples

In this section, we give various examples of a pair (A,B) and Hn(A,B).
Denote by Rm the natural R-module {t(x1, . . . , xm) | xi ∈ R} with R-basis
{vi}1≤i≤m where vi is a vector in Rm whose i-th entry is 1, and the other
entries are all 0.
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7.1. Path algebra A]
Q

Let Q be a quiver defined as a
α−→ b. Then P(Q) = {ea, eb, α}, C :=

P(Q)non = {α}, and A]
Q := 〈C〉R = 〈α〉R ∼= R. Since (A]

Q)[n] :=
〈
C 6=0
⊗(n+1)

〉
R

for n ≥ 0, a corresponding chain complex is as

· · · −→ {0} −→ {0} (∂C)1−−−→ (A]
Q)[0]

(∂C)0−−−→ {0}.

Note that (A]
Q)[0] = A]

Q. Thus H0(A
]
Q, C) = A]

Q
∼= R. Let M := R2, and

define R-homomorphisms

s : A]
Q −→ M by α 7→ v1,

r : A]
Q −→ M by α 7→ v2.

Then, by Lemma 5.1, we have a chain complex

· · · −→ {0} (∂M
C )1−−−−→ (A]

Q)[0]
(∂M

C )0−−−−→ M −→ {0}

where (∂M
C )0 := r−s : A]

Q −→ M with Im(∂M
C )0 = 〈v2−v1〉R ∼= R. It follows

that HM
0 (A]

Q, C) := Ker(∂M
C )0 = {0} and HM

−1(A
]
Q, C) := M/Im(∂M

C )0 ∼= R.
Summarizing

n n ≥ 1 0 −1

Hn(A]
Q, C) {0} R −

HM
n (A]

Q, C) {0} {0} R

7.2. Matrix algebras
Let Mm(R) be the total matrix R-algebra of degree m with {eij | 1 ≤

i ≤ m, 1 ≤ j ≤ m} as R-basis where eij is a matrix whose (s, t)-entry is
1 if (s, t) = (i, j), and 0 otherwise. Let Λ be a subset of {1, 2, . . . , m} ×
{1, 2, . . . , m} such that (i, k) ∈ Λ whenever (i, j), (j, k) ∈ Λ. Then

A :=
⊕

(i,j)∈Λ

Rei,j
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is an R-subalgebra of Mm(R) possessing an R-free basis B := {ei,j | (i, j) ∈
Λ}. Since B ∪ {0} is a semigroup, B satisfies Hypothesis (P). Recall that,
for n ≥ 0,

A[n] :=
〈
B 6=0
⊗(n+1)

〉
R

= 〈ei0i1 ⊗ ei1i2 ⊗ · · · ⊗ einin+1 | (ik, ik+1) ∈ Λ, 0 ≤ k ≤ n〉R

Note that A[0] = 〈B〉R = A. Then we have a corresponding chain complex

· · · (∂B)3−−−−→ A[2] (∂B)2−−−−→ A[1] (∂B)1−−−−→ A[0] (∂B)0−−−−→ {0}.

Let M := Rm, and define R-homomorphisms

s : A −→ M by
∑

(i,j)∈Λ

λi,jei,j 7→
∑

(i,j)∈Λ

λi,jvi,

r : A −→ M by
∑

(i,j)∈Λ

µi,jei,j 7→
∑

(i,j)∈Λ

µi,jvj .

Then, for eij , ejk ∈ B, we have that s(eijejk) = s(eik) = vi = s(eij),
r(eijejk) = r(eik) = vk = r(ejk), and r(eij) = vj = s(ejk). By Lemma
5.1, we have a chain complex

· · · (∂M
B )2−−−−→ A[1] (∂M

B )1−−−−→ A[0] (∂M
B )0−−−−→ M −→ {0}

where (∂M
B )n := (∂B)n for n ≥ 1, and (∂M

B )0 := r − s : A −→ M .

