An example of a globally hypo-elliptic operator

By Daisuke Fujimara and Hideki Omori
(Received November 1, 1982)

§ 1. Introduction

Let $T^{2}=R^{2} / 2 \pi \mathbf{Z}^{2}$ be the 2 -dimmensional torus. A function $f(x, y)$ of $(x, y) \in R^{2}$ is identified with a function on the torus \mathbf{T}^{2} if and only if it is doubly periodic, i. e.,
(1) $\quad f(x+2 n \pi, y+2 m \pi)=f(x, y)$ for any n and m in \mathbf{Z}.

We consider a linear partial differential operator of the second order

$$
\begin{equation*}
L=-\frac{\partial^{2}}{\partial x^{2}}-\phi(x)^{2} \frac{\partial^{2}}{\partial y^{2}} \tag{2}
\end{equation*}
$$

where $\phi(x)$ is a real-valued function of x of class C^{∞}. We assume that

$$
\begin{align*}
\phi(x) & =1 \text { for }|x|<\frac{\pi}{2} \tag{3}\\
& =0 \text { for } \frac{3}{4} \pi \leqq|x| \leqq \pi
\end{align*}
$$

and that $\phi(x)$ is periodic, i. e., $\phi(x)=\phi(x+2 \pi)$.
The aim of this note is to show the following
Theorem. The operator L is hypo-elliptic. That is, if a distribution $u \in \mathscr{D}^{\prime}\left(\mathbf{T}^{2}\right)$ satisfies
(4) $\quad L u=f$
and if $f \in C^{\infty}\left(\mathbf{T}^{2}\right)$, then $u \in C^{\infty}\left(\mathbf{T}^{2}\right)$.
Remark. Let U be an open set outside the support of the function $\phi(x)$. Then the restriction of L to U coincides with $-\left(\frac{\partial}{\partial x}\right)^{2}$. This means that the operator L is not locally hypo-elliptic. Let $X_{1}=\frac{\partial}{\partial x}$ and $X_{2}=\phi(x) \frac{\partial}{\partial y}$. Then these vector fields do not satisfy Fefferman-Phong condition [2]. However they are controlable in the sense of Amano [1].

§ 2. Proof.

We shall begin with the following

Proposition 1. Suppose that $f \in \mathscr{D}^{\prime}\left(\mathbf{T}^{2}\right)$ and

$$
\begin{equation*}
L u=f \tag{4}
\end{equation*}
$$

for some $u \in \mathscr{D}^{\prime}\left(\mathbf{T}^{2}\right)$. Then

$$
\begin{equation*}
\langle f, 1\rangle=0, \tag{5}
\end{equation*}
$$

where $\left\langle,>\right.$ denotes the canonical bilinear map of $\mathscr{D}^{\prime}\left(\mathbf{T}^{2}\right) \times \mathscr{D}\left(\mathbf{T}^{2}\right)$ to C.
Proof is ommitted.
We assume from now on that f is of class C^{∞} and that it satisfies condition (5). Let

$$
\begin{equation*}
f(x, y)=\sum_{n=-\infty}^{\infty} f_{n}(x) e^{i n y} . \tag{6}
\end{equation*}
$$

be the partial fourier expansion of $f(x, y)$ with respect to y. The condition (5) implies that

$$
\begin{equation*}
f_{0}(x)=0 . \tag{7}
\end{equation*}
$$

For any pair of positive integers N and m there exists a constant $C>0$ such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{m} f_{n}(x)\right| \leqq C(1+|n|)^{-N},
$$

because $f(x, y)$ is of class C^{∞}.
Let u_{n} be the distribution of one variable defined by

$$
\begin{equation*}
\left\langle u_{n} \psi\right\rangle=\left\langle u, \psi \times e^{-i n y}\right\rangle, \quad \text { for any } \psi \in \mathscr{D}\left(\mathbf{T}^{1}\right) . \tag{8}
\end{equation*}
$$

Then the partial fourier expansion of u with respect to y is

$$
\begin{equation*}
u=\sum_{n=-\infty}^{\infty} u_{n}(x) e^{i n y} . \tag{9}
\end{equation*}
$$

