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On the variational problem associated

with standard differential systems

Noboru Tanaka
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1. Preliminaries

1.1. Left invariant differential systems on Lie groups, and condi-
tions (C0), (C) and (C′)

At the outset we consider a new condition on differential systems (M, D)
as follows:

(C0) any two points p and g of M can be connected by a piece-wise
regular integral curve of (M, D).

Clearly condition (C0) implies condition (C). Suppose that M is con-
nected, and rank(D) > 0. Then it is known that condition (C ′) implies
condition (C0): (see Appendix in [5]). Furthermore it can be shown that if
(M, D) is real analytic, the three conditions (C0), (C) and (C ′) are mutually
equivalent. The proof of this fact is based on the fact above and Nagano’s
theorem ([4]) on real analytic involutive differential systems possibly with
singularities.

Now, let G be a connected Lie groups and g its Lie algebra. In the
present paper g is defined to be the tangent space Te(G), e being the identity
element g, equipped with the natural Lie algebra structure. We denote by
exp the exponential mapping of g to G, and by La the left translation of G

corresponding to an element of G.
Let ϑ be a subspace of g. We denote by D the left invariant differential

system on G induced by the subspace ϑ: (i) De = ϑ, and (ii) Dab = dLa(Db),
a, b ∈ G. It is clear that the differential system (M, D) satisfies condition
(C ′), if and only if the Lie algebra g is generated by ϑ. For completeness we
shall prove the following
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Proposition 1.1 Assume that dimϑ > 0. Then Conditions (C0), (C) and
(C ′) are mutually equivalent.

We shall only prove the equivalence (C ′) ⇔ (C0). The equivalence
(C ′) ⇔ (C) can be similarly dealt with.

For a ∈ G we denote by Ω0(a) the set of all piece-wise regular integral
curves α(t) (t ∈ [0, 1]) of (G,D) from e to a, and set

H = {a ∈ G | Ω0(a) 6= φ}.

We first assert that H 6= φ. Indeed, x ∈ ϑ − {0}. Clearly the curve α(t) =
exp(tx) (t ∈ R) is a regular integral curve of (G,D). Hence α(t) is in H for
each t ∈ R, proving our assertion. We next assert that H is a subgroup of
G. Indeed, let a, b ∈ H, and take α ∈ Ω0(a), β ∈ Ω0(b). Then we define a
curve γ(t) (t ∈ [0, 1]) of G as follows:

γ(t) =





α(2t), 0 ≤ t ≤ 1
2
,

a β(2t− 1),
1
2

< t ≤ 1.

Then we have γ ∈ Ω0(ab) and hence ab ∈ H. We now define a curve γ(t)
(t ∈ [0, 1]) of G by

γ(t) = a−1γ(1− t), 0 ≤ t ≤ 1.

Then we have γ ∈ Ω0(a−1) and hence a−1 ∈ H, proving our assertion.
Furthermore it is clear that if a ∈ H and ω ∈ Ω0(a), ω(t) is in H for each
t ∈ [0, 1]. Therefore it follows that H becomes a connected Lie subgroup of
G (see Appendix 4 [2]).

Now, we denote by g(ϑ) the subalgebra of g generated by the subspace
ϑ of g, and by G(ϑ) the connected Lie subgroup of G generated by g(ϑ).
Then we show that the two Lie subgroups H and G(ϑ) coincide, from which
follows immediately the equivalence (C ′) ⇔ (C0). First we have G(ϑ) ⊂ H.
Indeed, take any X ∈ ϑ − {0}. As we have seen, exp(tx) is in H for each
t ∈ R, meaning that X is in the Lie algebra h of H. We have therefore
shown that ϑ ⊂ h and hence g(ϑ) ⊂ h. This means that G(ϑ) ⊂ H, proving
our assertion. Next we have H ⊂ G(ϑ). Indeed, we denote by D̂ the
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left invariant differential system on G induced by the subalgebra g(ϑ) of
g. Then D̂ is completely integrable, and G(ϑ) is the maximal connected
integral manifold of D̂ through e. Now, let a ∈ H, and take ω ∈ Ω0(a).
Since D ⊂ D̂, ω is a piece-wise integral curve of D̂. It follows that ω(t) is
in G(ϑ) for each t ∈ [0, 1]. We have therefore shown that a = ω(1) ∈ G(ϑ)
and hence H ⊂ G(ϑ).