Proposition 7.1 Suppose that (1, i) ∈ Λ for any 1 ≤ i ≤ m. Then

HM
n (A,B) =

{{0} if n ≥ 0

R if n = −1

Proof. Using the assumption that (1, i) ∈ Λ for any 1 ≤ i ≤ m, the
following R-homomorphisms hn can be defined.

hn : A[n] −→ A[n+1] (n ≥ 0)
by ei0i1 ⊗ · · · ⊗ einin+1 7→ e1i0 ⊗ ei0i1 ⊗ · · · ⊗ einin+1 ,
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h−1 : M −→ A[0] by vi 7→ e1i.

Then we can check that (∂M
B )n+1 ◦hn +hn−1 ◦ (∂M

B )n = IdA[n] for any n ≥ 0
where IdA[n] is the identity map on A[n]. This shows that Ker(∂M

B )n ≤
Im(∂M

B )n+1, and thus HM
n (A,B) = {0} for n ≥ 0.

On the other hand, we have that Im(∂M
B )0 = 〈vi − v1 | 2 ≤ i ≤ m〉R. It

follows that HM
−1(A,B) := M/Im(∂M

B )0 ∼= R as desired. ¤

Let Tm(R) be an R-subalgebra consisting of all upper triangular ma-
trices in Mm(R). Then we are able to apply Proposition 7.1 to R-algebras
Mm(R) and Tm(R). Here it is worth mentioning that we originally calcu-
lated homology HM

n (A,B) for M2(R) and T2(R). But the referee pointed
out that our earlier results can be generalized as in Proposition 7.1.

Remark 7.2 Let Q be a quiver defined as a
α−→ b. Then by Remark

4.9 (1) and (2), we have that ρw(A◦Qud) =
〈
ρw(∆) | ∆ ∈ P(Qud)

〉
=

UD(Q,w;C) ∼= M2(C) where w ≡ 1. So the above result is regarded as
the calculation of homology of the Up-Down algebra UD(Q,w;C), and at
the same time, regarded as the calculation of homology of AQud -action ρw

discussed in Section 4.2.

Remark 7.3 Let Q be a quiver defined as a
α−→ b, and let AQ := C[Q] =

〈P(Q)〉C be the path algebra of Q where P(Q) = {ea, eb, α}. Then ρw(A◦Q) =
〈ρw(∆) | ∆ ∈ P(Q)〉 appeared in Example 4.8 is isomorphic to T2(R) where
w ≡ 1. So the above result is regarded as the calculation of homology of
AQ-action ρw discussed in Section 4.2.

7.3. Group algebras
Let G be a group with the identity element eG. Let R[G] be the group

algebra of G over R. Since a R-basis G of R[G] is a group, G satisfies
Hypothesis (P). Thus homology Hn(R[G], G) is defined. Note that, in this
case, R[G][n] :=

〈
B 6=0
⊗(n+1)

〉
R

and G 6=0
⊗(n+1) = G⊗(n+1) = {g0 ⊗ · · · ⊗ gn | gi ∈

G} for n ≥ 0. Then we have a corresponding chain complex

· · · (∂G)2−−−→ R[G][1]
(∂G)1−−−→ R[G][0]

(∂G)0−−−→ {0}.

Recall that Im(∂G)1 = 〈∂G(x ⊗ y) | x, y ∈ G〉R = 〈x + y − xy | x, y ∈ G〉R.
Let Q and Z be respectively the field of all rational numbers and the ring
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of all rational integers.

Proposition 7.4 Suppose that G is finite. Then H0(Q[G], G) = {0} and
HM
−1(Q[G], G) ∼= M for any extension (· · · −→ Q[G][0] −→ M −→ {0})

defined in Section 5.

Proof. It is enough to show that (∂G)1 is surjective. Take any element
g ∈ G of order m > 1. Then Im(∂G)1 contains

∑m−1
i=1 (∂G)1(g ⊗ gi) =

mg − eG and (∂G)1(eG ⊗ eG) = eG. It follows that G ⊆ Im(∂G)1. Thus
Im(∂G)1 = Q[G] = Q[G][0]. Furthermore since G is a group, we have by
Lemma 5.3 that HM

−1(Q[G], G) ∼= M . ¤

Lemma 7.5 A surjective group homomorphism h : G −→ K induces a
surjective homomorphism ĥ : H0(Z[G], G) −→ H0(Z[K],K).

