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On the indices of minimal orbits of Hermann actions
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Abstract. We give a formula to determine the indices of special (non-totally

geodesic) minimal orbits of Hermann actions. Also, we give examples of such min-

imal orbits of Hermann actions and calculate their indices by using the formula.
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1. Introduction

In 1987, Y. Ohnita [O] gave a formula to calculate the indices (and nul-
lities) of totally geodesic submanifolds in a symmetric space N of compact
type and showed that the indices of all Helgason spheres in every simply con-
nected irreducible compact symmetric space are equal to zero, that is, they
are stable. In 1993, O. Ikawa [I1] investigated the Jacobi operator of equiv-
ariant minimal homogeneous submanifold in a Riemannian homogeneous
space. In 1995, by using Ohnita’s index formula, M. S. Tanaka [Tan] deter-
mined the stability of all polars and meridians in every simply connected
irreducible compact symmetric space. Note that polars and meridians are
totally geodesic. In 2008, by using the index formula, T. Kimura [Ki] deter-
mined the stability of all totally geodesic singular orbits of all cohomogene-
ity one actions on every simply connected irreducible compact symmetric
space. In 2009, by using this index formula, T. Kimura and M. S. Tanaka
[KT] determined the stability of all maximal totally geodesic submanifolds in
every simply connected irreducible compact symmetric space of rank two.
Let N = G/K be a symmetrc space of compact type equipped with the
G-invariant metric induced from the Killing form of the Lie algebra of G.
In this paper, we treat only a symmetric space of compact type equipped
with such a G-invariant metric. Let H be a symmetric subgroup of G (i.e.,
(Fix τ)0 ⊂ H ⊂ Fix τ for some involution τ of G), where Fix τ is the fixed
point group of τ and (Fix τ)0 is the identity component of Fix τ . The natu-
ral action of H on N is called a Hermann action (see [HPTT], [Kol]). Let θ

2010 Mathematics Subject Classification : 53C40, 53C35.



252 N. Koike

be an involution of G with (Fix θ)0 ⊂ K ⊂ Fix θ. According to [Co], in the
case where G is simple, we may assume that θ ◦ τ = τ ◦ θ by replacing H to
a suitable conjugate group of H if necessary except for the following three
Hermann actions:

( i ) Sp(p + q)y SU(2p + 2q)/S(U(2p− 1)× U(2q + 1)) (p ≥ q + 2),
( ii ) U(p+q+1)y Spin(2p+2q+2)/Spin(2p+1)×Z2 Spin(2q+1) (p ≥

q + 1),
(iii) Spin(3)×Z2 Spin(5)y Spin(8)/ω(Spin(3)×Z2 Spin(5)),

where ω is the triality automorphism of Spin(8). Here we note that we
remove transitive Hermann actions.

Assumption In the sequel, we assume that θ ◦ τ = τ ◦ θ.

Let g, k and h be the Lie algebras of G,K and H, respectively. Denote
the involutions of g induced from θ and τ by the same symbols θ and τ ,
respectively. Set p := Ker(θ + id) and q := Ker(τ + id). The vector space p

is identified with TeK(G/K), where e is the identity element of G. Take a
maximal abelian subspace b of p ∩ q. For each β ∈ b∗, we set pβ := {X ∈
p | ad(b)2(X) = −β(b)2X (∀ b ∈ b)} and 4′ := {β ∈ b∗ \ {0} | pβ 6= {0}}.
This set 4′ is a root system. Note that we call 4′ a root system because
β’s (β ∈ 4′) give a root system in the vector subspace spanned by them
(in the sense of [He]) even if they do not span b∗. Let Π′ = {β1, . . . , βr}
be the simple root system of the positive root system 4′

+ of 4′ under a
lexicographic ordering of b∗. Set 4′V

+ := {β ∈ 4′
+ | pβ ∩ q 6= {0}} and

4′H
+ := {β ∈ 4′

+ | pβ ∩ h 6= {0}}. Define a subset C̃ of b by

C̃ :=
{

b ∈ b | 0 < β(b) < π
(∀β ∈ 4′V

+

)
, − π

2
< β(b) <

π

2
(∀β ∈ 4′H

+

)}
.

The closure C̃ of C̃ is a simplicial complex. Set C := Exp(C̃), where Exp is
the exponential map of G/K at eK. Each principal H-orbit passes through
only one point of C and each singular H-orbit passes through only one point
of Exp(∂C̃). For each simplex σ of C̃, only one minimal H-orbit through
Exp(σ) exists. See proofs of Theorems A and B in [Koi1] (also [I2]) about
this fact. Also, it is known that only one minimal H-orbit through Exp(σ) is
unstable if σ is not a vertex (see the proof of Theorem 2.24 in [I2]). Denote
by D(H) the set of all equivalence classes of (finite dimensional) irreducible
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complex representations of H and ρG/H : H → GL(q) the isotropy repre-
sentation of G/H, that is, ρG/H(h) := AdG(h)|q (h ∈ H), where AdG is
the adjoint representation of G. Denote by µ the equivalence class of the
complexification of ρG/H . Denote by Bg the Killing form of g. For β ∈ 4′

+,
we set mβ := dim pβ , mV

β := dim(pβ ∩ q) and mH
β := dim(pβ ∩ h). Also,

let β =
∑r

i=1 nβ
i βi, (β ∈ 4′

+). Let Z0 be a point of b. We consider the
following two conditions for Z0:

(I)

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

β(Z0) ≡ 0,
π

6

π

3

π

2
,

2π

3

5π

6
(mod π) (∀β ∈ 4′

+) &

X

β∈4′V+ s.t. β(Z0)≡π
6 (mod π)

3nβ
i mV

β +
X

β∈4′V+ s.t. β(Z0)≡π
3 (mod π)

nβ
i mV

β

+
X

β∈4′H+ s.t. β(Z0)≡ 2π
3 (mod π)

3nβ
i mH

β +
X

β∈4′H+ s.t. β(Z0)≡ 5π
6 (mod π)

nβ
i mH

β

=
X

β∈4′V+ s.t. β(Z0)≡ 2π
3 (mod π)

nβ
i mV

β +
X

β∈4′V+ s.t. β(Z0)≡ 5π
6 (mod π)

3nβ
i mV

β

+
X

β∈4′H+ s.t. β(Z0)≡π
6 (mod π)

nβ
i mH

β +
X

β∈4′H+ s.t. β(Z0)≡π
3 (mod π)

3nβ
i mH

β

(i = 1, . . . , r).

and

(II)

8
>>>>>>>>>>><
>>>>>>>>>>>:

β(Z0) ≡ 0,
π

4
,

π

2
,

3π

4
(mod π) (∀β ∈ 4′

+) &

X

β∈4′V+ s.t. β(Z0)≡π
4 (mod π)

nβ
i mV

β +
X

β∈4′H+ s.t. β(Z0)≡ 3π
4 (mod π)

nβ
i mH

β

=
X

β∈4′V+ s.t. β(Z0)≡ 3π
4 (mod π)

nβ
i mV

β +
X

β∈4′H+ s.t. β(Z0)≡π
4 (mod π)

nβ
i mH

β

(i = 1, . . . , r).

