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An example of a globally hypo-elliptic operator
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\S 1. Introduction

Let T^{2}=R^{2}/2\pi Z^{2} be the 2-dimmensional torus. A function f(x, y) of
(x, y)\in R^{2} is identified with a function on the torus T^{2} if and only if it is
doubly periodic, i . e. ,

(1) f(x+2n\pi, y+2m\pi)=f(x, y) for any n and m in Z.

We consider a linear partial differential operator of the second order

(2) L=- \frac{\partial^{2}}{\partial x^{2}}-\phi(x)^{2}\frac{\partial^{2}}{\partial y^{2}} ,

where \phi(x) is a real-valued function of x of class C^{\infty} . We assume that

(3) \phi(x)=1 for |x|< \frac{\pi}{2} ,

=0 for \frac{3}{4}\pi\leqq|x|\leqq\pi

and that \phi(x) is periodic, i . e. , \phi(x)=\phi(x+2\pi)

The aim of this note is to show the following

THEOREM. The operator L is hypO-elliptic. That is, if a distribution
u\in \mathscr{D}’(T^{2}) satisfifies
(4) Lu=f
and if f\in C^{\infty}(T^{2}) , then u\in C^{\infty}(T^{2})(

REMARK. Let U be an open set outside the support of the function
\phi(x) . Then the restriction of L to U coincides with -( \frac{\partial}{\partial x})^{2} This means

that the operator L is not locally hyp0-elliptic. Let X_{1}= \frac{\partial}{\partial x} and X_{2}= \phi(x)\frac{\partial}{\partial y} .
Then these vector fields do not satisfy Fefferman-Phong condition [2].
However they are controlable in the sense of Amano [1],

\S 2. Proof.

We shall begin with the following
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PROPOSITION 1. Suppose that f\in \mathscr{D}’(T^{2}) and

(4) Lu=f
for some u\in \mathscr{D}’(T^{2}) . Then

(5) \langle f, 1\rangle=0 ,

where \langle \rangle denotes the canonical bilinear map of \mathscr{D}’(T^{2})\cross \mathscr{D}(T^{2}) to C.

Proof is ommitted.

We assume from now on that f is of class C^{\infty} and that it satisfies con-
dition (5). Let

(6) f(x, y)= \sum_{n=-\infty}^{\infty}f_{n}(x)e^{iny}

be the partial fourier expansion of f(x, y) with respect to y. The condition
(5) implies that

(7) f_{0}(x)=0 .

For any pair of positive integers N and m there exists a constant C>0
such that

|( \frac{\partial}{\partial x})^{m}f_{n}(x)|\leqq C(1+|n|)^{-N} ,

because f(x, y) is of class C^{\infty}.

Let u_{n} be the distribution of one variable defined by

(8) \langle u_{n}\psi\rangle=\langle u, \psi\cross e^{-iny}\rangle , for any \psi\in \mathscr{D}(T^{1})\circ

Then the partial fourier expansion of u with respect to y is

(9) u= \sum_{n=-\infty}^{\infty}u_{n}(x)e^{iny}\circ

PROPOSITION 2. Assume that f\in C^{\infty}(T^{2}) and that u satisfifies (4). Then

for each nu_{n}(x) is a C^{\infty} function of x in T^{1} and it satisfifies the equation

(10) \{-(\frac{d}{dx})^{2}+n^{2}\phi(x)^{2}\}u_{n}(x)=f_{n}(x) , if n\neq 0 ,

u_{0}(x)=const .
PROOF. For any \psi(x) in C^{\infty}(T^{1}) , then

\langle f_{n}, \psi\rangle=\langle f_{A}^{1},\psi\cross e^{-iny}\rangle

=\langle Lu_{4}^{1},\psi\cross e^{-iny}\rangle
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=-\langle u , \{(\frac{\partial}{\partial x})^{2}-n^{2}\phi(x)^{2}\}\psi(x)\cross e^{-iny}\rangle

= \langle\{-(\frac{d}{dx})^{2}+n^{2}\phi(x)^{2}\}u_{n}(x) , \psi\rangle

Hence we have (10). Since f_{n} is of class C^{\infty}(T^{1}) and ordinary differential
operators are hyp0-elliptic, u_{n}(x)\in C^{\infty}(T^{1}) . Proposition 2 is proved.

