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Periodic solutions for a class of nonlinear difference equations
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Abstract. By using the critical point theory, some new criteria are obtained for

the existence and multiplicity of periodic solutions to a class of nonlinear difference

equations. The proof is based on the Linking Theorem in combination with variational

technique. Our results successfully generalize and improve some existing results in the

literature.
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1. Introduction

The problem of periodic solutions for differential equations has been the
subject of many investigations [6], [14], [15], [28], [32], [33]. By using vari-
ous methods and techniques, such as fixed point theory, the Kaplan-Yorke
method, critical point theory, coincidence degree theory, bifurcation theory
and dynamical system theory etc., a series of existence results for periodic
solutions have been obtained in the literature. Difference equations, the
discrete analogs of differential equations, occur widely in numerous settings
and forms, both in mathematics itself and in its applications to statistics,
computing, electrical circuit analysis, dynamical systems, economics, biol-
ogy and other fields. For the general background of difference equations, one
can refer to monographs [1], [3], [4], [25]. Since the past twenty years, there
has been much progress on the qualitative properties of difference equations,
which included results on stability and attractivity [16], [25], [27], [46] and
results on oscillation and other topics [1]–[5], [9], [10], [21]–[23], [26], [31],
[40], [41], [43]–[46]. Only a few papers discuss the periodic solutions of
difference equations. Therefore, it is worthwhile to explore this topic.
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Below N, Z and R denote the sets of all natural numbers, integers and
real numbers respectively. For any a, b ∈ Z, we denote Z(a) = {a, a +
1, . . . }, Z(a, b) = {a, a + 1, . . . , b} when a ≤ b. Besides, * denotes the
transpose of a vector.

The present paper considers the following forward and backward differ-
ence equation

∆
(
pn(∆un−1)δ

)
+ f(n, un+1, un, un−1) = 0, n ∈ Z, (1.1)

where ∆ is the forward difference operator ∆un = un+1 − un, ∆2un =
∆(∆un), δ > 0 is the ratio of odd positive integers, pn is real valued for
each n ∈ Z, f ∈ C(Z ×R3,R), pn and f(n, v1, v2, v3) are T -periodic in n

for a given positive integer T .
Eq. (1.1) can be considered as a discrete analogue a special case of the

following second-order nonlinear functional differential equation

(
p(t)ϕ(u′)

)′ + f(t, u(t + 1), u(t), u(t− 1)) = 0, t ∈ R. (1.2)

Eq. (1.2) includes the following equation

(
p(t)ϕ(u′)

)′ + f(t, u(t)) = 0, t ∈ R,

which has arose in the study of fluid dynamics, combustion theory, gas
diffusion through porous media, thermal self-ignition of a chemically active
mixture of gases in a vessel, catalysis theory, chemically reacting systems,
and adiabatic reactor [8], [34]. Equations similar in structure to (1.2) arise in
the study of the existence of solitary waves of lattice differential equations,
see Smets and Willem [36].

When δ = 1, and f(n, un+1, un, un−1) = qnun, (1.1) becomes

∆(pn∆un−1) + qnun = 0, (1.3)

which has been extensively investigated by many authors [1], [4], [13], for
results on oscillation, asymptotic behavior, boundary value problems, dis-
conjugacy and disfocality.

When f(n, un+1, un, un−1) = qnuδ
n, n ∈ Z(0), (1.1) reduces to the fol-

lowing equation
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∆
(
pn(∆un−1)δ

)
+ qnuδ

n = 0, (1.4)

which has been studied in [1], [11], [19], [37] for results on oscillation, asymp-
totic behavior and the existence of positive solutions.

Moreover, f(n, un+1, un, un−1) = qng(un) + rn, (1.1) has been consid-
ered in [31], [37], [38] for oscillatory properties of its all solutions.