Denote by HZ0 the isotropy group of the H-action at ExpZ0. For simplicity,
we set L := HZ0 and denote the identity component of L by L0. Set M :=
H(ExpZ0)(= H/L) and M̂ := H/L0, and define a covering map ψ : M̂ →
M by ψ(hL0) = hL (h ∈ H). Denote by ι the inclusion map of M into G/K

and set ι̂ := ι ◦ ψ. In the sequel, we regard M̂ as a submanifold in G/K

immersed by ι̂. Also, denote by hZ0 (or l) the Lie algebra of L. We showed
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that M is minimal and that h admits a natural reductive decomposition
h = l + mh (see Theorem A in [Koi2] or the proof of Theorem A of this
paper). Furthermore, we ([Koi2]) showed that the induced metric on the
submanifold M in G/K coincides with the H-invariant metric arising from
the restriction cBg|mh×mh

of some constant-multiple cBg of Bg to mh ×mh

if one of the following conditions holds:

(I1) (I) holds, 4′V
+ ∩ 4′H

+ = ∅, β(Z0) ≡ 0, π/3, 2π/3 (mod π) for all
β ∈ 4′V

+ and β(Z0) ≡ π/6, π/2, 5π/6 (modπ) for all β ∈ 4′H
+ ,

(I2) (I) holds, 4′V
+ ∩ 4′H

+ = ∅, β(Z0) ≡ 0, π/6, 5π/6 (mod π) for all
β ∈ 4′V

+ and β(Z0) ≡ π/3, π/2, 2π/3 (modπ) for all β ∈ 4′H
+ ,

(II1) (II) holds, 4′V
+ ∩ 4′H

+ = ∅, β(Z0) ≡ 0, π/4, 3π/4 (mod π) for all
β ∈ 4′V

+ and β(Z0) ≡ π/4, π/2, 3π/4 (modπ) for all β ∈ 4′H
+

(see Theorems C ∼ F in [Koi2]). Here we note that, when G is simple, there
exists an inner automorphism ρ of G with ρ(K) = H by Proposition 4.39 of
[I2]. Denote by Hs the semi-simple part of H and hs the Lie algebra of Hs.
Let k be the positive integer defined by

k :=





1 (G/H : Hermite type)

3 (G/H : quarternionic Kähler type)

0 (G/H : other).

(1.1)

Easily we can show H = Sk · Hs, where k is as above. Denote by Hs
Z0

the isotropy group of Hs at ExpZ0. For simplicity, we set Ls := Hs
Z0

and
denote the identity component of Ls by Ls

0. Denote by ls the Lie algebra
of Ls and z the center of h and zh(b) the centralizer of b in h. In the case
where G/H is of Hermite type or quarternionic Kähler type, we assume
that cohomH = rankG/K holds, where cohomH is the cohomogeneity of
the H-action. From this assumption, b is a maximal abelian subspace of p

and hence zh(b) = zk∩h(b). Also, we have z ⊂ zh(b) (see Page 92 of [Tak]).
Hence we obtain z ⊂ zk∩h(b). On the other hand, according to (3.1), we
have zk∩h(b) ⊂ l. Therefore, we obtain z ⊂ l and hence L = Sk · Ls. From
this relation, it follows that M = H/L = Hs/Ls and that M̂ = H/L0 =
Hs/Ls

0. Clearly we have hs = ls + mh. Let (ρS
Hs)Z0 : Ls → GL(T⊥Exp Z0

M)
the slice representation of the Hs-action at ExpZ0, where T⊥Exp Z0

M is the
normal space of M at ExpZ0. Set m := (expZ0)−1

∗ (TExp Z0M) and m⊥ :=
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(expZ0)−1
∗ (T⊥Exp Z0

M). Let I(expZ0) : G → G be the inner automorphism
by expZ0. Easily we can show I(exp(−Z0))(Ls) ⊂ K and hence

AdG(exp(−Z0))(ls) ⊂ k. (1.2)

Also we can show

AdG(expZ0)(m⊥) ⊂ q. (1.3)

See (3.5) about the proof of (1.3). Set qs := z + q. Also, let ρG/H : H →
GL(q) be the isotropy representation of G/H and ρG/Hs : Hs → GL(qs)
the isotropy representation of G/Hs. Define the representation σZ0 : Ls

0 →
GL(AdG(expZ0)(m⊥)) by

σZ0(l)(w) := (ρG/Hs(l))(w) (l ∈ Ls
0, w ∈ AdG(expZ0)(m⊥)).

Under the identification of T⊥Exp Z0
M and AdG(expZ0)(m⊥), the restric-

tion (ρS
Hs)Z0 |Ls

0
of (ρS

Hs)Z0 to Ls
0 is identified with σZ0 . We regard

(AdG(expZ0)(m⊥))c as a Ls
0-module associated with the complexification

σc
Z0

: Ls
0 → GL((AdG(expZ0)(m⊥))c) of σZ0 . Denote by µ the equivalence

class of the complexification ρc
G/H : H → GL(qc) of ρG/H and µ|Hs the

equivalence class of of the restriction ρc
G/H |Hs of ρc

G/H to Hs.
In this paper, we prove the following result.

Theorem A Let G/K be an irreducible simply connected symmetric space
of compact type, H y G/K a Hermann action and Z0 an element of b

such that (H, Z0) satisfies one of the above conditions (I1), (I2) or (II1).
Furthermore, assume that cohom H = rankG/K holds. Let M, M̂, Hs and
L0 be as above. Then the orbit M (hence M̂) is minimal (but not totally
geodesic) and the index i(M̂) of M̂ is given by

i(M̂) =
∑

λ∈DG/H

mλ · dimHomLs
0
(Vρλ

, (AdG(expZ0)(m⊥))c).

Here DG/H := {λ ∈ D(Hs) | aλ > aµ|Hs }, where aλ (resp. aµ|Hs ) is the
eigenvalue of the Casimir operator of an irreducible complex representation
belonging to λ (resp. µ|Hs) with respect to Bg|hs×hs , Vρλ

is the represen-
tation space of an irreducible representation ρλ belonging to λ, mλ is the
dimension of Vρλ

and HomLs
0
(Vρλ

, (AdG(expZ0)(m⊥))c) is the Ls
0-module
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of all Ls
0-homomorphisms from Vρλ

to (AdG(expZ0)(m⊥))c.

Remark 1.1 (i) In general, we have i(M) ≤ i(M̂). In particular, if L is
connected, then we have M = M̂ .

(ii) If G/H is of Hermite-type, then the isotrpy representation ρG/H of
G/H is an irreducible complex representation of H and, when its equivalence
class is denoted by ν, we have µ = ν ⊕ ν and aµ = aν .

In the final section, we give examples of a Hermann action H y G/K

and Z0 ∈ b as in Theorem A and calculate the indices of M̂ for some of the
examples by using Theorem A.

2. Basic notions and facts

In this section, we recall some basic notions and facts.

Jacobi operators
Let f : (M, g) ↪→ (M̃, g̃) be a minimal isometric immersion of a compact

Riemannian manifold (M, g) into another Riemannian manifold (M̃, g̃). De-
note by T⊥M the normal bundle of f and Γ(T⊥M) the space of all normal
vector fields of f . Also, denote by ∇(resp. ∇⊥) the Levi-Civita connection
of g (resp. the normal connection of f) and A the shape tensor of f . Let
ft (−ε < t < ε) be a C∞-family of immersions of M into M̃ with f0 = f ,
where ε is a positive number. Define a map F : M × (−ε, ε) → M̃ by
F (x, t) := ft(x) ((x, t) ∈ M × (−ε, ε)). Denote by Vol(M, f∗t g̃) the volume
of (M, f∗t g̃) and dv the volume element of g, where f∗t g̃ is the metric induced
form g̃ by ft. Then we have the following second variational formula:

d2

dt2

∣∣∣∣
t=0

Vol(M, f∗t g̃) =
∫

M

g̃

(
J

(
F∗

(
∂

∂t

∣∣∣∣
t=0

)

⊥

)
, F∗

(
∂

∂t

∣∣∣∣
t=0

)

⊥

)
dv

(see Theorem 3.2.2 in [S]). Here F∗ is the differential of F , (·)⊥ is the normal
component of (·), J is the Jacobi operator of f (or M), which is defined by
J := −4⊥+R−A (: Γ(T⊥M) → Γ(T⊥M)) (where 4⊥ is the rough Lapla-
cian operator defined by∇ and∇⊥, A is defined by g(A(v), w) = Tr(Av◦Aw)
(v, w ∈ Γ(T⊥M)) and R is defined by g(R(v), w) = −Tr(R(·, v)w) (v, w ∈
Γ(T⊥M))). Set E⊥