1.2. Fundamental graded Lie algebras and standard differential
systems

Let g be a Lie algebra (over the field R of real numbers), and (gp)p∈Z
a family of subspaces of g, where Z denotes the additive group of integers.
Let us consider the following conditions on the pair (g, (gp)):

g =
∑

p

gp (direct sum), (GLA.1)

dim gp < ∞, (GLA.2)

[gp, gq] ⊂ gp+q. (GLA.3)

Under these conditions the pair (g, (gp)) or the direct sum g =
∑

p gp is
called a graded Lie algebra.

Then a graded Lie algebra g =
∑

p gp is called a fundamental graded Lie
algebra or briefly a FGLA, if the following conditions are satisfied:

(FGLA.1) dim g < ∞,
(FGLA.2) g1 6= {0}, and the Lie algebra g is generated by g1.

Let g =
∑

p gp be a FGLA. Then we see that gp = {0} for p ≤ 0 and
gp+1 = [g1, gp] for p ≥ 1. It follows that there is a positive integer k such
that gp 6= {0} for 1 ≤ p ≤ k and gp = {0} for p > k. We also note that g

becomes a nilpotent Lie algebra.
Let µ be a positive number. Then the FGLA, is called of the µ-th kind,

if k = µ, furthermore the FGLA is called a euclidean FGLA, if there is given
an inner product 〈 , 〉 on g1.

In the following we shall be concerned with a fixed FGLA,

g =
∑

p

gp =
µ∑

p=1

gp,
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of the µ-th kind. Let G be a simply connected Lie group whose Lie algebra is
g. Since g is a nilpotent Lie algebra, the exponential mapping exp : g → G is
a diffeomorphism (onto). We then denote by D the left invariant differential
system on G induced by the subspace g1 of G. Since the Lie algebra g is
generated by g1, we know from Proposition 1.1 that the differential system
(G,D) satisfies conditions (C0), (C) and (C ′). The differential system (G,D)
thus obtained is called the standard differential system associated with the
FGLA, or simply a standard differential system of the µ-th kind.

Now, assume that g =
∑

p gp is a euclidean FGLA. We denote by g the
left invariant inner product of D induced by the inner product 〈 , 〉 on g1:

(i) ge(X, Y ) = 〈X, Y 〉, X, Y ∈ g1,

and

(ii) gaf (dLa(X), dLa(Y )) = gf (X, Y ), X, Y ∈ Df , a, f ∈ G.

The riemannian differential system (G,D, g) thus obtained is called the stan-
dard riemannian differential system associated with the euclidean FGLA or
simply a standard riemannian differential system of the µ-th kind. Con-
cerning the standard riemannian differential system (G,D, g) we may con-
sider the spaces Ω(G,D, a, f) (a, f ∈ G), the energy functionals E :
Ω(G,D, a, f) → R, and the distance function d(a, f). Finally we extend,
once for all, the inner product 〈 , 〉 on g1, to an inner product 〈 , 〉 on g, so
that any two of the subspaces gp are mutually or orthogonal. Then we denote
by ĝ the left invariant riemannian metric on G induced by the inner product
〈 , 〉 on g, and by d̂(a, b) the associated distance function on G. Clearly
both the distance functions d and d̂ are left invariant: d(ca, cb) = d(a, b) for
a, b, c ∈ G, and the same for d̂.

1.3. The distance functions d and d̂

In this and the subsequent paragraphs we are concerned with a eu-
clidean FGLA of the µ-th kind, and preserve the notations in the previous
paragraph.

We take any vector X of g, and set X =
∑µ

p=1 Xp, where Xp ∈ gp.
Then we define a function ϕ on g by
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ϕ(X) =
µ∑

p=1

|Xp|1/p.

We also have the function d(e, exp(X)) on g.

Proposition 1.2 The two functions ϕ(X) and d(e, exp(X)) are equivalent
in the following sense: There are positive constants C1 and C2 such that

C1ϕ(X) ≤ d(e, exp(X)) ≤ C2ϕ(X), X ∈ g

Proof. Let R+ be the multiplicative group of positive numbers. For λ ∈ R+

we define an automorphism λ̃ the Lie algebra g by

λ̃(X) = λpX, X ∈ gp, 1 ≤ p ≤ µ.

Clearly the assignment λ → λ̃ gives an injective homomorphism of the
group R+ into the automorphism group Aut(g) of the Lie algebra g. We
then denote by λ̂ the automorphism of the Lie group G generated by the
automorphism λ̃ of g : dλ̂(X) = λ̃(X) and λ̂(exp(X)) = exp(λ̃(X)), where
X ∈ g.

Lemma 1 For any a, b ∈ G and λ ∈ R+ the following equality holds:

d(λ̂(a), λ̂(b)) = λd(a, b).