The widely used tools for the existence of periodic solutions of difference
equations are the various fixed point theorems in cones [1], [3], [4], [25]. It is
well known that critical point theory is a powerful tool that deals with the
problems of differential equations [6], [8], [11], [18], [19], [28], [39]. Only since
2003, critical point theory has been employed to establish sufficient condi-
tions on the existence of periodic solutions of difference equations. Recently,
Guo and Yu [16]–[18] and Shi et al. [35] established sufficient conditions on
the existence of periodic solutions of second-order nonlinear difference equa-
tions by using the critical point theory. In 2006, Cai, Yu and Guo [7] have
obtained some sufficient conditions for the existence of periodic solutions of
the following nonlinear difference equation

∆
(
pn(∆un−1)δ

)
+ f(n, un) = 0, n ∈ Z. (1.5)

However, to the best of our knowledge, when δ 6= 1 the results on peri-
odic solutions of nonlinear difference equation (1.1) are very scarce in the
literature (see [7]), because there are few known methods for considering
the existence of periodic solutions of discrete systems. Furthermore, since
(1.1) contains both advance and retardation, there are very few manuscripts
dealing with this subject. The main purpose of this paper is to give some
sufficient conditions for the existence and multiplicity of periodic solutions
to a class of nonlinear difference equations. The main approach used in our
paper is a variational technique and the Linking Theorem. In particular, our
results not only generalize the results in the literature [7], but also improve
them. In fact, one can see the following Remarks 1.2 and 1.4 for details.
The motivation for the present work stems from the recent papers in [12],
[17].

Let

p = min
n∈Z(1,T )

{pn}, p̄ = max
n∈Z(1,T )

{pn}.

Our main results are as follows.
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Theorem 1.1 Assume that the following hypotheses are satisfied :
(p) pn > 0,∀n ∈ Z;

(F1) there exists a functional F (n, v1, v2) ∈ C1(Z×R2,R) with F (n, v1, v2)
≥ 0 and it satisfies

F (n + T, v1, v2) = F (n, v1, v2),

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3);

(F2) there exist constants η1 > 0, α ∈ (0, (p/2(δ+1)/2(δ + 1))(c1/c2)δ+1

·λ(δ+1)/2
min ) such that

F (n, v1, v2) ≤ α
(√

v2
1 + v2

2

)δ+1

, for n ∈ Z and v2
1 + v2

2 ≤ η2
1 ;

(F3) there exist constants ρ1 > 0, ζ > 0, β ∈ ((p̄/2(δ+1)/2(δ + 1))(c2/c1)δ+1

·λ(δ+1)/2
max ,+∞) such that

F (n, v1, v2) ≥ β
(√

v2
1 + v2

2

)δ+1

− ζ, for n ∈ Z and v2
1 + v2

2 ≥ ρ2
1,

where c1, c2 are constants which can be referred to (2.4), and λmin,

λmax are constants which can be referred to (2.7).

Then (1.1) has at least three T -periodic solutions.

Remark 1.1 By (F3) it is easy to see that there exists a constant ζ ′ > 0
such that

(F ′3) F (n, v1, v2) ≥ β
(√

v2
1 + v2

2

)δ+1

− ζ ′, ∀(n, v1, v2) ∈ Z×R2.

As a matter of fact, let ζ1 = max
{∣∣F (n, v1, v2)−β

(√
v2
1 + v2

2

)δ+1 + ζ
∣∣ :

n ∈ Z, v2
1 + v2

2 ≤ ρ2
1

}
, ζ ′ = ζ + ζ1, we can easily get the desired result.

Corollary 1.1 Assume that (p) and (F1)–(F3) are satisfied. Then (1.1)
has at least two nontrivial T -periodic solutions.

Remark 1.2 Corollary 1.1 reduces to Theorem 3.1 in [7].

Theorem 1.2 Assume that (p), (F1) and the following conditions are
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satisfied :

(F4) lim
ρ→0

F (n, v1, v2)
ρδ+1

= 0, ρ =
√

v2
1 + v2

2 , ∀n ∈ Z;

(F5) there exist constants R1 > 0 and θ > δ + 1 such that for n ∈ Z and
v2
1 + v2

2 ≥ R2
1,

0 < θF (n, v1, v2) ≤ ∂F (n, v1, v2)
∂v1

v1 +
∂F (n, v1, v2)

∂v2
v2.

Then (1.1) has at least three T -periodic solutions.

Remark 1.3 Assumption (F5) implies that there exist constants a1 > 0
and a2 > 0 such that

(F ′5) F (n, v1, v2) ≥ a1

(√
v2
1 + v2

2

)θ − a2, ∀(n, v1, v2) ∈ Z×R2.

Corollary 1.2 Assume that (p) and (F1), (F4), (F5) are satisfied. Then
(1.1) has at least two nontrivial T -periodic solutions.