λ := {v ∈ Γ(T⊥M) | J (v) = λv} for each λ ∈ R. The
dimension of

∑
λ<0 E⊥

λ (resp. E⊥
0 ) is called the index (resp. nullity) of f

(or M).
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The eigenvalues of the Casimir operators
For a compact Lie group H, denote by D(H) the set of all equivalence

classes of (finite dimensional) irreducible complex representations of H. Fix
an Ad(H)-invariant inner product 〈 , 〉 of the Lie algebra h of H. Let ρ be an
irreducible complex representation of H. The Casimir operator Cρ of ρ with
respect to 〈 , 〉 is defined by Cρ :=

∑m
i=1 ρ∗e(ei)2, where (e1, . . . , em) is an

orthonormal base of h with respect to 〈 , 〉 and e is the identity element of H.
Assume that H is semi-simple and connected. Fix a Cartan subalgebra ã of
the Lie algebra h of H. Let 4 be the root system of h with respect to ã, 4+

the positive root system of 4 under some lexicographic ordering of the dual
space ã∗ of ã and Π = {α1, . . . , αr} be a simple root system of 4+. Define
Λi ∈ ã∗ (i = 1, . . . , r) by 2〈αj ,Λi〉/〈αj , αj〉 = δij (1 ≤ i, j ≤ r). It is known
that an injection of D(H) into Z+{Λ1, . . . ,Λr} (:= {∑r

i=1 ziΛi | zi ∈ Z+})
is given by assigning the highest weight of ρ to each λ = [ρ] ∈ D(H), where
[ρ] is the equivalence class of an irreducible complex representation ρ of
H. Denote by D̂(H) the image of this injection. Then the quotient group
Z+{Λ1, . . . ,Λr}/D̂(H) is isomorphic to the fundamental group π1(H) of
H. Denote by (z1, . . . , zr) the equivalence class of the irreducible complex
representation of H corresponding to

∑r
i=1 ziΛi. If H is simple, then we

have Cρ = aρ idh for some aρ ∈ R (by Schur’s lemma), where idh is the
identity transformation of h. According to the Freudenthal’s formula, we
have

aρ = −
〈

Λ,Λ +
∑

α∈4+

α

〉
, (2.1)

where Λ is the highest weight of ρ.

Irreducible complex representations of T r, Spin(2r) and Spin

(2r + 1)
For each (m1, . . . , mr) ∈ Zr, an ireducible complex representation ρ of

r-dimensional torus group T r(= SO(2)r = U(1)r) is defined by

ρ(z1, . . . , zr)(w) := zm1
1 · · · zmr

r w ((z1, . . . , zr) ∈ T r = U(1)r, w ∈ C).

Denote by (m1 − · · · − mr) the equivalence class of this representation.
Let D(T r) be the set of all the equivalence classes of irreducible complex
representations of T r. Then it is known that D(T r) = {(m1 − · · · −mr) |
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(m1, . . . , mr) ∈ Zr} holds (see [KO] for example).
Let H = Spin(2r) or Spin(2r + 1), and ã∗ and Π = {α1, . . . , αr} be as

above. Also, let {β1, . . . , βr} be the base of ã∗ defined by αi = βi − βi+1

(i = 1, . . . , r − 1) and

{
αr = βr−1 + βr (H = Spin(2r))

αr = βr (H = Spin(2r + 1)).

For an irrecducible complex representation ρ of H, the highest weight
Λ of ρ is expressed as Λ =

∑r
i=1 miβi for some (m1, . . . , mr) ∈ Zr +

{(0, . . . , 0), (1/2, . . . , 1/2)}. Then we denote the equivalence class of ρ by
(m1 · · · mr)•. It is known that

D(H) =
{

(m1 · · · mr)• | (m1, . . . , mr) ∈ Zr +
{

(0, . . . , 0),
(

1
2
, . . . ,

1
2

)}}

and that

D(H/{±1}) = {(m1 · · · mr)• | (m1, . . . , mr) ∈ Zr},

where H/{±1} = SO(2r) or SO(2r+1) (see Chapter 9 of [KO] for example).

The canonical connection
Let H/L be a reductive homogeneous space and h = l+m be a reductive

decomposition (i.e., [l,m] ⊂ m), where h (resp. l) is the Lie algebra of H

(resp. L). Also, let π : P → H/L be a principal G-bundle, where G is a Lie
group. Assume that H acts on P as π(h ·u) = h ·π(u) for any u ∈ P and any
h ∈ H. Then there uniquely exists a connection ω of P such that, for any
X ∈ m and any u ∈ P , t 7→ (exp tX)(u) is a horizontal curve with respect
to ω, where exp is the exponential map of H. This connection ω is called
the canonical connection of P associated with the reductive decomposition
h = l + m.

The rough Laplacian operator with respect to the canonical con-
nection

Let H be a Lie group and H/L be a reductive homogeneous space with
a reductive decomposition h = l + m, where h is the Lie algebra of H.
The subspace m is identified with TeL(H/L). Let B be an Ad(H)-invariant
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inner product of h such that h = l + m is an orthogonal decomposition
with respect to B. Denote by 〈 , 〉 the H-invariant metric on H/L induced
from B|m×m and ∇ the Levi-Civita connection of 〈 , 〉. Let π : H →
H/L be the natural projection, σ : L → GL(W ) a unitary representation
of L and Eσ := H ×σ(L) W the associated complex vector bundle of the
L-bundle π : H → H/L with respect to σ. The Lie group H acts on
H and H/L naturally. Also, each h(∈ H) gives a linear isomorphism of
W onto the fibre (Eσ)π(h). Denote by Γ(Eσ) the space of all sections of
Eσ and set C∞(H, W )σ := {f ∈ C∞(H, W ) | f(hl) = σ(l−1)f(h) (∀h ∈
H, ∀ l ∈ L)}, where C∞(H, W ) is the space of all W -valued C∞-functions
on H. Define a map Ψ : Γ(Eσ) → C∞(H, W )σ by Ψ(ξ)(h) = h−1 · ξπ(h)

(ξ ∈ Γ(Eσ), h ∈ H). This map Ψ is a linear isomorphism preserving the
H-action. Take an orthonormal base (e1, . . . , em) of h with respect to B

with ei ∈ l (i = 1, . . . , n) and eb ∈ m (b = n + 1, . . . , m), where n := dim l.
Let CH (: C∞(H, W ) → C∞(H, W )) be the Casimir differential operator of
H with respect to B, that is, CH(f) =

∑m
i=1 ẽi(ẽif), where ẽi is the left-

invariant vector field induced from ei. Also, let Cσ be the Casimir operator of
σ with respect to B|l×l. For f ∈ C∞(H, W )σ, we can show CH(f) = Cσ ◦f +∑m

b=n+1 ẽb(ẽbf). Let∇ω be the connection of Eσ induced from the canonical
connection ω of π : H → H/L with respect to the reductive decomposition
h = l + m and 4Eσ the rough Laplacian operator of Eσ with respect to ∇ω

and ∇. Set 4̃Eσ := Ψ ◦4Eσ ◦Ψ−1. Then we have 4̃Eσf =
∑m

b=n+1 ẽb(ẽbf)
(f ∈ C∞(H, W )σ) by Proposition 2.3 of [O]. Furthermore, by Corollary 2.5
of [O], we have the following relation.

Lemma 2.1 ([O]) For each f ∈ C∞(H, W )σ, we have

4̃Eσf = CH(f)− Cσ ◦ f.