In what follows we shall majorize u_{n}(x) .
DEFINITION. For any function v(x) in C^{\infty}(T^{1}) we defifine three norms:

(11) ||v||_{\phi}= \{\int_{-\pi}^{\pi}(\frac{d}{dx}v(x))^{2}dx+\int_{-\pi}^{\pi}\phi(x)^{2}|v(x)|^{2}dx\}^{1/2}
:

(12) ||v||= \{\int_{-\pi}^{\pi}|v(x)|^{2}dx\}^{1/2} :

(13) ||v||_{1}= \{\int_{-\pi}^{\pi}\{(\frac{d}{dx}v(x))^{2}+v(x)^{2}\}dx\}^{1/2}

Lemma 3. There exists a positive constant C such that for anyfunction
v in C^{\infty}(T^{1})

(14) |v(x)|\leqq C||v|| , for any x in T^{1} ,

(15) ||v||_{1}\leqq C||v||_{l\prime}.
(16) ||v||\leqq C||v||_{\phi}

PROOF. Let t \in(-\frac{\pi}{2} , \frac{\pi}{2}). Then for any x\in(-\pi, \pi)

v(x)=v(t)+ \int_{t}^{x}(\frac{d}{ds})v(s)ds .

Hence

|v(x)|^{2} \leqq 2|v(t)|^{2}+2\{\int_{t}^{x}|(\frac{d}{ds})v(s)|ds\}^{2}

\leqq 2|v(t)|^{2}+4\pi\int_{-\pi}^{\pi}|(\frac{d}{dx})v(s)|^{2}ds .

Integrating both sides of this with respect to t \in(_{-}\frac{\pi}{2} , \frac{\pi}{2}), we have

(17) \pi|v(x)|^{2}\leqq 2\int_{-\pi/2}^{\pi/2}|v(t)|^{2}dt+4^{2}\pi\int_{-\pi}^{\pi}|(\frac{d}{dx})v.(s)|^{2}ds

\leqq 2\int_{-\pi}^{\pi}\phi(t)^{2}|v(t)|^{2}dt+4\pi^{2}\int_{-\pi}^{\pi}|(\frac{d}{dx})v(s)|^{2}ds

\leqq 4\pi|2|v||_{\phi}^{2} .
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Thus (14) has been proved. Estimates (15) and (16) follow from this.

PROPOSITION 4. Assume that the function f(x, y) satisfifies (5) and u is
the solution of {A) . Then there exists a constant C independent of n such that

(18) ||u_{n}||_{\phi}\leqq||f_{n}|| for n\neq 0

PROOF. Multiply (10) by u_{n}(x) and integrate with respect to x. Then

(18) ||u_{n}||_{\phi}^{2} \leqq\int_{-\pi}^{\pi}|(\frac{d}{dx})u_{n}(x)|^{2}dx+n^{2}\int_{-\pi}^{\pi}\phi(x)^{2}|u_{n}(x)|^{2}dx

= \int_{-\pi}^{\pi}f_{n}(x)u_{n}(x)dx

\leqq||f_{n}||||u_{n}||_{\phi}

Using (16), we have (19).

Now we can prove

THEOREM. Assume that f\in C^{\infty}(T^{2}) and that u satisfifies the equation

(4.) Lu=f .
Then u\in C^{\infty}(T^{2}) .

PROOF. By Proposition 2, we may assume u_{0}(x)=0 . Since u satisfies
(4), its partial fourier coefficients u_{n}(x) satisfy estimate (18). Combining this
with (14), we have for any positive intseger N and for any x\in[-\pi, \pi]

|u_{n}(x)|\leqq C||u_{n}||_{\phi}\leqq C||f_{n}||\leqq C(1+|n|)^{-N} (n\neq 0)t

This implies that the partial fourier series

\sum_{n\neq 0}u_{n}(x)e^{iny} and \sum_{n\neq 0}nu_{n}(x)e^{iny}

converge absolutely and uniformly with respect to x and y. Therefore u(x, y)

and ( \frac{\partial}{\partial y})u(x, y) are continuous. The function v_{n}(x)= \frac{d}{dx}u_{n}(x) satisfies the

equation

-( \frac{d}{dx})^{2}v_{n}(x)+n^{2}\phi(x)^{2}v_{n}(x)=\frac{d}{dx}f_{n}(x)-\backslash (\frac{d}{dx}\phi(x))2nu_{n}(2x)

Since |2\phi(x)\phi’(x)n^{2}u_{n}(x)|<Cn^{-N+2}, we have

(20) |v_{n}(x)|\leqq Cn^{2-N}

As we can choose N in (20) very large,

( \frac{\partial}{\partial x})u(x,y)=\sum_{n\neq 0}v_{n}(x)e^{iny}
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converges uniformly in x and y. Thus ( \frac{\partial}{\partial x})u(x, y) is continuous. There-
fore u(x, y) is of class C^{1}(T^{2}) . Similar discussion proves that u(x, y)\in C^{\infty}(T^{2}) .
Theorem has been proved.
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