If f(n, un+1, un, un−1) = f(un+1, un, un−1), (1.1) reduces to the follow-
ing nonlinear equation,

∆
(
pn(∆un−1)δ

)
+ f(un+1, un, un−1) = 0, n ∈ Z, (1.6)

where f ∈ C(R3,R). Then, we have the following results.

Theorem 1.3 Assume that (p) and the following hypotheses are satisfied :

(F6) there exists a functional F (v1, v2) ∈ C1(R2,R) with F (v1, v2) ≥ 0 and
it satisfies

∂F (v2, v3)
∂v2

+
∂F (v1, v2)

∂v2
= f(v1, v2, v3);

(F7) there exist constants η2 > 0, α ∈ (0, (p/2(δ+1)/2(δ + 1))(c1/c2)δ+1

·λ(δ+1)/2
min ) such that

F (v1, v2) ≤ α
(√

v2
1 + v2

2

)δ+1

, for v2
1 + v2

2 ≤ η2
2 ;

(F8) there exist constants ρ2 > 0, ζ > 0, β ∈ ((p̄/2(δ+1)/2(δ + 1))(c2/c1)δ+1
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·λ(δ+1)/2
max ,+∞) such that

F (v1, v2) ≥ β
(√

v2
1 + v2

2

)δ+1

− ζ, for v2
1 + v2

2 ≥ ρ2
2,

where c1, c2 are constants which can be referred to (2.4), and λmin,

λmax are constants which can be referred to (2.7).

Then (1.6) has at least three T -periodic solutions.

Corollary 1.3 Assume that (p) and (F6)–(F8) are satisfied. Then (1.6)
has at least two nontrivial T -periodic solutions.

Remark 1.4 Corollary 1.3 reduces to Theorem 3.2 in [7].

The rest of the paper is organized as follows. In Section 2, we shall estab-
lish the variational framework associated with (1.1) and transfer the problem
of the existence of periodic solutions of (1.1) into that of the existence of
critical points of the corresponding functional. Some related fundamental
results will also be recalled. In Section 3, we shall complete the proof of the
results by using the critical point method.

For the basic knowledge of variational methods, the reader is referred
to [15], [23], [24], [29].

2. Variational structure and some lemmas

Let S be the set of sequences u=(. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . )
= {un}+∞n=−∞, that is

S = {{un}|un ∈ R, n ∈ Z}.

For any given positive integer T , ET is defined as a subspace of S by

ET = {u ∈ S|un+T = un, ∀n ∈ Z}.

Clearly, ET is isomorphic to RT . ET can be equipped with the inner product

〈u, v〉 =
T∑

j=1

ujvj , ∀u, v ∈ ET , (2.1)

by which the norm ‖ · ‖ can be induced by
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‖u‖ =
( T∑

j=1

u2
j

)1/2

, ∀u ∈ ET . (2.2)

It is obvious that ET with the inner product (2.1) is a finite dimensional
Hilbert space and linearly homeomorphic to RT .

On the other hand, we define the norm ‖ · ‖s on ET as follows:

‖u‖s =
( T∑

j=1

|uj |s
)1/s

, (2.3)

for all u ∈ ET and s > 1.
Since ‖u‖s and ‖u‖2 are equivalent, there exist constants c1, c2 such

that c2 ≥ c1 > 0, and

c1‖u‖2 ≤ ‖u‖s ≤ c2‖u‖2, ∀u ∈ ET . (2.4)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ ET , define the functional J on ET as
follows:

J(u) =
1

δ + 1

T∑
n=1

pn (∆un−1)
δ+1 −

T∑
n=1

F (n, un+1, un), (2.5)

where

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3).

Clearly, J ∈ C1(ET ,R). Due to the periodicity of u = {un}n∈Z ∈ ET

and f(n, v1, v2, v3) in the first variable n, we reduce the existence of periodic
solutions of (1.1) to the existence of critical points of J on ET . That is, the
functional J is just the variational framework of (1.1).

Let P be the T × T matrix defined by

P =




2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 −1
−1 0 0 . . . −1 2




.
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By matrix theory [42], we see that the eigenvalues of P are

λj = 2
(

1− cos
2j

T
π

)
, j = 0, 1, 2, . . . , T − 1. (2.6)

Thus, λ0 = 0, λ1 > 0, λ2 > 0, . . . , λT−1 > 0. Therefore,

λmin = min{λ1, λ2, . . . , λT−1} = 2
(

1− cos
2
T

π

)
,

λmax = max{λ1, λ2, . . . , λT−1} =

{
4, when T is even,

2
(
1 + cos 1

T π
)
, when T is odd.