3. Proof of Theorem A

In this section, we shall prove Theorem A. We use the notations in
Introduction. Let (H, Z0) be as in the statement of Theorem A. Denote by
〈 , 〉 the G-invariant metric of G/K induced from Bg|p×p. We shall describe
some subspaces stated in Introduction explicitly. Set

4′V
Z0

:=
{
β ∈ 4′V

+ | β(Z0) ≡ 0 (modπ)
}
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and

4′H
Z0

:=
{

β ∈ 4′H
+ | β(Z0) ≡ π

2
(mod π)

}
.

Clearly the Lie algebra l is given by

l = zk∩h(b) +
∑

β∈4′VZ0

(kβ ∩ h) +
∑

β∈4′HZ0

(pβ ∩ h). (3.1)

Easily we can show that mh is given by

mh = zp∩h(b) +
∑

β∈4′V+\4′VZ0

(kβ ∩ h) +
∑

β∈4′H+ \4′HZ0

(pβ ∩ h). (3.2)

From these relations, it follows that the decompositions h = l + mh and
hs = ls + mh are reductive, respectively. Easily we can show that m is given
by

m = zp∩h(b) +
∑

β∈4′V+\4′VZ0

(pβ ∩ q) +
∑

β∈4′H+ \4′HZ0

(pβ ∩ h) (3.3)

and hence

m⊥ = b +
∑

β∈4′VZ0

(pβ ∩ q) +
∑

β∈4′HZ0

(pβ ∩ h). (3.4)

Furthermore, we can show

AdG(expZ0)(m⊥)

= b +
∑

β∈4′VZ0

(
cos(ad(Z0))(pβ ∩ q) + sin(ad(Z0))(pβ ∩ q)

)

+
∑

β∈4′HZ0

(
cos(ad(Z0))(pβ ∩ h) + sin(ad(Z0))(pβ ∩ h)

)

= b +
∑

β∈4′VZ0

(pβ ∩ q) +
∑

β∈4′HZ0

(kβ ∩ q) (⊂ q), (3.5)



On the indices of minimal orbits of Hermann actions 261

where cos(ad(Z0)) and sin(ad(Z0)) are defined by

cos(ad(Z0)) :=
∞∑

k=0

(−1)k

(2k)!
ad(Z0)2k

sin(ad(Z0)) :=
∞∑

k=0

(−1)k

(2k + 1)!
ad(Z0)2k+1,

respectively. The relations (3.1) ∼ (3.3) will be used in the proof of Theorem
A and (3.1) ∼ (3.5) will be used in the proof of Propositions 4.1∼4.8.

Proof of Theorem A. From (3.1) and (3.2), we have Bg(l,mh) = 0. De-
note by gI the induced metric on the submanifold M̂ in G/K. By imitat-
ing the discussion in the proof of Theorem A in [Koi2], we can show that
(ψ∗gI)eL = cBg|mh×mh

(c = 3/4 in case of (I1), c = 1/4 in case of (I2)
and c = 1/2 in case of (II1)), where we use (3.2) and (3.3). Let ω be the
canonical connection of the principal L0-bundle π : Hs → Hs/Ls

0(= M̂)
with respect to the reductive decomposition hs = ls + mh and F⊥(M̂) the
normal frame bundle of M̂ . Note that F⊥(M̂) is identified with the in-
duced bundle ψ∗(F⊥(M)) (⊂ M̂ × F⊥(M)) of F⊥(M) by ψ. Define a map
η : Hs → F⊥(M̂) by η(h) = (hLs

0, h∗u0) (h ∈ Hs), where u0 is a fixed
normal frame of M at ExpZ0. This map η is an embedding. By identify-
ing Hs with η(Hs), we regard π : Hs → Hs/Ls

0(= M̂) as a subbundle of
F⊥(M̂). Denote by the same symbol ω the connection of F⊥(M̂) induced
from ω and ∇ω the linear connection on T⊥M̂ associated with ω. Denote
by ∇⊥ the normal connection of the submanifold M̂ . By imitating the dis-
cussion in the proof of Theorem A in [Koi2], we can show that ∇ω = ∇⊥.
Denote by EσZ0

the associated vector bundle Hs ×σZ0
AdG(expZ0)(m⊥)

of the principal L0-bundle π : Hs → Hs/L0 with respect to σZ0 , where
σZ0 is as stated in Introduction. Since σZ0 is identified with (ρS

H)Z0 |Ls
0

as
stated in Introduction, EσZ0

is identified with the normal bundle T⊥M̂ of M̂

under the correspendence h · v ↔ (hL0, h∗((expZ0)∗(AdG(exp(−Z0))(v))))
(h ∈ Hs, v ∈ AdG(expZ0)(m⊥)). Also we note that T⊥M̂ is identified
with the induced bundle ψ∗(T⊥M) (⊂ M̂ × T⊥M) of T⊥M by ψ. Let
Ψ : Γ(EσZ0

) → C∞(Hs,AdG(expZ0)(m⊥))σZ0
be a diffeomorphism defined

in the previous section. Denote by ∇ the Levi-Civita connection of ψ∗gI .
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Since ψ∗gI coincides with the Hs-invariant metric induced from cBg|mh×mh

and ∇ω = ∇⊥, it follows from Lemma 2.1 that the rough Laplacian operator
4⊥ of EσZ0

with respect to ∇⊥ and ∇ satisfies

(Ψ ◦ 4⊥ ◦Ψ−1)(f) = CHs(f)− CσZ0
◦ f

(f ∈ C∞(Hs,AdG(expZ0)(m⊥))σZ0
, (3.6)

where CHs is the Casimir differential operator of Hs with respect to
cBg|hs×hs and CσZ0

is the Casimir operator of σZ0 with respect to cBg|l×l.
Let R and A be the operators defined for M̂ in similar to R and A stated
in the previous section, respectively. Then, by using Lemma 4.1 of [I1], we
can show

(Ψ ◦ R ◦Ψ−1)(f) =
n∑

i=1

[(ei)p, [(ei)p, f ]]AdG(exp Z0)(m⊥)

(f ∈ C∞(Hs,AdG(expZ0)(m⊥))σZ0
)) (3.7)

and

(Ψ ◦ A ◦Ψ−1)(f) = −
n∑

i=1

[(ei)k, [(ei)k, f ]]AdG(exp Z0)(m⊥)

(f ∈ C∞(Hs,AdG(expZ0)(m⊥))σZ0
)) (3.8)

where (e1, . . . , en) is an orthonormal base of mh with respect to cBg|mh×mh
,

and (·)k, (·)p and (·)AdG(exp Z0)(m⊥) is the k-component, p-component and
AdG(expZ0)(m⊥)-component of (·), respectively. From (3.6), (3.7) and
(3.8), the Jacobi operator J of M̂ is given by

(Ψ ◦ J ◦Ψ−1)(f) = −CHs(f) + CρG/Hs ◦ f

(f ∈ C∞(Hs,AdG(expZ0)(m⊥))σZ0
). (3.9)

Easily we can show

ρG/Hs(h) = idz⊕ρG/H(h)
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for any h ∈ Hs, and hence

CρG/Hs = 0z ⊕
aµ|Hs

c
idq,

where 0z is the zero map from z to oneself and aµ|Hs is as in the statement
of Theorem A. Hence we have

(Ψ ◦ J ◦Ψ−1)(f) = −CHs(f) +
aµ|Hs

c
f

(f ∈ C∞(Hs,AdG(expZ0)(m⊥))σZ0
). (3.10)

Let λ(= [ρλ]) be an element of D(Hs). Define a map ηρλ
: Vρλ

⊗HomLs
0
(Vρλ

,

(AdG(expZ0)(m⊥))c) → C∞(Hs, (AdG(expZ0)(m⊥))c)(σZ0 )c by

(ηρλ
(v ⊗ φ))(h) := φ(ρλ(h−1)(v))

(v ∈ Vρλ
, φ ∈ HomLs

0
(Vρλ

, (AdG(expZ0)(m⊥))c), h ∈ Hs).