Proof. This fact follows immediately from the following equality

|dλ̃(X)| = λ|X|, X ∈ Dc, c ∈ G,

which is proved as follows: We take Y ∈ g, such that X = dLc(Y ). If we
put c̄ = λ̂(c)c−1, we have λ̂ ◦Lc = Lc̄ ◦Lc ◦ λ̂. It follows that dλ̂(dLc(Y )) =
λdLc̄(dLc(Y )) and hence dλ̂(X) = λdLc̄(X). Therefore we obtain |dλ̂(X)| =
λ|X|, proving the desired equality.

Lemma 2 There are a neighborhood U of e and a positive constant M

such that

d(e, a) ≤ M, a ∈ U
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Proof. For each 1 ≤ p ≤ µ we set np = dim gp, and take a basis
(e(p)

α )1≤α≤np
of gp. We then define a mapping of Rnp to G by

σ(p)(x(p)) = exp
(
x

(p)
1 e

(p)
1

) · · · exp
(
x(p)

np
e(p)
np

)
,

where x(p) =
(
x

(p)
1 , . . . , x

(p)
np

) ∈ Rnp . We further define a mapping Rn1 ×
· · · × Rnp to G by

σ(x) = σ(1)(x(1)) . . . σ(µ)(x(µ)),

where x = (x(1), . . . , x(µ)) ∈ Rn1×· · ·×Rnµ . Then σ gives a diffeomorphism
of Rn1

X · · ·XRnµ onto G. We now set

U =
{
σ(x) | |x(p)

α | < 1, 1 ≤ α ≤ np, 1 ≤ p ≤ µ
}
,

being an open neighborhood of e and take any point a = σ(x) of U . Since
the distance function d is left invariant, we have

d(e, a) ≤
µ∑

p=1

np∑
α=1

d
(
e, exp(x(p)

α e(p)
α )

)
.

Here, we notice that each x
(p)
α may be described as follows: x

(p)
α = εp

α(λ(p)
α )p,

where ε
(p)
α is 1 or −1 or 0, and σ < λ

(p)
α < 1. Then we have λ̃

(p)
α (ε(p)

α e
(p)
α ) =

x
(p)
α ep

α, and hence exp(x(p)
α e

(p)
α ) = λ̂

(p)
α (exp(ε(p)

α e
(p)
α )). Therefore we see from

Lemma 1 that

d
(
e, exp(x(p)

α e(p)
α )

)
= λ(p)

α d
(
e, exp(ε(p)

α e(p)
α

)

≤ d
(
e, exp(ε(p)

α e(p)
α

)

≤ d
(
e, exp(e(p)

α )
)

+ d
(
e, exp(−e(p)

α )
)
.

Consequently if we put

M =
µ∑

p=1

np∑
α=1

{
d
(
e, exp(e(p)

α )
)

+ d
(
e, exp(−e(p)

α )
)}

,
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we obtain d(e, a) ≤ M , proving Lemma 2.
We are now in a position to prove Proposition 1.2. Take any X ∈ g and

λ ∈ R. Since ϕ(λ̃(X)) = λϕ(X), we see from Lemma 1 that

d(e, exp(x))ϕ(λ̃(X)) = d(e, exp(λ̃X))ϕ(X). (∗)

Now, Sδ denotes the sphere of radius δ centered at 0 ∈ g. U being as in
Lemma 2, we choose a sufficiently small δ so that Sδ ⊂ U . By Lemma 2
we then have d(e, exp(X)) ≤ M for any X ∈ Sδ. Let m a positive constant
such that ϕ(X) ≥ m for any X ∈ Sδ. If we put C2 = M/m, we see from (∗)
that

d(e, exp(λ̃(X))) ≤ C2ϕ(λ̃(X)), λ ∈ R+, X ∈ Sδ.

Furthermore there are positive constants M ′ and m′ such that ϕ(X) ≤ M ′

and

d(e, exp(X)) ≥ d̂(e, exp(X)) ≥ m′

for any Sδ. If we put C1 = m′/M ′, it follows from (∗) that

C1ϕ(λ̃(X)) ≤ d(e, exp(λ̃(X))), λ ∈ R+, X ∈ Sδ.

As is easily verified, we have

g− {0} = {λ̃(X) | λ ∈ R+, X ∈ Sδ}.

We have therefore shown that

C1ϕ(X) ≤ d(e, exp(X)) ≤ C2ϕ(X), X ∈ g,

which proves Proposition 1.2.