Proof. A map ĥ : Z[G] −→ Z[K] defined by ĥ(
∑

g∈G αgg) :=
∑

g∈G αgh(g)
gives a surjective homomorphism. Thus it is enough to show that
ĥ
(
Im(∂G)1

) ⊆ Im(∂K)1. Indeed, for g1, g2 ∈ G,

ĥ
(
(∂G)1(g1 ⊗ g2)

)
= ĥ(g1 + g2 − g1g2) = (∂K)1

(
ĥ(g1)⊗ ĥ(g2)

) ∈ Im(∂K)1.

This completes the proof. ¤

Lemma 7.6 Let G = 〈x1〉 × · · · × 〈xm〉 × 〈h1〉 × · · · × 〈hn〉 = 〈g1〉 × · · · ×
〈gm+n〉 be a finitely generated abelian group where gi = xi (1 ≤ i ≤ m) with
`i := o(xi) < ∞, and gm+j = hj (1 ≤ j ≤ n) with o(hj) = ∞. Consider the
group algebra Z[G]. Then we have the following.

(1) Im(∂G)1 = 〈∏m+n
i=1 gsi

i −∑m+n
i=1 sigi | si ∈ Z〉Z ⊆ Z[G].

(2) Im(∂G)1 ∩G = {eG}.
(3) H0(Z[G], G) ∼= G as groups.

Proof. (1) For any g =
∏m+n

i=1 gsi
i and h =

∏m+n
i=1 gti

i in G where si, ti ∈ Z,
we have that (∂G)1(g⊗h) = g+h−gh = (g−∑m+n

i=1 sigi)+(h−∑m+n
i=1 tigi)−

(gh−∑m+n
i=1 (si + ti)gi). Conversely, modulo Im(∂G)1 = 〈x + y− xy | x, y ∈

G〉Z,

m+n∏

i=1

gsi
i −

m+n∑

i=1

sigi =
m+n∑

i=1

sigi −
m+n∑

i=1

sigi = 0.
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Thus the first assertion holds.
(2) Let I := {(ν1, . . . , vm, µ1, . . . , µn) | 0 ≤ νi < `i, µj ∈ Z}. For

∆ = (s1, . . . , sm+n) ∈ I, put g∆ :=
∏m+n

i=1 gsi
i ∈ G, g∆ :=

∑m+n
i=1 sigi ∈

Z[G], and J∆ := {i | 1 ≤ i ≤ m + n, si 6= 0}. By the previous result,
Im(∂G)1 = 〈g∆ − g∆ | ∆ ∈ I〉Z. Let S be the totality of sequences ∆ ∈ I
such that J∆ = {k} for some 1 ≤ k ≤ m + n and sk = 1. Then, for ∆ ∈ I,
we have that g∆ − g∆ = 0 if and only if ∆ ∈ S. Thus any element Y in
Im(∂G)1 can be expressed as

Y =
∑

∆∈S′
α∆(g∆ − g∆) (finite sum)

where S ′ := I \ S. Suppose now that Y = g∆0 ∈ G for some ∆0 =
(t1, . . . , tm+n) ∈ I. If ∆0 6∈ S ′ namely ∆0 ∈ S then, since G is a Z-free
basis, α∆ = 0 for all ∆. Thus g∆0 = 0, a contradiction. So ∆0 ∈ S ′. Then
by the same reason, we have that g∆0 = α∆0(g

∆0 − g∆0). This implies that
α∆0 = 1 and 0 = g∆0 =

∑m+n
i tigi. Thus ti = 0 for all i, so that, g∆0 = eG

as required.
(3) Since Im(∂G)1 = 〈x + y − xy | x, y ∈ G〉Z, we have that

H0(Z[G], G) := Z[G]/Im(∂G)1 = 〈gi + Im(∂G)1 | 1 ≤ i ≤ m + n〉Z. Note
that c(gi + Im(∂G)1) = (cgi) + Im(∂G)1 = (gi)c + Im(∂G)1 for c ∈ Z and
1 ≤ i ≤ m + n. Suppose now that, for some ∆0 = (t1, . . . , tm+n) ∈ I,

0 =
m+n∑

i=1

ti(gi + Im(∂G)1) = g∆0 + Im(∂G)1.