(2.7)

Let

W = kerP = {u ∈ ET |Pu = 0 ∈ RT }.

Then

W = {u ∈ ET |u = {c}, c ∈ R}.

Let V be the direct orthogonal complement of ET to W , i.e., ET =
V ⊕W . For convenience, we identify u ∈ ET with u = (u1, u2, . . . , uT )∗.

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to satisfy the Palais-
Smale condition (P.S. condition for short) if any sequence {u(i)} ⊂ E for
which {J(u(i))} is bounded and J ′(u(i)) → 0(i →∞) possesses a convergent
subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote
its boundary.

Lemma 2.1 (Linking Theorem [34]) Let E be a real Banach space, E =
E1⊕E2, where E1 is finite dimensional. Suppose that J ∈ C1(E,R) satisfies
the P.S. condition and

(J1) there exist constants a > 0 and ρ > 0 such that J |∂Bρ∩E2 ≥ a;
(J2) there exists an e ∈ ∂B1∩E2 and a constant R0 ≥ ρ such that J |∂Q ≤ 0,

where Q = (B̄R0 ∩ E1)⊕ {se|0 < s < R0}.



Periodic solutions 117

Then J possesses a critical value c ≥ a, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, E) | h|∂Q = id}, where id denotes the identity operator.

Lemma 2.2 Assume that (p), (F1) and (F3) are satisfied. Then the func-
tional J is bounded from above in ET .

Proof. By (F ′3) and (2.4), for any u ∈ ET ,

J(u) =
1

δ + 1

T∑
n=1

pn(∆un−1)δ+1 −
T∑

n=1

F (n, un+1, un)

≤ p̄

δ + 1

T∑
n=1

|∆un|δ+1 −
T∑

n=1

F (n, un+1, un)

=
p̄

δ + 1

[( T∑
n=1

|∆un|δ+1

)1/(δ+1)]δ+1

−
T∑

n=1

F (n, un+1, un)

≤ p̄

δ + 1

[
c2

( T∑
n=1

|∆un|2
)1/2]δ+1

−
T∑

n=1

[
β
(√

u2
n+1 + u2

n

)δ+1

− ζ ′
]

=
p̄

δ + 1
cδ+1
2

[ T∑
n=1

2(u2
n − unun+1)

](δ+1)/2

− β

[( T∑
n=1

(√
u2

n+1 + u2
n

)δ+1
)1/(δ+1)]δ+1

+ Tζ ′

≤ p̄

δ + 1
cδ+1
2

[ T∑
n=1

2(u2
n − unun+1)

](δ+1)/2

− βcδ+1
1

[ T∑
n=1

(u2
n+1 + u2

n)
](δ+1)/2

+ Tζ ′

=
p̄

δ + 1
cδ+1
2 (u∗Pu)(δ+1)/2 − βcδ+1

1 (2‖u‖22)(δ+1)/2 + Tζ ′
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≤ p̄

δ + 1
cδ+1
2 λ(δ+1)/2

max ‖u‖δ+1
2 − 2(δ+1)/2βcδ+1

1 ‖u‖δ+1
2 + Tζ ′

=
(

p̄

δ + 1
cδ+1
2 λ(δ+1)/2

max − 2(δ+1)/2βcδ+1
1

)
‖u‖δ+1

2 + Tζ ′

≤ Tζ ′.

The proof of Lemma 2.2 is complete. ¤

Remark 2.1 The case T = 1 is trivial. For the case T = 2, P has a
different form, namely,

P =
(

2 −2
−2 2

)
.

However, in this special case, the argument need not to be changed and we
omit it.

Lemma 2.3 Assume that (p), (F1) and (F3) are satisfied. Then the func-
tional J satisfies the P.S. condition.

Proof. Let {J(u(i))} be a bounded sequence from the lower bound, i.e.,
there exists a positive constant M1 such that

−M1 ≤ J(u(i)), ∀i ∈ N.