By Proposition 1.2 we have the following two corollaries:

Corollary 1 (cf. Corollary to Theorem 5, Appendix in [5]) Let K be a
compact set of G. Then there is a positive constant C such that

d̂(a, b) ≤ d(a, b) ≤ Cd̂(a, b)1/µ, a, b ∈ K.
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In particular it follows that the topology of G defined by the distance function
d coincides with the topology of the manifold G.

Corollary 2 The distance function d is complete, that is, any Cauchy
sequence in G with respect to d converges to a point of G.

Proof of Corollary 1. There are positive constants ε′ and C ′ such that

|ϕ(X)| ≤ C ′|X|1/µ,

provided |X| < ε′. Furthermore there are positive constants ε′′ and C ′′ such
that

|X| ≤ C ′′d̂(e, exp(X)),

provided d̂(e, exp(X)) < ε′′. Therefore it follows from Proposition 1.2 that
there are positive constants ε and C such that

d(e, a) ≤ Cd̂(e, a)1/µ,

provided d̂(e, a) < ε. Since both d and d̂ are left invariant, we have shown
that

d(a, b) ≤ Cd̂(a, b)1/µ,

provided d̂(a, b) < ε, from which follows easily Corollary 1.

Proof of Corollary 2. For any positive number R we define a subset K of
g by

K = {X ∈ g | d(e, exp(X)) < R}.

Then it suffices to show that K is a compact set of g. By Proposition 1.2
we see that K is bounded in g, with respect to the norm | · |. Furthermore
K is closed in g, because the function X → d(e, exp(X)) is continuous by
Corollary 2. We have thus shown that K is compact, proving the corollary.
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1.4. An expression of the distance function d in terms of the
energy functionals

For simplicity we set Ω(a, b) = Ω(G,D, a, b).

Proposition 1.3 In terms of the energy functionals the distance function
d may be described as follows

d(a, b)2 = Inf E(ω)
ω∈Ω(a,b)

, a, b ∈ G.

Proof. This fact is clear in the case where µ = 1 i.e., the euclidean FGLA
is reduced to a euclidean vector space. Accordingly we may assume that
µ ≥ 2, implying that dim g1 ≥ 2.

For any a, b ∈ G we denote by Ω0(a, b) the set of all piece-wise regular
integral curves ω(t) (t ∈ [0, 1]) of (G,D). Since the differential system (G,D)
satisfies condition (C0), we have Ω0(a, b) 6= φ. This being said, we set

d0(a, b) = Inf L(ω)
ω∈Ω0(a,b)

.

Since d(a, b) ≤ d0(a, b), d0(a, b) becomes a distance function on G. Here, we
notice that Proposition 1.2. together with its corollary remains true when
d is replaced by d0. Especially it follows that the topology of G defined by
d0 coincides with the topology of the manifold G.

Now, let η(a, b) denote the right hand side of the equality in the propo-
sition. Then we have d(a, b)2 ≤ η(a, b), because L(ω)2 ≤ E(ω) for any
ω ∈ Ω(a, b). Let ε be any positive number. Then we can find ω ∈ Ω(a, b) such
that L(ω) < d(a, b) + ε/2. By Lemma below we can also find ω′ ∈ Ω0(a, b)
such that L(ω′) < L(ω) + ε/2. Hence we obtain L(ω′) < d(a, b) + ε. ω′

being a piecewise regular curve, we may assume that |dω′/dt| is constant.
Therefore it follows that η(a, b) ≤ E(ω′) = L(ω′)2 < (d(a, b) + ε)2, whence
η(a, b) ≤ d(a, b)2. We have thus proved Proposition 1.3.

Lemma Let ω be any path in Ω(a, b) and ε any positive number. Then
there is ω′ ∈ Ω0(a, b) such that

|L(ω′)− L(ω)| < ε.

Proof. Clearly we may assume that ω is smooth. We set
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X(t) = ω(t)−1 dω

dt
(t), t ∈ [0, 1]

which defines a smooth curves of g1. For any A ∈ g, we now set XA(t) =
X(t) − A, (t ∈ [0, 1]), and consider the unique curve ωA(t) (t ∈ [0, 1]) of G

such that ωA(0) = e and

ωA(t)−1 dωA

dt
(t) = XA(t), t ∈ [0, 1],

which is an integral curve of (G,D). Since dim g1 ≥ 2, it follows from the
Sard theorem that we can find a sequence (Ai)i≥1 of vectors ∈ g, such that
Ai 6∈ X([0, 1]) for any i ≥ 1 and Ai converges to 0, as i tends to +∞.
Then we have XAi

(t) 6= 0 for any i and t ∈ [0, 1], and hence ωAi
becomes

a regular curve. Now, ωA(1) is continuous with respect to the parameter
A, from which follows that d0(ωAi

(1), b) converges to 0 as i tends to +∞.
Furthermore, since |XAi(t)−X(t)| = |Ai|, we see that |L(ωAi)−L(ω)| ≤ |Ai|.
Therefore it follows that for any positive number ε there is i such that

|L(ωAi
)− L(ω)| < 1

2
ε,

d0(ωA1(1), b) <
1
2
ε.