Then since g∆0 ∈ Im(∂G)1 ∩ G = {eG}, we have that ti = 0 for all i.
This shows that 〈gi + Im(∂G)1 | 1 ≤ i ≤ m + n〉Z is isomorphic to G =
〈g1〉 × · · · × 〈gm+n〉. The proof is complete. ¤

Example 7.7 Let G be a finitely generated group. Then H0(Z[G], G) ∼=
G/G′ as groups where G′ is the commutator subgroup of G.

Indeed, let π : G −→ G/G′ be the canonical map. Since G/G′ is
a finitely generated abelian group, we obtain a surjective homomorphism
π̂ : H0(Z[G], G) −→ H0(Z[G/G′], G/G′) ∼= G/G′ by Lemma 7.5 and 7.6. On
the other hand, a map κ : G −→ H0(Z[G], G) defined by κ(g) := g+Im(∂G)1
for g ∈ G is a surjective homomorphism such that κ(G′) = {0}. Thus we
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have a surjective endomorphism

G/G′ κ−→ H0(Z[G], G) bπ−→ H0(Z[G/G′], G/G) ∼= G/G′,

and this must be an isomorphism in general. It follows that κ is an isomor-
phism.

Remark 7.8 (Relation with group homology) Set A := R[G] and B := G.
Then we have that Hn(A,B) = Hn+1(G,R) for n ≥ 0 where Hn+1(G,R)
is the usual group homology (cf. [3, pages 35 and 36]). Indeed, we first
recall Hn+1(G,R). Let Fn for n ≥ 0 be the left R[G]-free module with basis
{[g1|g2| · · · |gn] | gi ∈ G}. Note that F0 = R[G][ ] ∼= R[G]. Define an R[G]-
homomorphism ∂n : Fn −→ Fn−1 by ∂n([g1|g2| · · · |gn]) = g1[g2| · · · |gn] +∑n−1

i=0 (−1)i[g1| · · · |gigi+1| · · · gn] + (−1)n[g1|g2| · · · |gn−1]. Then

· · · ∂3−→ F2
∂2−→ F1

∂1−→ F0
ε−→ R −→ {0}

is a free resolution of the trivial R[G]-module R. Consider the tensor product
F ′n := R⊗R[G] Fn where R is the right trivial R[G]-module. Then F ′n is the
R-free module with basis {[g1|g2| · · · |gn] | gi ∈ G}, and we have a chain
complex

F ′• : · · · ∂′3−→ F ′2
∂′2−→ F ′1

∂′1−→ F ′0 −→ {0}

where ∂′n([g1|g2| · · · |gn]) = [g2| · · · |gn] +
∑n−1

i=0 (−1)i[g1| · · · |gigi+1| · · · gn] +
(−1)n[g1|g2| · · · |gn−1]. In particular, ∂′1 is the zero map. Then Hn(G,R) :=
Hn(F ′•) by definition. Now identifying g0⊗· · ·⊗gn ∈ A[n] with [g0| · · · |gn] ∈
F ′n+1, we have the following commutative diagram.

· · · (∂B)2−−−−→ A[1] (∂B)1−−−−→ A[0]

· · · ‖ ‖
· · · ∂′3−→ F ′2

∂′2−→ F ′1
∂′1−→ F ′0 −→ {0}

It follows that Hn(A,B) = Hn+1(G,R) for n ≥ 0. From this viewpoint, it
is known that H0(Z[G], G) = H1(G,Z) ∼= G/G′ for an arbitrary group G.
Thus, in fact, Example 7.7 holds without the assumption on G.
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Remark 7.9 As in Remark 7.8, we have Hn(R[G], G) = Hn+1(G,R)
for n ≥ 0 where Hn+1(G,R) is the usual group cohomology. It is well
known that H1(G,R) = Hom(G,R). From this viewpoint, we have that
H0(Z[G], G) = H1(G,Z) = Hom(G,Z) = {0} if G/G′ is finite. This is the
conclusion of Example 3.11

7.4. The character ring Q[NIrr (G)] of a finite group
Let G be a finite group, and Irr(G) be the set of irreducible complex

characters of G. Denote by 1G and ρG respectively the trivial and regular
characters of G. Let Z[Irr(G)] = {∑χ∈Irr(G) mχχ | mχ ∈ Z} be the char-
acter ring of G which is a Z-algebra with Irr(G) as Z-basis. Consider the
tensor product A := Q⊗ZZ[Irr(G)] over Z which is a Q-algebra. Define χ̃ :=(
1/χ(eG)

)
χ ∈ A for χ ∈ Irr(G), and put NIrr(G) := {χ̃ | χ ∈ Irr(G)} ⊆ A.