This map ηρλ
is injective. Denote by E(σZ0 )c the associated complex vector

bundle Hs ×(σZ0 )c (AdG(expZ0)(m⊥))c of π : Hs → Hs/Ls
0 with respect

to (σZ0)
c, which is identified with the complexification (T⊥M̂)c of T⊥M̂ .

Define a diffeomorphism (Ψs)c : Γ(E(σZ0 )c) → C∞(Hs, (AdG(expZ0)
· (m⊥))c)(σZ0 )c by Ψc(ξ)(h) := h−1 · ξπ(h) (ξ ∈ Γ(E(σZ0 )c), h ∈ Hs). Set

Γλ((T⊥M̂)c) := (Ψc)−1(ηρλ
(Vρλ

⊗ HomLs
0
(Vρλ

, (AdG(expZ0)(m⊥))c)).
Then, according to Peter-Weyl theorem for vector bundles (see Page P173 of
[B]),

∑
λ∈D(Hs) Γλ((T⊥M̂)c) (direct sum) is uniformly dense in Γ((T⊥M̂)c)

with respect to the uniformly topology. Also, it follows from (3.10) that

(J )c(f) =
aµ|Hs − aλ

c
f (f ∈ Γλ((T⊥M̂)c)). (3.11)

From this relation, we have

i(M̂) =
∑

λ∈DG/H

mλ · dimHomLs
0
(Vρλ

, (AdG(expZ0)(m⊥))c),

where DG/H is as in the statement of Theorem A. This completes the proof.
¤
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4. Examples

In this section, we give examples of a Hermann action H y G/K and
Z0 ∈ b as in Theorem A and calculate the index of the minimal orbit
M := H(ExpZ0) for some of the examples by using Theorem A. We use the
notations in Introduction. Denote by 4 the root system of the symmetric
space G/K with respect to a maximal abelian subspace a of p including b.
First we give examples of (H, Z0) satisfying the condition (I1).

Example 1 We consider the isotropy action of SU(3n + 3)/SO(3n + 3).
Then we have 4 = 4′, which is of (a3n+2)-type. Also, we have 4′

+ = 4′V
+

and hence4′H
+ = ∅. Let Π = {β1, . . . , β3n+2} be a simple root system of4′

+,
where we order β1, . . . , β3n+2 as the Dynkin diagram of 4′

+ is as in Figure 1.
We have 4′

+ = {βi + · · ·+ βj | 1 ≤ i, j ≤ 3n + 2}. For any β ∈ 4′
+, we have

mβ = 1. Let Z0 be the point of b defined by βn+1(Z0) = β2n+2(Z0) = π/3
and βi(Z0) = 0 (i ∈ {1, . . . , 3n+2}\{n+1, 2n+2}). This point Z0 satisfies
the condition (I1) (see Section 4 of [Koi2]).

Figure 1.

Example 2 We consider the isotropy action of SU(6n + 6)/Sp(3n + 3).
Then we have 4 = 4′, which is of (a3n+2)-type. Also, we have 4′

+ = 4′V
+

and hence 4′H
+ = ∅. Let Π = {β1, . . . , β3n+2} be a simple root system

of 4′
+, where we order β1, . . . , β3n+2 as above. We have mβ = 4 for any

β ∈ 4′
+. Let Z0 be the point of b defined by βn+1(Z0) = β2n+2(Z0) = π/3

and βi(Z0) = 0 (i ∈ {1, . . . , 3n+2}\{n+1, 2n+2}). This point Z0 satisfies
the condition (I1) (see Section 4 of [Koi2]).

Example 3 We consider the isotropy action of SU(3)/S(U(1) × U(2))
(2-dimensional complex projective space). Then we have 4 = 4′, which is
of (bc1)-type. Also, we have 4′

+ = 4′V
+ and hence 4′H

+ = ∅. Let Π = {β}
be a simple root system of 4′

+. We have 4′
+ = {β, 2β} and mβ = 2 and

m2β = 1. Let Z0 be the point of b defined by β(Z0) = π/3. This point Z0

satisfies the condition (I1) (see Section 4 of [Koi2]).

Example 4 We consider the isotropy action of Sp(3n+2)/U(3n+2). Then
we have 4 = 4′, which is of (c3n+2)-type. Also, we have 4′

+ = 4′V
+ and
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hence 4′H
+ = ∅. Let Π = {β1, . . . , β3n+2} be a simple root system of 4′

+,
where we order β1, . . . , β3n+2 as the Dynkin diagram of 4′

+ is as in Figure 2.
We have mβ = 1 for any β ∈ 4′

+. Let Z0 be the point of b defined by
βn+1(Z0) = β3n+2(Z0) = π/3 and βi(Z0) = 0 (i ∈ {1, . . . , 3n + 2} \ {n + 1,

3n + 2}). This point Z0 satisfies the condition (I1) (see Section 4 of [Koi2]).

Figure 2.

Let G∗/K be the dual of G/K, that is, G∗ = expGC(k +
√−1p) and set

H∗ := expGC(h ∩ k +
√−1(h ∩ p)), where expGC is the exponential map of

GC. Then the natural action H∗ y G∗/K also is called a Hermann action
(or Hermann type action) and H∗ y G∗/K (resp. H y G/K) is called the
dual action of H y G/K (resp. H∗ y G∗/K).

Example 5 We consider the dual action ρ1(SO(3)) y SU(3)/SO(3) of
the Hermann action SO0(1, 2) y SL(3,R)/SO(3), where ρ1 is an inner
automorphism of SU(3). Then 4 = 4′ is of (a2)-type. Let Π = {β1, β2} be
a simple root system of4′

+. Then we have4′V
+ = {β1}, 4′H

+ = {β2, β1+β2}
and hence 4′V

+ ∩4′H
+ = ∅. Also we have mβ1 = mβ2 = mβ1+β2 = 1. Let Z0

be the point of b satisfying (β1(Z0), β2(Z0)) = (π/3,−π/6). This point Z0

satisfies the condition (I1) (see Section 4 of [Koi2]).

Example 6 We consider the dual action ρ2(Sp(3))y SU(6)/Sp(3) of the
Hermann action Sp(1, 2) y SU∗(6)/Sp(3), where ρ2 is an inner automor-
phism of SU(6). Then 4 = 4′ is of (a2)-type. Let Π = {β1, β2} be a simple
root system of 4′

+. Then we have 4′V
+ = {β1}, 4′H

+ = {β2, β1 + β2} and
hence 4′V

+ ∩ 4′H
+ = ∅. Also we have mβ1 = mβ2 = mβ1+β2 = 4. Let Z0

be the point of b satisfying (β1(Z0), β2(Z0)) = (π/3,−π/6). This point Z0

satisfies the condition (I1) (see Section 4 of [Koi2]).

Example 7 We consider the dual action ρ3(SU(2))y Sp(2)/U(2) of the
Hermann action U(1, 1) y Sp(2,R)/U(2), where ρ3 is an inner automor-
phism of Sp(2). Then 4 = 4′ is of (c2)-type. Let Π = {β1, β2} be a simple
root system of4′

+, where we order β1 and β2 as the Dynkin diagram of4′
+ is

as in Figure 3. Then we have4′V
+ = {β2, 2β1+β2}, 4′H

+ = {β1, β1+β2} and
hence 4′V

+ ∩4′H
+ = ∅. Also we have mβ1 = mβ2 = mβ1+β2 = m2β1+β2 = 1.



266 N. Koike

Let Z0 be the point of b satisfying (β1(Z0), β2(Z0)) = (−π/6, π/3). This
point Z0 satisfies the condition (I1) (see Section 4 of [Koi2]).

Figure 3.