By this last equality we can find θ ∈ Ω0(ωAi
(1), b) such that L(θ) < (1/2)ε.

Now, define a path ω′ ∈ Ω(a, b) as follows:

ω′(t) = ωAi
(2t)

(
0 ≤ t ≤ 1

2

)

= θ(2t− 1)
(

1
2

< t ≤ 1
)

.

Then we have ω′ ∈ Ω0(a, b), and |L(ω′)− L(ω)| < ε, proving the lemma.

2. The calculus of variations for the energy functionals

2.1. Euclidean FGLA of the 2nd kind
Here after a FGLA will always mean, that of the 2nd kind. Given a

euclidean vector space V , Skew(V ) will denote the vector space of all skew



Variational problem associated with differential systems 111

symmetric endomorphisms.
Now, let g = g1 + g2 be a euclidean FGLA, and let g∗2 be the dual space

of g2. For any θ ∈ g∗2 we define a skew symmetric endomorphism Λθ of g1

by

〈[x, y], θ〉 = 〈x,Λθy〉, x, y ∈ g1,

where the parenthesis 〈 , 〉 in the left hand side stands for the duality
between g2 and g∗2. Since g2 = [g1, g1], we see that the assignment θ → Λθ

gives an injective linear mapping of g∗2 to Skew(g1). Then we denote by A
the image of g∗2 by this linear mapping:

A = {Λθ | θ ∈ g∗2},

The subspace A of Skew(g1) or the pair (g1,A ) thus obtained will be called
associated with the euclidean FGLA, g = g1 + g2.

Conversely let V be a euclidean vector space, and A a subspace of
Skew(V ). Assuming that dimA > 0, we set

g1 = V, g2 = V ∗, and g = g1 + g2,

and define a bracket operation [ , ] in g as follows:

(i) [x1, y2] = [x2, y1] = [x2, y2] = 0,

(ii) [x1, y1] ∈ g2, and 〈A, [x1, y1]〉 = 〈x1, Ay1〉, A ∈ A ,

where xi, yi ∈ gi (i = 1, 2). Then it is clear that g = g1 + g2 becomes a
euclidean FGLA, which is called associated with the subspace A of Skew(V )
or the pair (V, A ).

In this way we have seen that there is a natural one-to-one correspon-
dence between the euclidean FGLA, g = g1 + g2 and the pairs (V, A ) of
euclidean vector spaces V and subspaces A of Skew(V ) (up to the respec-
tive isomorphisms).

Example 1 Let g = g1 + g2 be a euclidean FGLA, and A the associated
subspace of Skew(g1). If we set n = dim g1, we have dim g2 = dimA ≤
dimSkew(g1) = (1/2)n(n − 1). Given an integer n ≥ 2, we now denote
by En (resp. by Ên) the class of all euclidean FGLA, g = g1 + g2, with
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dim g1 = n (resp. with dim g1 = n and dim g2 = (1/2)n(n − 1)). Then we
have the following.

( i ) To every euclidean FGLA, g in the class En there is naturally associ-
ated a euclidean FGLA, ĝ, in the class Ên together with a homomor-
phism of ĝ onto g

( ii ) Any two euclidean FGLA in the class Ên are mutually isomorphic.

Indeed let V be a euclidean vector space and A a subspace of Skew(V ).
Let g be the euclidean FGLA associated with the pair (V, A ). Furthermore
setting Â = Skew(g1), let ĝ be the euclidean FGLA associated with the pair
(V, Â ). Then the identity mapping of V and the natural linear mapping of
Â ∗ onto A ∗ give rise to a homomorphism of ĝ onto g, from which follows
immediately our assertions. In view of the facts above a euclidean FGLA in
the class Ên will be called universal.

Example 2 A FGLA, g = g1 + g2, is called a strongly pseudo-convex
FGLA, if dim g2 = 1, and if the subspace g1 is equipped with a complex
structure I satisfying the following conditions:

( i ) [Ix, Iy] = [x, y], x, y,∈ g1,
( ii ) [Ix, x] 6= 0 for any nonzero x ∈ g1.