Then A possesses NIrr(G) as Q-basis, that is, A = Q[NIrr(G)]. Note that 1G

is the identity element of A. Denote by π(G) the set of all primes dividing
the order |G| of G.

Firstly, we claim that a Q-basis NIrr(G) satisfies Hypothesis (P) (2).
Indeed, for χ̃, ψ̃ ∈ NIrr(G), let χψ =

∑
η∈Irr(G) cηη for some cη ∈ Z. Then

we have that χ̃ψ̃ =
∑

η∈Irr(G) dη η̃ where

dη :=
cη × η(eG)

χ(eG)× ψ(eG)
∈ Q.

Since χ̃(eG) = ψ̃(eG) = η̃(eG) = 1, the equality
∑

η∈Irr(G) dη = 1 holds.
Secondly, we claim that a Q-basis NIrr(G) satisfies Hypothesis (P) (1). This
is because that for any χ̃1, . . . , χ̃m ∈ NIrr(G), we have that χ̃1 · · · χ̃m 6= 0.
In other words, denote by B := NIrr(G), then B 6=0

⊗(n+1) = B⊗(n+1) (n ≥ 0)
holds. Set B − 1G := {χ̃− 1G | χ̃ ∈ B}.
Proposition 7.10 Under the above notation, we have the following.

(1) {ϕ ∈ A | ϕ(eG) = 0} = 〈B − 1G〉Q.
(2) H0(A,B) = {0}.
Proof. (1) Put X := {ϕ ∈ A | ϕ(eG) = 0}. For any ϕ =

∑
χ∈Irr(G) aχχ̃ ∈

X, we have that 0 = ϕ(eG) =
∑

χ∈Irr(G) aχχ̃(eG) =
∑

χ∈Irr(G) aχ. This
implies that ϕ =

∑
χ∈Irr(G) aχ(χ̃ − 1G) is contained in 〈B − 1G〉Q. The

converse is trivial.
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(2) It is enough to show that Im(∂B)1 = A. Let

θ := 1G − 1
|G|ρG = 1G −

∑

χ∈Irr(G)

χ(eG)2

|G| χ̃ ∈ A.

Since θ(eG) = 0, we have that θ ∈ X = 〈B − 1G〉Q and express as θ =∑
χ∈Irr(G) cχ(χ̃ − 1G). Furthermore ϕθ = ϕ for any ϕ ∈ X because of

θ(g) = 1 for any g ∈ G with g 6= eG. Thus for any ψ̃ − 1G ∈ (B − 1G) ⊆ X,
we have that

ψ̃ − 1G = (ψ̃ − 1G)θ =
∑

χ∈Irr(G)

cχ(ψ̃ − 1G)(χ̃− 1G)

∈ 〈(η̃ − 1G)(χ̃− 1G) | η̃, χ̃ ∈ B〉Q.

It follows that 〈1G, (η̃−1G)(χ̃−1G) | η̃, χ̃ ∈ B〉Q ⊇ 〈1G, ψ̃−1G | ψ̃ ∈ B〉Q =
A, and that those two sets are equal. On the other hand, since η̃χ̃ 6= 0 for any
η̃, χ̃ ∈ B, we have by Proposition 3.9 that Im(∂B)1 = 〈1G, (η̃−1G)(χ̃−1G) |
η̃, χ̃ ∈ B〉Q. Thus Im(∂B)1 = A as wanted. This completes the proof. ¤

Remark 7.11 For a positive integer n ≥ 1, let π(n) be the set of all
primes dividing n. Let N := N(G) be the least common multiple of the
degrees χ(eG) for all χ ∈ Irr(G). Set nπ :=

∏
p∈π(N) |G|p where |G|p is the

p-part of |G|, and set nπ′ := |G|/nπ.
Now we consider a subring R := Z[1/N ] = {f(1/N) | f(X) ∈ Z[X]}

of Q instead of Q itself, and observe the R-free module R[NIrr(G)] with
B := NIrr(G) as basis. Note that π

(
χ(eG)ψ(eG)

)
for any χ, ψ ∈ Irr(G) is a

subset of π(N). This implies that dη appeared earlier in this Section lives
in R, and that R[B] is defined as an R-algebra. At the same time, we can
see that an R-basis B satisfies Hypothesis (P).