Proposition 2. Assume that $f \in C^{\infty}\left(\mathbf{T}^{2}\right)$ and that u satisfies (4). Then for each $n u_{n}(x)$ is a C^{∞} function of x in T^{1} and it satisfies the equation

$$
\begin{align*}
& \left\{-\left(\frac{d}{d x}\right)^{2}+n^{2} \phi(x)^{2}\right\} u_{n}(x)=f_{n}(x), \quad \text { if } n \neq 0, \tag{10}\\
& \quad u_{0}(x)=\text { const. }
\end{align*}
$$

Proof. For any $\psi(x)$ in $C^{\infty}\left(\mathbf{T}^{1}\right)$, then

$$
\begin{aligned}
\left\langle f_{n}, \varphi\right\rangle & =\left\langle f,, \psi \times e^{-i n y}\right\rangle \\
& =\left\langle L u,{ }^{\prime}, \psi \times e^{-i n y}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =-\left\langle u,\left\{\left(\frac{\partial}{\partial x}\right)^{2}-n^{2} \phi(x)^{2}\right\} \phi(x) \times e^{-i n y}\right\rangle \\
& =\left\langle\left\{-\left(\frac{d}{d x}\right)^{2}+n^{2} \phi(x)^{2}\right\} u_{n}(x), \phi\right\rangle .
\end{aligned}
$$

Hence we have (10). Since f_{n} is of class $C^{\infty}\left(\mathbf{T}^{1}\right)$ and ordinary differential operators are hypo-elliptic, $u_{n}(x) \in C^{\infty}\left(\mathbf{T}^{1}\right)$. Proposition 2 is proved.

In what follows we shall majorize $u_{n}(x)$.
Definition. For any function $v(x)$ in $C^{\infty}\left(\mathbf{T}^{1}\right)$ we define three norms:

$$
\begin{align*}
& \|v\|_{\phi}=\left\{\int_{-\pi}^{\pi}\left(\frac{d}{d x} v(x)\right)^{2} d x+\int_{-\pi}^{\pi} \phi(x)^{2}|v(x)|^{2} d x\right\}^{1 / 2} \tag{11}\\
& \|v\|=\left\{\int_{-\pi}^{\pi}|v(x)|^{2} d x\right\}^{1 / 2} \\
& \|v\|_{1}=\left\{\int_{-\pi}^{\pi}\left\{\left(\frac{d}{d x} v(x)\right)^{2}+v(x)^{2}\right\} d x\right\}^{1 / 2}
\end{align*}
$$

Lemma 3. There exists a positive constant C such that for any function v in $C^{\infty}\left(\mathbf{T}^{1}\right)$

$$
\begin{align*}
& |v(x)| \leqq C\|v\|_{\phi} \text { for any } x \text { in } \mathbf{T}^{1}, \tag{14}\\
& \|v\|_{1} \leqq C\|v\|_{\phi}, \tag{15}\\
& \|v\| \leqq C\|v\|_{\phi} . \tag{16}
\end{align*}
$$

Proof. Let $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then for any $x \in(-\pi, \pi)$

$$
v(x)=v(t)+\int_{t}^{x}\left(\frac{d}{d s}\right) v(s) d s
$$

Hence

$$
\begin{aligned}
|v(x)|^{2} & \leqq 2|v(t)|^{2}+2\left\{\int_{t}^{x}\left|\left(\frac{d}{d s}\right) v(s)\right| d s\right\}^{2} \\
& \leqq 2|v(t)|^{2}+4 \pi \int_{-\pi}^{\pi}\left|\left(\frac{d}{d x}\right) v(s)\right|^{2} d s .
\end{aligned}
$$

Integrating both sides of this with respect to $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have

$$
\begin{align*}
\pi|v(x)|^{2} & \leqq 2 \int_{-\pi / 2}^{\pi / 2}|v(t)|^{2} d t+4 \pi^{2} \int_{-\pi}^{\pi}\left|\left(\frac{d}{d x}\right) v(s)\right|^{2} d s \tag{17}\\
& \leqq 2 \int_{-\pi}^{\pi} \phi(t)^{2}|v(t)|^{2} d t+4 \pi^{2} \int_{-\pi}^{\pi}\left|\left(\frac{d}{d x}\right) v(s)\right|^{2} d s \\
& \leqq 4 \pi^{2}\|v\|_{\phi}^{2} .
\end{align*}
$$