Now, let g = g1 + g2 be a strongly pseudo-convex FGLA. We fix a basis θ

of g∗2, and set

〈x, y〉 = 〈[Ix, y], θ〉, x, y ∈ g1,

which gives a definite symmetric bilinear form on g1. Accordingly we may
assume that 〈x, y〉 is positive definite by replacing θ with −θ if necessary. We
have thus seen that the strongly pseudo-convex FGLA becomes naturally a
euclidean FGLA. Clearly the space A associated with the euclidean FGLA
is spanned by I. Incidentally let (G,D) be the standard differential system
associated with the underlying FGLA. Then we notice that D is a contact
structure, because the condition “x ∈ g1, [x, g1] = {0}” implies x = 0.
Furthermore let us denote by the same letter I the left invariant complex
structure of D (as a vector bundle) induced by I. Then we remark that the
triplet (G,D, I) gives a pseudo-complex manifold or a CR manifold, which
is called the standard strongly pseudo-convex manifold associated with the
strongly pseudo-convex FGLA.
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2.2. Reduction of the energy functionals
For the rest of the present paper we are concerned with a fixed euclidean

FGLA g0 = g1 + g2 and present the notations in paragraph 1.2. Hereafter
we identity the Lie group G with the product manifold g1 × g2 through the
diffeomorphism (a1, a2) → exp(a1 + a2) of g1 × g2 onto G. In terms of the
product manifold the group multiplication of G is given by

(a1, a2) · (b1, b2) =
(

a1 + b1, a2 + b2 +
1
2
[a1, b1]

)
,

where (a1, a2), (b1, b2) ∈ G. Note that e = (0, 0), e being the identity element
of G. We denote by π the projection of G onto g1. Then G is a fibred
manifold over the euclidean space g1 with projection π, and the differential
system D defines a connection in the fibred manifold in a generalized sense
so that the differential dπ of π, restricted to the system D, preserves the
inner products.

In the present section we develop the calculus of variations for the en-
ergy functionals E : Ω(G,D, a, b) → R. For this purpose it clearly suffices to
deal with the energy functionals E : Ω(G,D, e, a) → R. For simplicity the
space Ω(G,D, e, a) will be denoted by Ω(G,D, a). Our task from now on
is to show that through the projection π : G → g1 the variational problem
for the energy functionals E : Ω(G,D, a) → R can be reduced to the varia-
tional problem with suitable additional conditions for the euclidean energy
functionals.

Let ω(t) (t ∈ I) be a smooth curve of G, I being an open interval, and
set ω(t) = (ω1(t), ω2(t)). Then we have

ω(t)−1 dω

dt
(t) =

dω1

dt
(t) +

(
dω2

dt
(t)− 1

2

[
ω1(t),

dω1

dt
(t)

])
.

It follows that ω is an integral curve of (G,D) (or a horizontal curve of the
connection defined by D), if and only if

dω2

dt
=

1
2

[
ω1,

dω1

dt

]
,

and further that if ω is an integral curve of (G,D),
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∣∣∣∣
dω

dt
(t)

∣∣∣∣ =
∣∣∣∣
dω1

dt
(t)

∣∣∣∣.

Now, let a be any point of G, and set a = (a1, a2). Then we denote by
Ω1(g1, a1) the set of all piece-wise smooth paths γ(t) (t ∈ [0, 1]) of g1 from
0 to a1 and by E1 the euclidean energy functional on Ω1(g1, a1):

E1(γ) =
∫ 1

0

∣∣∣∣
dγ

dt

∣∣∣∣
2

dt, γ ∈ Ω1(g1, a1).

We also define a functional F : Ω1(g1, a1) → g2 by

F (γ) =
1
2

∫ 1

0

[
γ,

dγ

dt

]
dt, γ ∈ Ω1(g1, a1).

We then set

Ω̃1(g1, a) = {γ ∈ Ω1(g1, a1) | F (γ) = a2},

and denote by Ẽ1 the restriction of E1 to Ω̃1(g1, a).
From the discussion above it follows that (i) if ω ∈ Ω(G,D, a), the image

γ = π ◦ ω of ω by π (or the g1-component ω1 of ω) is in Ω̃1(g1, a), (ii) the
assignment ω → γ gives a bijection of Ω(G,D, a) to Ω̃1(g1, a), and (iii)

E(ω) = Ẽ1(γ).

We have therefore shown that the variational problem for the energy func-
tionals E : Ω(G,D, a) → R is reduced to that for the energy functionals
Ẽ1 : Ω̃1(g1, a) → R.