We follow the notation in the proof of Proposition 7.10. Then, by the
same way, we can show that X = 〈B − 1〉R. Furthermore let

θ′ := nπ′

(
1G − 1

|G|ρG

)
= nπ′1G −

∑

χ∈Irr(G)

χ(eG)2

nπ
χ̃.

Since π(nπ) = π(N), we have that θ′ ∈ R[B]. Then, along the same way
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as in the proof of Proposition 7.10, it is shown that 〈1G, nπ′(ψ̃ − 1G) | ψ̃ ∈
B〉R = 〈1G, nπ′ ψ̃ | ψ̃ ∈ B〉R is contained in Im(∂B)1 by using θ′ instead of
θ. It follows that H0(R[B], B) is a

(
π(G) \ π(N)

)
-group. We will see in the

next Example 7.12 that it is not always equal to {0}.
Example 7.12 Under the situation of Remark 7.11, we give an example.
Let G be the dihedral group D10 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 of order 10.
The character table of G is given as follows:

eG (2, 5)(3, 4) (1, 2, 3, 4, 5) (1, 3, 5, 2, 4)

χ1 = 1G 1 1 1 1
χ2 1 −1 1 1
χ3 2 0 ε + ε4 ε2 + ε3

χ4 2 0 ε2 + ε3 ε + ε4

where ε5 = 1 and ε 6= 1. Then N := N(G) = 2 and a coefficient ring is
R := Z

[
1
2

] ⊆ Q. Furthermore nπ = 2 and nπ′ = 5. Now we calculate that
(∂B)1(χ̃1 ⊗ χ̃i) = χ̃1 + χ̃i − χ̃1χ̃i = χ̃1 for all 1 ≤ i ≤ 4. By the same
way, (∂B)1(χ̃2 ⊗ χ̃2) = 2χ̃2 − χ̃1, (∂B)1(χ̃2 ⊗ χ̃3) = (∂B)1(χ̃2 ⊗ χ̃4) = χ̃2,
(∂B)1(χ̃3 ⊗ χ̃3) = 2χ̃3 − 1

4 χ̃1 − 1
4 χ̃2 − 1

2 χ̃4, (∂B)1(χ̃3 ⊗ χ̃4) = 1
2 χ̃3 + 1

2 χ̃4,
(∂B)1(χ̃4 ⊗ χ̃4) = 2χ̃4 − 1

4 χ̃1 − 1
4 χ̃2 − 1

2 χ̃3. Then Im(∂B)1 is generated
by those (∂B)1(χ̃i ⊗ χ̃j) over R, and we eventually obtain that Im(∂B)1 =
〈χ̃1, χ̃2, 5χ̃3, χ̃3 + χ̃4〉R. Thus H0(R[B], B) = 〈χ̃3 + Im(∂B)1〉R is a cyclic
group of order nπ′ = 5.

Example 7.13 Suppose that G is a finite abelian group. Since ev-
ery irreducible character is linear, we have that N := N(G) = 1 and
NIrr(G) = Irr(G). Furthermore Irr(G) together with the usual product on
characters forms a group which is isomorphic to G. Thus R := Z[1/N ] = Z
and B := NIrr(G) = Irr(G) ∼= G. Then by Example 7.7, H0(R[B], B) ∼=
H0(Z[G], G) ∼= G.

8. Semilattices

Let (L,≤) be a meet-semilattice, namely this is a poset such that there
exists the greatest lower bound a∧b for any a, b ∈ L. In this section, we focus
on an R-algebra R[L]. In particular, we consider a subalgebra of Q[Sgp(G)]
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where Sgp(G) is the subgroup lattice of a finite group G. Furthermore some
relations with the associated order complex of L are investigated.