By the proof of Lemma 2.2, it is easy to see that

−M1 ≤ J(u(i)) ≤
(

p̄

δ + 1
cδ+1
2 λ(δ+1)/2

max − 2(δ+1)/2βcδ+1
1

)
‖u(i)‖δ+1

2 + Tζ ′,

∀i ∈ N.

Therefore,

(
2(δ+1)/2βcδ+1

1 − p̄

δ + 1
cδ+1
2 λ(δ+1)/2

max

)
‖u(i)‖δ+1

2 ≤ M1 + Tζ ′.

Since β > (p̄/2(δ+1)/2(δ + 1))(c2/c1)δ+1λ
(δ+1)/2
max , it is not difficult to know

that {u(i)} is a bounded sequence in ET . As a consequence, {u(i)} possesses
a convergence subsequence in ET . Thus the P.S. condition is verified. ¤
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3. Proof of the main results

In this Section, we shall prove our main results by using the critical
point method.

3.1. Proof of Theorem 1.1
Assumptions (F1) and (F2) imply that F (n, 0) = 0 and f(n, 0) = 0 for

n ∈ Z. Then u = 0 is a trivial T -periodic solution of (1.1).
By Lemma 2.2, J is bounded from the upper on ET . We define c0 =

supu∈ET
J(u). The proof of Lemma 2.2 implies lim‖u‖2→+∞ J(u) = −∞.

This means that −J(u) is coercive. By the continuity of J(u), there exists
ū ∈ ET such that J(ū) = c0. Clearly, ū is a critical point of J .

We claim that c0 > 0. Indeed, by (F2), for any u ∈ V, ‖u‖2 ≤ η1, we
have

J(u) =
1

δ + 1

T∑
n=1

pn(∆un−1)δ+1 −
T∑

n=1

F (n, un+1, un)

≥ p

δ + 1

T∑
n=1

|∆un|δ+1 −
T∑

n=1

F (n, un+1, un)

=
p

δ + 1

[( T∑
n=1

|∆un|δ+1

)1/(δ+1)]δ+1

−
T∑

n=1

F (n, un+1, un)

≥ p

δ + 1

[
c1

( T∑
n=1

|∆un|2
)1/2]δ+1

− α

T∑
n=1

(√
u2

n+1 + u2
n

)δ+1

=
p

δ + 1
cδ+1
1

[ T∑
n=1

2(u2
n − unun+1)

](δ+1)/2

− α

[( T∑
n=1

(√
u2

n+1 + u2
n

)δ+1
)1/(δ+1)]δ+1

≥ p

δ + 1
cδ+1
1

[ T∑
n=1

2(u2
n − unun+1)

](δ+1)/2

− αcδ+1
2

[ T∑
n=1

(u2
n+1 + u2

n)
](δ+1)/2
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=
p

δ + 1
cδ+1
1 (u∗Pu)(δ+1)/2 − αcδ+1

2 (2‖u‖22)(δ+1)/2

≥ p

δ + 1
cδ+1
1 λ

(δ+1)/2
min ‖u‖δ+1

2 − 2(δ+1)/2αcδ+1
2 ‖u‖δ+1

2

=
(

p

δ + 1
cδ+1
1 λ

(δ+1)/2
min − 2(δ+1)/2αcδ+1

2

)
‖u‖δ+1

2 .

Take σ =
(
(p/(δ + 1))cδ+1

1 λ
(δ+1)/2
min − 2(δ+1)/2αcδ+1

2

)
ηδ+1
1 . Then

J(u) ≥ σ, ∀u ∈ V ∩ ∂Bη1 .

Therefore, c0 = supu∈ET
J(u) ≥ σ > 0. At the same time, we have also

proved that there exist constants σ > 0 and η1 > 0 such that J |∂Bη1∩V ≥ σ.
That is to say, J satisfies the condition (J1) of the Linking Theorem.

Noting that
∑T

n=1 pn(∆un−1)δ+1 = 0, for all u ∈ W , we have

J(u) =
1

δ + 1

T∑
n=1

pn (∆un−1)
δ+1 −

T∑
n=1

F (n, un+1, un)

= −
T∑

n=1

F (n, un+1, un) ≤ 0.

Thus, the critical point ū of J corresponding to the critical value c0 is a
nontrivial T -periodic solution of (1.1).

In order to obtain another nontrivial T -periodic solution of (1.1) differ-
ent from ū, we need to use the conclusion of Lemma 2.1. We have known
that J satisfies the P.S. condition on ET . In the following, we shall verify
the condition (J2).