2.3. The space Ω̃(g1, a)
For simplicity we set Ω1 = Ω1(g1, a) and Ω̃1 = Ω̃1(g1, a). As usual we

shall think of Ω1 as something like “an infinite dimensional manifold.” In
terms of a basis of g2 let us express the functional F as a system (Fλ) of R-
valued functionals and similarly the vector a2 as a system (aλ

2 ) of constants.
Then Ω̃1 is defined by the finite system of equations: Fλ = aλ

2 and hence
we may think of Ω̃1 as something like “a subvariety (possibly with singular
points) of finite codimension of Ω1”.

Let γ be a path in Ω1. By definition a variation of γ in Ω1 is a mapping
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ᾱ : (−ε, ε) → Ω1, ε being a small positive number, which satisfies the
following conditions:

(a) ᾱ(0) = γ

(b) There is a subdivision t0 = 0 < t < · · · < tk = 1 of the interval [0, 1] such
that the mapping α : (−ε, ε)× [0, 1] → g1 defined by α(s, t) = ᾱ(s)(t) is
smooth on each strip (−ε, ε)× [ti−1, ti].

Let ᾱ be a variation of γ in Ω1. Then we define a mapping or rather
vector field X : [0, 1] → g1 by

X(t) =
∂

∂t
α(s, t)

∣∣∣∣
s=0

,

which is (continuous and) piece-wise smooth, and satisfies the condition:

X(0) = X(1) = 0.

The vector field X thus obtained may be naturally regarded as a vector field
along the path γ, and will be called induced by the variation ᾱ of γ.

This being said, we denote by Tγ(Ω1) the vector space of all piece-wise
smooth vector fields X : [0, 1] → g1 satisfying the condition: X(0) = X(1) =
0. Clearly every vector field X in Tγ(Ω1) is integrable in Ω1, that is, it is
induced by some variation ᾱ of γ in Ω1. The vector space Tγ(Ω1) thus
defined is called the tangent vector space to Ω1 at γ.

Now, suppose that γ is in Ω̃1. Then a variation ᾱ of γ in Ω1 is called a
variation of γ in Ω̃1, if ᾱ(s) ∈ Ω̃1 for all s. Furthermore a vector field X in
Tγ(Ω1) is called integrable in Ω̃1, if it is induced by some variation ᾱ of γ in
Ω̃1.

We denote by Σ(γ) the subspace of g1 spanned by the vectors dγ/dt(t)
(t ∈ [0, 1]), which may be characterized as the smallest subspace of g1 con-
taining the entire path γ, because γ(0) = 0. Then we define a subspace
A (γ) of A by

A (γ) =
{

A ∈ A

∣∣∣∣A
dγ

dt
= 0

}

= {A ∈ A | AΣ(γ) = {0}}.
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These being prepared, we have the following two propositions.

Proposition 2.0 Let γ be a path in Ω̃1, and ᾱ a variation of γ in Ω1.
Then ᾱ is a variation of γ in Ω̃1, if and only if

∫ 1

0

〈
∂α

∂s
,A

∂α

∂t

〉
dt = 0, A ∈ A .

Proof. We have

F (ᾱ(s)) =
1
2

∫ 1

0

[
α,

∂α

∂t

]
dt,

whence

d

ds
F (ᾱ(s)) =

1
2

∫ 1

0

([
∂α

∂s
,
∂α

∂t

]
+

[
α,

∂2α

∂s∂t

])
dt.

Since α(s, 0) = 0 and α(s, 1) = a1, and

∂

∂t

[
α,

∂α

∂s

]
=

[
∂α

∂t
,
∂α

∂s

]
+

[
α,

∂2α

∂t∂s

]
,

it follows that

d

ds
F (ᾱ(s)) =

∫ 1

0

[
∂α

∂s
,
∂α

∂t

]
dt.

Clearly this means that

〈
d

ds
F (ᾱ(s)), θ

〉
=

∫ 1

0

〈
∂α

∂s
,Λθ

∂α

∂t

〉
dt, θ ∈ g∗2,

from which follows immediately Proposition 2.0.

Remark Incidentally we see from the equality just above that

〈(dF )γ(X), θ〉 =
∫ 1

0

〈
X, Λθ

dγ

dt

〉
dt, X ∈ Tγ(Ω1).

Here, (dF )γ is the differential of F at γ, and is defined by
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(dF )γ(X) =
d

ds
F (ᾱ(s))

∣∣∣∣
s=0

, X ∈ Tγ(Ω1),

ᾱ being some variation of γ in Ω1 which induces X.