Definition 8.1 For a meet-semilattice (L,≤), let R[L] be the R-free mod-
ule with basis L. A multiplication on R[L] is defined by extending bilinearly
the product ab := a ∧ b ∈ L for a, b ∈ L. Then R[L] is an associative R-
algebra (cf. [1, page 185]). Note that an R-free basis L is a semigroup, so
that, L satisfies Hypothesis (P).

8.1. Subgroup lattice
Let G be a finite group. Denote by Sgp(G) the set of all subgroups

of G. Then Sgp(G) is a meet-semilattice with respect to the inclusion-
relation. Note that H ∧K = H ∩K ∈ Sgp(G) for any H, K ∈ Sgp(G). Put
L := Sgp(G) and a Q-algebra A := Q[L].

Definition 8.2 For a subgroup H ∈ L, define an element

[H] :=
1
|G|

∑

g∈G

Hg =
1

|G : H|
(

1
|H|

∑

g∈G

Hg

)
∈ Q[L]

where Hg := g−1Hg for g ∈ G. Put XG := {[H] | H ∈ L/∼G
} where

L/∼G
is a set of representatives of G-conjugate classes of L. Denote by

Ω(G) := Q[XG] the Q-free module generated by XG.

Note that for [H], [K] ∈ XG, we have that

[H][K] =
1
|G|2

∑

x,y∈G

Hx ∩Ky =
1
|G|2

∑

x∈G

( ∑

y∈G

(H ∩Kyx−1
)x

)

=
1
|G|2

∑

x∈G

( ∑

y∈G

(H ∩Ky)x

)
=

1
|G|

∑

y∈G

(
1
|G|

∑

x∈G

(H ∩Ky)x

)

=
1
|G|

∑

y∈G

[H ∩Ky] ∈ Ω(G).

This shows that Ω(G) is a subalgebra of Q[L] with a Q-basis XG, and also
shows that XG satisfies Hypothesis (P).

Proposition 8.3 Under the above notation, we have that H0(Ω(G), XG) =
{0}.
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Proof. It suffices to show that Im(∂XG
)1 = Ω(G). Let E := {eG} be the

trivial subgroup of G. First we note that (∂XG
)1([E]⊗[E]) = 2[E]−[E][E] =

2[E] − [E] = [E]. Next we take any [H] ∈ XG such that H 6= E. Then by
using the above formula on [H][K],

(∂XG
)1([H]⊗ [H]) =

(
2− 1

|G : NG(H)|
)

[H]− 1
|G|

∑

y 6∈NG(H)

[H ∩Hy].

The coefficient of [H] is non-zero. By induction on the order of a subgroup
of G, Im(∂XG

)1 contains [H]. Thus XG ⊆ Im(∂XG
)1, so that, Im(∂XG

)1 =
Ω(G) as desired. ¤

8.2. Associated order complex
For a poset (L,≤), the order complex O(L) = O(L,≤) of L is the

abstract simplicial complex whose k-simplices are all inclusion-chains (x0 >

· · · > xk) of length k where xi ∈ L. Denote by O(L)k the set of all k-
simplices of O(L) for k ≥ 0. For s ∈ L and a subset K ⊆ L, we define a
subposet K<s := {a ∈ K | a < s}.
Notation 8.4 Let (L,≤) be a meet-semilattice. For s ∈ L and a subset
K ⊆ L, denote by

F(K<s)n−1 :=
{
b0 ⊗ · · · ⊗ bn−1 | (b0 > · · · > bn−1) ∈ O(K<s)n−1

}
(n ≥ 1).

For b0⊗· · ·⊗bn−1 ∈ F(K<s)n−1, we have the product b0 · · · bn−1 = bn−1 6= 0
in the algebra R[L]. Thus F(K<s)n−1 ⊆ L6=0

⊗n. Furthermore denote by

s⊗F(K<s)n−1 :=
{
s⊗ b0 ⊗ · · · ⊗ bn−1 | b0 ⊗ · · · ⊗ bn−1 ∈ F(K<s)n−1

}
,

s⊗F(K<s)−1 := {s},

D(K<s) :=
⋃

n≥0

s⊗F(K<s)n−1 ⊆
⋃

n≥0

L6=0
⊗(n+1).