Example 8 We consider the dual action ρ4(Sp(2)) y (Sp(2) ×
Sp(2))/Sp(2) of the Hermann action Sp(1, 1) y Sp(2,C)/Sp(2), where
ρ4 is an automorphism of Sp(2) × Sp(2). Then 4 = 4′ is of (c2)-type.
Let Π = {β1, β2} be a simple root system of 4′

+, where we order β1

and β2 as the Dynkin diagram of 4′
+ is as in Figure 3. Then we have

4′V
+ = {β2, 2β1 + β2}, 4′H

+ = {β1, β1 + β2} and hence 4′V
+ ∩ 4′H

+ = ∅.
Also we have mβ1 = mβ2 = mβ1+β2 = m2β1+β2 = 2. Let Z0 be the point
of b satisfying (β1(Z0), β2(Z0)) = (−π/6, π/3). This point Z0 satisfies the
condition (I1) (see Section 4 of [Koi2]).

Example 9 We consider the dual action ρ5(F4)y E6/F4 of the Hermann
action F−20

4 y E−26
6 /F4, where ρ6 is an inner automorphism of E6. Then

4 = 4′ is of (a2)-type. Let Π = {β1, β2} be a simple root system of 4′
+.

Then we have 4′V
+ = {β1}, 4′H

+ = {β2, β1 + β2} and hence 4′V
+ ∩4′H

+ = ∅.
Also we have mβ1 = mβ2 = mβ1+β2 = 8. Let Z0 be the point of b satisfying
(β1(Z0), β2(Z0)) = (π/3,−π/6). This point Z0 satisfies the condition (I1)
(see Section 4 of [Koi2]).

Example 10 We consider the dual action ρ6(SO(4))y G2/SO(4) of the
Hermann action SL(2,R) × SL(2,R) y G2

2/SO(4), where ρ6 is an inner
automorphism of G2. Then 4 = 4′ is of (g2)-type. Let Π = {β1, β2}
be a simple root system of 4′

+, where we order β1 and β2 as the Dynkin
diagram of 4′

+ is as in Figure 4. Then we have 4′V
+ = {β1, 3β1 + 2β2},

4′H
+ = {β2, β1 + β2, 2β1 + β2, 3β1 + β2} and hence 4′V

+ ∩4′H
+ = ∅. Also we

have mβ1 = mβ2 = mβ1+β2 = m2β1+β2 = m3β1+β2 = m3β1+2β2 = 1. Let Z0

be the point of b satisfying (β1(Z0), β2(Z0)) = (π/3,−π/2). This point Z0

satisfies the condition (I1) (see Section 4 of [Koi2]).

Example 11 We consider the dual action ρ7(G2)y (G2×G2)/G2 of the
Hermann action G2

2 y Gc
2/G2, where ρ7 is an automorphism of G2 × G2.

Then 4 = 4′ is of (g2)-type. Let Π = {β1, β2} be a simple root system of
4′

+, where we order β1 and β2 as the Dynkin diagram of 4′
+ is as in Figure
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4. Then we have 4′V
+ = {β1, 3β1 +2β2}, 4′H

+ = {β2, β1 +β2, 2β1 +β2, 3β1 +
β2} and hence 4′V

+ ∩ 4′H
+ = ∅. Also we have mβ1 = mβ2 = mβ1+β2 =

m2β1+β2 = m3β1+β2 = m3β1+2β2 = 2. Let Z0 be the point of b satisfying
(β1(Z0), β2(Z0)) = (π/3,−π/2). This point Z0 satisfies the condition (I1)
(see Section 4 of [Koi2]).

Figure 4.

First we prepare the following lemma.

Lemma 4.1 Let G/K, H,L, θ, τ and M be as in Introduction. If both the
symmetric space H/H ∩K and the principal orbit of the isotropy action of
the symmetric space Fix(θ ◦ τ)0/H ∩K are simply connected, then so is also
M .

Proof. Easily we can show H(eK) = H/H ∩K and exp⊥(T⊥eKH(eK)) =
Fix(θ ◦ τ)0/H ∩K, where exp⊥ is the normal exponential map of H(eK).
Let F be a principal orbit of the isotropy action of Fix(θ ◦ τ)0/H ∩K and
M ′ the principal orbit of the H-action including F . Then we can show that
the focal map of M ′ onto H(eK) is a fibration having F as the standard
fibre. Hence it follows from the assumption that M ′ is simply connected.
Let pr be the natural projection of M ′ onto M . In the case where M is a
singular orbit, pr is the focal map of M ′ onto M and it is a fibration with
connected fibre, where we note that the fibre is the image of a principal orbit
of the direct sum representation of some s-representations by the normal
exponential map (of M) and hence it is connected. In the case where M is
a principal orbit, pr is the end-point map (which is a diffeomorphism) of M ′

onto M . In both cases, pr is a fibration with connected fibre. Hence, since
M ′ is simply connected, so is also M . ¤

For the representations ρλi of Hi (i = 1, . . . , k), we define the representa-
tion ρλ1-· · · -ρλk

of H1×· · ·×Hk by (ρλ1-· · · -ρλk
)(h1, . . . , hk)(v1⊗· · ·⊗vk) :=

ρλ1(h1)(v1)⊗· · ·⊗ρλk
(hk)(vk) (hi ∈ Hi, vi ∈ Vρλi

) (the representation space
of ρλ1-· · · -ρλk

is Vρλ1
⊗ · · · ⊗ Vρλk

). Denote by (λ1-· · · -λk) the equivalence
class of ρλ1-· · · -ρλk

. By using Theorem A, we shall calculate the indices of
some of the minimal orbits M = H(ExpZ0) in Examples 1 ∼ 11.
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First we consider the case of n = 2 in Example 1 (i.e., the case where
G/K = SU(9)/SO(9), H = SO(9) and M = SO(9)(ExpZ0) (β3(Z0) =
β6(Z0) = π/3, βi(Z0) = 0 (i 6= 3, 6))). Since SO(9) is simple, we have
Hs = H. The equivalence class µ of the complexification of the isotropy
representation of G/H is equal to (2 0 0 0). Hence, according to Table 1 in
[MP], all of the equivalence classes λ’s of irreducible complex representations
of Spin(9) with aλ > aµ|Hs consist of (0 0 0 0), (1 0 0 0), (0 0 0 1) and (0 1 0 0).
These equivalence classes (0 0 0 0), (1 0 0 0), (0 0 0 1) and (0 1 0 0) are equal
to (0 0 0 0)•, (1 0 0 0)•, ( 1

2
1
2

1
2

1
2 )• and (1 1 0 0)•, respectively. Hence, (0 0 0 1)

is not the equivalence classes of the irreducible complex representations of
SO(9). From this fact and H = Hs, we have

DG/H = {(0 0 0 0), (1 0 0 0), (0 1 0 0)}.

On the other hand, since 4′ = 4 is (a8)-type, β3(Z0) = β6(Z0) = π/3 and
since βi(Z0) = 0 (i 6= 3, 6), we have 4′V

Z0
= {β1, β2, β1 + β2, β4, β5, β4 + β5,

β7, β8, β7 + β8} and 4′H
Z0

= ∅. Also we have z = zk∩h(b) = {0} and ls = l =∑
i∈{1, 4, 7}(hβi

+hβi+1 +hβi+βi+1). Also we have dim hβ = 1 for all β ∈ 4′V
+.

Hence we have ls = 3so(3). Hence we have Ls
0 = SO(3)3. Hence, by using

Table 2 (the branching rules) in [MP], we have the following table:

Table 2.

λ λ|Ls
0

mλ

(0 0 0 0) (0-0-0) 1

(1 0 0 0) (2-0-0)⊕ (0-2-0)⊕ (0-0-2) 9

(0 1 0 0) (2-0-0)⊕ (0-2-0)⊕ (0-0-2) 36
(2-2-0)⊕ (2-0-2)⊕ (0-2-2)

µ = (2 0 0 0) 2(0-0-0)⊕ (4-0-0)⊕ (0-4-0)⊕ (0-0-4) 44
(2-2-0)⊕ (2-0-2)⊕ (0-2-2)

Also we have dim m⊥ = 17. Hence we have

[(σZ0)
c] = 2(0-0-0)⊕ (4-0-0)⊕ (0-4-0)⊕ (0-0-4).