Thus (14) has been proved. Estimates (15) and (16) follow from this.
Proposition 4. Assume that the function $f(x, y)$ satisfies (5) and u is the solution of (4). Then there exists a constant C independent of n such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{\phi} \leqq\left\|f_{n}\right\| \quad \text { for } n \neq 0 \tag{18}
\end{equation*}
$$

Proof. Multiply (10) by $u_{n}(x)$ and integrate with respect to x. Then

$$
\begin{align*}
\left\|u_{n}\right\|_{\phi}^{2} & \leqq \int_{-\pi}^{\pi} \|\left.\left(\frac{d}{d x}\right) u_{n}(x)\right|^{2} d x+n^{2} \int_{-\pi}^{\pi} \phi(x)^{2}\left|u_{n}(x)\right|^{2} d x \tag{19}\\
& =\int_{-\pi}^{\pi} f_{n}(x) u_{n}(x) d x \\
& \leqq\left\|f_{n}\right\|\left\|u_{n}\right\|_{\phi}
\end{align*}
$$

Using (16), we have (19).
Now we can prove
ThEOREM. Assume that $f \in C^{\infty}\left(\mathbf{T}^{2}\right)$ and that u satisfies the equation:

$$
L u=f .
$$

Then $u \in C^{\infty}\left(\mathbf{T}^{2}\right)$.
Proof. By Proposition 2, we may assume $u_{0}(x)=0$. Since u satisfies (4), its partial fourier coefficients $u_{n}(x)$ satisfy estimate (18). Combining this with (14), we have for any positive intseger N and for any $x \in[-\pi, \pi]$

$$
\left|u_{n}(x)\right| \leqq C| | u_{n} \|_{\phi} \leqq C| | f_{n}| | \leqq C(1+|n|)^{-N} \quad(n \neq 0)
$$

This implies that the partial fourier series

$$
\sum_{n \neq 0} u_{n}(x) e^{i n y} \text { and } \sum_{n \neq 0} n u_{n}(x) e^{i n y}
$$

converge absolutely and uniformly with respect to x and y. Therefore $u(x, y)$ and $\left(\frac{\partial}{\partial y}\right) u(x, y)$ are continuous. The function $v_{n}(x)=\frac{d}{d x} u_{n}(x)$ satisfies the equation

$$
-\left(\frac{d}{d x}\right)^{2} v_{n}(x)+n^{2} \phi(x)^{2} v_{n}(x)=\frac{d}{d x} f_{n}(x)-\left(\frac{d}{d x} \phi(x)\right)^{2} n^{2} u_{n}(x)
$$

Since $\left|2 \phi(x) \phi^{\prime}(x) n^{2} u_{n}(x)\right|<C n^{-N+2}$, we have

$$
\begin{equation*}
\left|v_{n}(x)\right| \leqq C n^{2-N} \tag{20}
\end{equation*}
$$

As we can choose N in (20) very large,

$$
\left(\frac{\partial}{\partial x}\right) u(x, y)=\sum_{n \neq 0} v_{n}(x) e^{i n y}
$$

converges uniformly in x and y. Thus $\left(\frac{\partial}{\partial x}\right) u(x, y)$ is continuous. Therefore $u(x, y)$ is of class $C^{1}\left(\mathbf{T}^{2}\right)$. Similar discussion proves that $u(x, y) \in C^{\infty}\left(\mathbf{T}^{2}\right)$. Theorem has been proved.

References

[1] Amano, K.: A necessary condition for hypoellipticity of degenerate ellipticparabolic operators. Tokyo J. Math. Vol. 2 111-120, (1979).
[2] Fefferman, C. and Phong, D. H.: Subelliptic eigenvalue problems. To appear.

Daisuke Fujiwara
Department of Mathematics
Tokyo Institute of Technology
Tokyo 152, Japan
Hideki Omori
Department of mathematics
Science University of Tokyo
Noda 278, Japan