Recall that D(K<s)n := D(K<s) ∩ L6=0
⊗(n+1) = s⊗F(K<s)n−1 for n ≥ 0. In

particular, D(K<s)0 = {s}.
Proposition 8.5 Let (L,≤) be a meet-semilattice. For s ∈ L and a subset
K ⊆ L, we have that D(K<s) is ∂L-invariant, and that Hn

(D(K<s)
) ∼=
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H̃n−1

(
O(K<s)

)
for any n ≥ 0 as R-modules where H̃n−1

(
O(K<s)

)
is the

usual reduced homology of a simplicial complex O(K<s).

Proof. For s⊗ b0 ⊗ · · · ⊗ bn−1 ∈ D(K<s)n (n ≥ 1), we have that

∂L(s⊗ b0 ⊗ · · · ⊗ bn−1)

= (b0 ⊗ · · · ⊗ bn−1)− (sb0)⊗ b1 ⊗ · · · ⊗ bn−1

+
n−2∑

i=0

(−1)is⊗ · · · ⊗ (bibi+1)⊗ · · · ⊗ bn−1 + (−1)n−1s⊗ b0 ⊗ · · · ⊗ bn−2

=
n−1∑

i=0

(−1)is⊗ b0 ⊗ · · · ⊗ b̂i ⊗ · · · ⊗ bn−1 ∈ D(K<s)n−1.

Note that sb0 = b0 and bibi+1 = bi+1 as s > b0 and bi > bi+1 respectively,
and that b̂i means to delete the element bi. This shows that D(K<s) is
∂L-invariant.

Put D := D(K<s). An element s⊗b0⊗· · ·⊗bn−1 ∈ Dn = s⊗F(K<s)n−1

(n ≥ 1) is identified with an (n−1)-simplex (b0 > · · · > bn−1) ∈ O(K<s)n−1.
Furthermore, for s ⊗ b0 ∈ D1, we have that ∂L(s ⊗ b0) = s ∈ D0 = {s}. It
follows that (∂L,D)1 : 〈D1〉R −→ 〈D0〉R = 〈s〉R gives the augmentation map.
Thus we have the following chain complex

· · · −→ 〈D2〉R (∂L,D)2−−−−−→ 〈D1〉R (∂L,D)1−−−−−→ 〈D0〉R −→ {0}
‖ ‖ ‖

〈O(K<s)1〉 R 〈O(K<s)0〉R R

Then the above calculation of ∂L yields the required isomorphism. ¤

Example 8.6 Let G be a finite group. Suppose that |π(G)| ≥ 2. For
p ∈ π(G), denote by Sp(G) the set of all non-trivial p-subgroups of G. Put
L := Sp(G) ∪ {{eG}, G

}
. Then L is a meet-semilattice with respect to the

inclusion-relation. Note that P ∧ Q = P ∩ Q ∈ L for any P, Q ∈ L as in
Section 8.1. Then for G ∈ L and a subset K := Sp(G) ⊆ L, we have by
Proposition 8.5 that

Hn

(D(K<G)
) ∼= H̃n−1

(
O(K<G)

)
= H̃n−1

(
O(Sp(G))

)
.



Homology of a certain associative algebra 255

Thus the reduced homology of the Brown complex O(Sp(G)) can be realized
as our homology of an R-algebra R[L].

Theorem 8.7 For a meet-semilattice (L,≤), let

D(L) :=
⋃

s∈L

D(L<s) =
⋃

n≥0

( ⋃

s∈L

s⊗F(L<s)n−1

)
⊆

⋃

n≥0

L6=0
⊗(n+1).

Then D(L) is ∂L-invariant, and

Hn

(D(L)
) ∼=

⊕

s∈L

H̃n−1

(
O(L<s)

)

for any n ≥ 0 as R-modules.

Proof. By the definition, 〈D(L)〉R =
⊕

s∈L〈D(L<s)〉R as R-modules.
Since D(L<s) is ∂L-invariant by Proposition 8.5, so is D(L). Furthermore
Hn

(D(L<s)
) ∼= H̃n−1

(
O(L<s)

)
for any n ≥ 0. Thus the assertion clearly

holds. ¤
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