Thus the isomorphicity of the L0-module (AdG(expZ0)(m⊥))c associated
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with the representation (σZ0)
c is analyzed completely. Therefore, according

to Theorem A, it follows from Table 2 and this fact that the index of M̂ is
equal to 2. Also, since Z0 belongs to an (open) 1-simplex (which we denote

by σ) of the simplicial complex C̃, M is not stable. In fact, when M moves
along σ as SO(9)-orbits, its volume decreases. Thus we obtain the following
result.

Proposition 4.2 Let Π = {β1, . . . , β8} be the simple root system of the
positive root system 4+ of SU(9)/SO(9) (

β1 β2 β8
) and Z0 the element

of b with β3(Z0) = β6(Z0) = π/3 and βi(Z0) = 0 (i 6= 3, 6). Then the orbit
M := SO(9)(Exp(Z0)) of the isotropy action of SU(9)/SO(9) is minimal
(but not totally geodesic) and we have 1 ≤ i(M) ≤ i(M̂) = 2, where M̂ is
the above covering of M .

Next we consider the case of n = 1 in Example 2 (i.e., the case where
G/K = SU(12)/Sp(6), H = Sp(6), and M = Sp(6)(ExpZ0) (β2(Z0) =
β4(Z0) = π/3, βi(Z0) = 0 (i 6= 2, 4)). Since Sp(6) is simple, we have
Hs = H. The equivalence class µ of the complexification of the isotropy
representation of G/H is (0 1 0 0 0 0). Hence, according to Table 1 in [MP],
we have DG/H = {(0 0 0 0 0 0), (1 0 0 0 0 0)}. On the other hand, since 4′ =
4 is (a5)-type, β2(Z0) = β4(Z0) = π/3 and since βi(Z0) = 0 (i 6= 2, 4),
4′V

Z0
= {β1, β3, β5} and4′H

Z0
= ∅. Hence we have l = zk∩h(b)+hβ1+hβ3+hβ5

and dim hβi
= 4 (i = 1, 3, 5). Also we have z = {0} and zk∩h(b) = 6sp(1)

From these facts, we have ls = 3sp(2). Therefore, we have Ls
0 = L0 =

Sp(2)3. Hence, by using Table 2 (the branching rules) in [MP], we have the
following table:

Table 3.

λ λ|Ls
0

mλ

(0 0 0 0 0 0) (00-00-00) 1

(1 0 0 0 0 0) (10-00-00)⊕ (00-10-00)⊕ (00-00-10) 12

µ = (0 1 0 0 0 0) 2(00-00-00)⊕ (01-00-00)⊕ (00-01-00)⊕ (00-00-01) 65

⊕(10-10-00)⊕ (10-00-10)⊕ (00-10-10)
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Also, we have dim m⊥ = 17. Hence we have

[(σZ0)
c] = 2(00-00-00)⊕ (01-00-00)⊕ (00-01-00)⊕ (00-00-01).

Thus the isomorphicity of the L0-module (AdG(expZ0)(m⊥))c associated
with the representation (σZ0)

c is analyzed completely. Therefore, according
to Theorem A, it follows from Table 3 and this fact that the index of M̂ is
equal to 2. On the other hand, principal orbits of this isotropy action are
diffeomorphic to Sp(6)/Sp(1)6, which is simply connected. Also we have
H/H ∩ K is the one-point set because H = K. Hence, it follows from
Lemma 4.1 that M is simply connected, that is, M = M̂ . Therefore we
obtain the following result.

Proposition 4.3 Let Π = {β1, . . . , β5} be the simple root system of the
positive root system 4+ of SU(12)/Sp(6) (

β1 β2 β5
) and Z0 the element

of b with β2(Z0) = β4(Z0) = π/3 and β1(Z0) = β3(Z0) = β5(Z0) = 0. Then
the orbit M := Sp(6)(Exp(Z0)) of the isotropy action of SU(12)/Sp(6) is
minimal (but not totally geodesic) and we have i(M) = 2.

Next we consider the case of Example 3 (i.e., G/K = SU(3)/S(U(1)×
U(2)), H = S(U(1) × U(2)), and M = S(U(1) × U(2))(ExpZ0) (β(Z0) =
π/3). Clearly we have Hs = SU(2). Since M is a geodesic sphere in G/K,
it is simply connected and of dimension three. Hence we have L = L0 = U(1)
and Ls

0 = {e}, where e is the identity element of G. Since G/H is Hermite-
type, the isotropy representation of G/H is regarded as an irreducible com-
plex representation of H ∼= U(2) and it is equal to (1 0)•. The equivalence
class µ of its complexification is equal to (1 0)• ⊕ (1 0)•. Hence we have
µ|Hs = (1 0)•|Hs ⊕ (1 0)•|Hs = (1) ⊕ (1) and hence aµ|Hs = a(1). Hence,
according to (2.3) and (2.18) in [MP] and and the Freudenthal’s formula,
we have DG/H = {(0)}. On the other hand, since 4′ = 4 is (bc1)-type and
since β(Z0) = π/3, we have 4′V

Z0
= 4′H

Z0
= ∅. Also, we have dim(m⊥)c = 1.

According to Theorem A, it follows from these facts and Ls = Ls
0 = {e} that

the index of M is equal to 1. Thus we obtain the following result.

Proposition 4.4 Let 4+ = {β, 2β} be the positive root system of
SU(3)/S(U(1)×U(2)) and Z0 the element of b with β(Z0) = π

3 . Then the or-
bit M := S(U(1)×U(2))(Exp(Z0)) of the isotropy action of SU(3)/S(U(1)×
U(2)) is minimal (but not totally geodesic) and we have i(M) = 1.
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Remark 4.1 This result has already been proved in [G] in different
method.

Next we consider the case of Example 6 (i.e., G/K = SU(6)/Sp(3), H =
ρ2(Sp(3)) and M = ρ2(Sp(3))(ExpZ0) ((β1(Z0), β2(Z0)) = (π/3,−π/6)).
Since Sp(3) is simple, we have Hs = H = Sp(3). Since the equivalence class
µ|Hs of the complexification of the restriction of the isotropy representation
of G/H to Hs is (0 1 0). Hence, according to Table 1 in [MP], we have

DG/H = {(0 0 0), (1 0 0)}.

On the other hand, since 4′ = 4 is (a2)-type and since (β1(Z0), β2(Z0)) =
(π/3,−π/6), we have 4′V

+ = {β1}, 4′H
+ = {β2, β1 +β2} and 4′V

Z0
= 4′H

Z0
=

∅. Also we have zk(b) = zk∩h(b) = sp(1)3. From these facts, we have
l = sp(1)3 and hence L0 = Ls

0 = Sp(1)3. Hence, by using Table 2 (the
branching rules) in [MP], we have the following table:

Table 6.

λ λ|Ls
0

mλ

(0 0 0) (0-0-0) 1

(1 0 0) (1-0-0)⊕ (0-1-0)⊕ (0-0-1) 6

µ|Hs = (0 1 0) 2(0-0-0)⊕ (1-1-0)⊕ (1-0-1)⊕ (0-1-1) 14

Also, we have dim m⊥ = 2. Hence we have [(σZ0)
c] = 2(0-0)). Thus the

isomorphicity of the Ls
0-module (AdG(expZ0)(m⊥))c associated with the

representation (σZ0)
c is analyzed completely. Therefore, according to The-

orem A, it follows from Table 6 and this fact that the index of M̂ is equal
to 2. On the other hand, we have H/H ∩K = Sp(3)/Sp(1)× Sp(2) (whcih
is simply connected) and Fix(θ ◦ τ)0/H ∩K = (SU(4)/Sp(2))× U(1). The
principal orbit of the isotropy action of (SU(4)/Sp(2))×U(1) is diffeomor-
phic to S3 × S3, which is simply connected. Hence, it follows from Lemma
4.1 that M is simply connected, that is, M = M̂ . Therefore we obtain the
following result.