Take e ∈ ∂B1 ∩ V , for any z ∈ W and r ∈ R, let u = re + z. Then

J(u) =
1

δ + 1

T∑
n=1

pn+1 (∆un)δ+1 −
T∑

n=1

F (n, un+1, un)

≤ p̄

δ + 1

T∑
n=1

[|r∆en|δ+1 − F (n, ren+1 + zn+1, ren + zn)
]
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≤ p̄

δ + 1
rδ+1

[( T∑
n=1

|∆en|δ+1

)1/(δ+1)]δ+1

−
T∑

n=1

{
β
(√

(ren+1 + zn+1)2 + (ren + zn)2
)δ+1 − ζ ′

}

≤ p̄

δ + 1
rδ+1cδ+1

2

( T∑
n=1

|∆en|2
)(δ+1)/2

− βcδ+1
1

{ T∑
n=1

[
(ren+1 + zn+1)2 + (ren + zn)2

]}(δ+1)/2

+ Tζ ′

=
p̄

δ + 1
rδ+1cδ+1

2

[ T∑
n=1

2(e2
n − en+1en)

](δ+1)/2

− βcδ+1
1

{ T∑
n=1

[
(ren+1 + zn+1)2 + (ren + zn)2

]}(δ+1)/2

+ Tζ ′

≤ p̄

δ + 1
rδ+1cδ+1

2 λ(δ+1)/2
max − βcδ+1

1

[
2

T∑
n=1

(ren + zn)2
](δ+1)/2

+ Tζ ′

=
p̄

δ + 1
rδ+1cδ+1

2 λ(δ+1)/2
max − βcδ+1

1 rδ+12(δ+1)/2

− βcδ+1
1 2(δ+1)/2‖z‖δ+1

2 + Tζ ′

=
(

p̄

δ + 1
cδ+1
2 λ(δ+1)/2

max − βcδ+1
1 2(δ+1)/2

)
rδ+1

− βcδ+1
1 2(δ+1)/2‖z‖δ+1

2 + Tζ ′

≤ −βcδ+1
1 2(δ+1)/2‖z‖δ+1

2 + Tζ ′.

Thus, there exists a positive constant R2 > η1 such that for any u ∈ ∂Q,
J(u) ≤ 0, where Q = (B̄R2 ∩ W ) ⊕ {re|0 < r < R2}. By the Linking
Theorem, J possesses a critical value c ≥ σ > 0, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),
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and Γ = {h ∈ C(Q̄, ET ) | h|∂Q = id}.
Let ũ ∈ ET be a critical point associated to the critical value c of

J , i.e., J(ũ) = c. If ũ 6= ū, then the conclusion of Theorem 1.1 holds.
Otherwise, ũ = ū. Then c0 = J(ū) = J(ũ) = c, that is supu∈ET

J(u) =
infh∈Γ supu∈Q J(h(u)). Choosing h = id, we have supu∈Q J(u) = c0. Since
the choice of e ∈ ∂B1∩V is arbitrary, we can take −e ∈ ∂B1∩V . Similarly,
there exists a positive number R3 > η1, for any u ∈ ∂Q1, J(u) ≤ 0, where
Q1 = (B̄R3 ∩W )⊕ {−re|0 < r < R3}.

Again, by the Linking Theorem, J possesses a critical value c′ ≥ σ > 0,
where

c′ = inf
h∈Γ1

sup
u∈Q1

J(h(u)),

and Γ1 = {h ∈ C(Q̄1, ET ) | h|∂Q1 = id}.
If c′ 6= c0, then the proof is finished. If c′ = c0, then supu∈Q1

J(u) = c0.
Due to the fact J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some
points in the interior of sets Q and Q1. However, Q∩Q1 ⊂ W and J(u) ≤ 0
for any u ∈ W . Therefore, there must be a point u′ ∈ ET , u′ 6= ũ and
J(u′) = c′ 6= c0. The proof of Theorem 1.1 is complete. ¤

Remark 3.1 Similarly to above argument, we can also prove Theorems
1.2 and 1.3. For simplicity, we omit their proofs.

Remark 3.2 Due to Theorems 1.1, 1.2 and 1.3, the conclusion of Corol-
laries 1.1, 1.2 and 1.3 is obviously true.
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