Proposition 4.5 Let Π = {β1, β2} be the simple root system of the positive
root system 4+ of SU(6)/Sp(3) (

β1 β2
) and Z0 the element of b with
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(β1(Z0), β2(Z0)) = (π/3,−π/6). Then the orbit M := ρ2(Sp(3))(Exp(Z0))
of the dual action ρ2(Sp(3)) y SU(6)/Sp(3) of Sp(1, 2) y SU∗(6)/Sp(3)
is minimal (but not totally geodesic) and we have i(M) = 2.

Next we consider the case of Example 7 (i.e., G/K = Sp(2)/U(2), H =
ρ3(U(2)) and M = ρ3(U(2))(ExpZ0) ((β1(Z0), β2(Z0)) = (π/3,−π/6)).
Clearly we have Hs = SU(2). Since the equivalence class µ|Hs of the com-
plexification of the restriction of the isotropy representation of G/H to Hs

is (2) ⊕ (2). Hence we have DG/H = {(0), (1)}, On the other hand, since
4′ = 4 is (c2)-type and since (β1(Z0), β2(Z0)) = (−π/6, π/3), we have
4′V

Z0
= {2β1 + β2} and 4′H

Z0
= ∅. Also we have zk(b) = zk∩h(b) = {0}.

From these facts, we have ls = so(2) and hence Ls
0 = SO(2). Denote by λ̃

the canonical extension of λ ∈ D(SU(2)) to U(2) and T 2 a maximal torus of
U(2). By noticing these facts and using Weyl’s character formula (see Page
409 of [KO] for example), we have the following table:

Table 7.

λ λ̃ λ̃|T 2 λ|Ls
0

mλ

(0) (0 0)• (0-0) (0) 1

(1) ( 1
2 (− 1

2 ))• ( 1
2 -(− 1

2 ))⊕ ((− 1
2 )- 1

2 ) ( 1
2 )⊕ (− 1

2 ) 2

(2) (1 (−1))• (1-(−1))⊕ (0-0)⊕ ((−1)-1) (1)⊕ (0)⊕ (−1) 3

Easily we can show that dimm⊥ = 3 and furthermore [(σZ0)
c] = (1) ⊕

(0)⊕ (−1). Therefore, according to Theorem A, it follows from Table 7 and
this fact that the index of M̂ is equal to 1. Also, since Z0 belongs to an
(open) 1-simplex (whcih we denote by σ) of the simplicial complex C̃, M is
not stable. In fact, when M moves along σ as ρ3(U(2))-orbits, its volume
decreases. Thus we obtain the following result.

Proposition 4.6 Let Π = {β1, β2} be the simple root system of the positive
root system 4+ of Sp(2)/U(2) (

β1 β2
) and Z0 the element of b with

(β1(Z0), β2(Z0)) = (−π/6, π/3). Then the orbit M := ρ3(U(2))(Exp(Z0))
of the dual action ρ3(U(2)) y Sp(2)/U(2) of U(1, 1) y Sp(2,R)/U(2) is
minimal (but not totally geodesic) and we have i(M) = 1.

Next we consider the case of Example 8 (i.e., G/K = (Sp(2)× Sp(2))/
Sp(2), H = ρ4(Sp(2)) and M = ρ4(Sp(2))(ExpZ0) ((β1(Z0), β2(Z0)) =
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(−π/6, π/3)). Clearly we have Hs = H = Sp(2). Since the equivalence class
µ|Hs of the complexification of the restriction of the isotropy representation
of G/H to Hs is (2 0). Hence we have DG/H = {(0 0), (1 0), (0 1)}. On
the other hand, since 4′ = 4 is (b2)-type and since (β1(Z0), β2(Z0)) =
(−π/6, π/3), we have 4′V

Z0
= {β2} and 4′H

Z0
= ∅. Also we have dim zk(b) =

dim zk∩h(b) = 2. From these facts, we have ls = u(2) = so(2) + su(2) and
hence Ls

0 = U(2). Hence, by using Table 2 (the branching rules) in [MP],
we have the following table:

Table 8.

λ λ|Ls
0

mλ

(0 0) (0-0) 1

(1 0) (0-3) 4

(0 1) (0-4) 5

µ = µ|Hs = (2 0) (0-6)⊕ (0-2) 10

Also, we have dim m⊥ = 4. Hence we have [(σZ0)
c] = (0-0)⊕ (0-2). There-

fore, according to Theorem A, it follows from Table 9 and this fact that the
index of M̂ is equal to 1. On the other hand, we have H/H ∩K = Sp(2)/
Sp(1)×Sp(1) (whcih is simply connected) and Fix(θ◦τ)0/H∩K = S3×S3.
The principal orbit of the isotropy action of S3 × S3 is diffeomorphic to
S2 × S2, which is simply connected. Hence, it follows from Lemma 4.1 that
M is simply connected, that is, M = M̂ . Therefore we obtain the following
result.

Proposition 4.7 Let Π = {β1, β2} be the simple root system of the positive
root system 4+ of (Sp(2)× Sp(2))/Sp(2) (

β1 β2
) and Z0 the element of

b with (β1(Z0), β2(Z0)) = (−π/6, π/3). Then the orbit M := ρ4(Sp(2))
· (Exp(Z0)) of the dual action ρ4(Sp(2)) y Sp(2)/U(2) of Sp(1, 1) y
Sp(2,C)/Sp(2) is minimal (but not totally geodesic) and we have i(M) = 1.

Next we consider the case of Example 9 (i.e., G/K = E6/F4, H = ρ5(F4)
and M = ρ5(F4)(ExpZ0) ((β1(Z0), β2(Z0)) = (π/3,−π/6)). Clearly we
have Hs = H = F4. Since the equivalence class µ of the complexification of
the isotropy representation of G/H is (0 0 0 1), we have DG/H = {(0 0 0 0)}.
On the other hand, since 4′ = 4 is (a2)-type and since (β1(Z0), β2(Z0)) =
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(π/3,−π/6), we have 4′V
Z0

= 4′H
Z0

= ∅. Also we have zk(b) = zk∩h(b) =
so(8). From these facts, we have ls = so(8) and hence Ls

0 = SO(8). Hence,
by using Table 2 (the branching rules) in [MP], we have the following table:

Table 9.

λ λ|Ls
0

mλ

(0 0 0 0) (0 0 0 0) 1

(0 0 0 1) 2(0 0 0 0)⊕ (1 0 0 0)⊕ (0 0 1 0)⊕ (0 0 0 1) 26

Also, we have dim m⊥ = 2. Hence we have [(σZ0)
c] = 2(0 0 0 0). Therefore,

according to Theorem A, it follows from Table 9 and this fact that the index
of M̂ is equal to 2. On the other hand, we have H/H ∩ K = F4/Spin(9)
(whcih is simply connected) and Fix(θ◦τ)0/H∩K = S9×S1. The principal
orbit of the isotropy action of S9×S1 is diffeomorphic to S8, which is simply
connected. Hence, it follows from Lemma 4.1 that M is simply connected,
that is, M = M̂ . Therefore we obtain the following result.

Proposition 4.8 Let Π = {β1, β2} be the simple root system of the pos-
itive root system 4+ of E6/F4 (

β1 β2
) and Z0 the element of b with

(β1(Z0), β2(Z0)) = (π/3,−π/6). Then the orbit M := ρ5(F4)(Exp(Z0)) of
the dual action ρ5(F4) y E6/F4 of F−20

4 y E−26
6 /F4 is minimal (but not

totally geodesic) and we have i(M) = 2.
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