Proposition 2.1 Let γ be a path in Ω̃1, and X a vector field in Tγ(Ω1).
If X is integrable in Ω̃1, then it satisfies the following equations:

( i )
∫ 1

0

〈
X, A

dγ

dt

〉
dt = 0, A ∈ A ,

( ii )
∫ 1

0

〈
X, A

dX

dt

〉
dt = 0, A ∈ A (γ).

Proof. Being integrable in Ω̃1, X is induced by some variation ᾱ of γ in
Ω̃1. Therefore (i) follows immediately from Proposition 2.0. By the same
proposition we have

∫ 1

0

(〈
∂2α

∂s2
, A

∂α

∂t

〉
+

〈
∂α

∂s
,A

∂2α

∂s∂t

〉)
dt = 0, A ∈ A .

If we set

X2(t) =
∂2α

∂s2
(0, t),

it follows that
∫ 1

0

(〈
X2, A

dγ

dt

〉
+

〈
X, A

dX

dt

〉)
dt = 0, A ∈ A ,

from which follows immediately (ii).
Let γ be a path in Ω̃1. Then we define the tangent space Tγ(Ω̃1) to

the subvariety Ω̃1 at γ to be the subset of Tγ(Ω1) consisting of all vector
fields X ∈ Tγ(Ω1) which satisfy the equations (i) and (ii) in Proposition 2.1,
which is a cone in the tangent vector space Tγ(Ω1). We also define the ideal
tangent space ITγ(Ω̃1) to Ω̃1 at γ to be the subset of Tγ(Ω1) consisting of
all vector fields X ∈ Tγ(Ω1) which are integrable in Ω̃1. Then Proposition
2.1 means that ITγ(Ω̃1) ⊂ Tγ(Ω̃1).

The path γ is called a non-singular path, if A (γ) = {0}, and a singular
path otherwise. By the remark below Proposition 2.0 we know that γ is
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a non-singular path, if and only if the differentials (dFλ)γ of Fλ at γ are
linearly independent. Note that if γ is a non-singular path, Tγ(Ω̃1) is a
subspace of the tangent vector space Tγ(Ω1).

Now, we shall prove the following.

Theorem 2.2 If γ is a non-singular path in Ω̃1, then every vector field X

in Tγ(Ω̃1) is integrable in Ω̃1 : ITγ(Ω̃1) = Tγ(Ω̃1).

In general let γ be a path in Ω̃1. We choose a complimentary subspace
A ′ of A (γ) in A . In the following the indices i, j, k range over the integers
1, 2, . . . ,dimA ′. We take a basis (Ai) of A ′ and a smooth function χ on
[0,1] such that χ(t) ≥ 0 for all t ∈ [0, 1] and the zeros of χ consist of 0, 1 and
the discontinuous points of dγ/dt. Then we define vector fields Hi ∈ Tγ(Ω̃1)
by

Hi = χAi
dγ

dt
.

If we put

ρij =
∫ 1

0

〈
Hi, Aj

dγ

dt

〉
dt =

∫ 1

0

χ

〈
Ai

dγ

dt
,Aj

dγ

dt

〉
dt,

we see that the matrix (ρij) is symmetric and positive definite. Accordingly
we may assume that ρij = δij .

Now, take any vector field X ∈ Tγ(Ω̃1), and consider a mapping ᾱ :
(−ε, ε) → Ω1, ε being a small positive number, of the following form:

ᾱ(s)(t) = α(s, t) = γ(t) + sX(t) +
∑

i

fi(s)Hi(t),

where s ∈ (−ε, ε), t ∈ [0, 1], and fi(s) are smooth functions on (−ε, ε)
satisfying the initial condition

fi(0) =
dfi

ds
(0) = 0.

Clearly ᾱ is a variation of γ in Ω1, and X is induced by ᾱ. By Proposition
2.0, ᾱ is a variation of γ in Ω̃1, if and only if
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∫ 1

0

〈
∂α

∂s
,Ak

∂α

∂t

〉
dt = 0,

∫ 1

0

〈
∂α

∂s
,A

∂α

∂t

〉
dt = 0, A ∈ A (γ).

The explanation above will be also available in the next paragraph.

Let us now proceed to the proof Theorem 2.2. Accordingly we assume
that γ is a non-singular path, meaning that A (γ) = {0} or A ′ = A . We
have

〈
∂α

∂s
,Ak

∂α

∂t

〉
=

〈
X +

∑

i

dfi

ds
Hi, Ak

dγ

dt
+ SAk

dX

dt
+

∑

j

fjAk
dHj

dt

〉

and
∫ 1

0

〈
X, Ak

dγ

dt

〉
dt = 0.

Hence it follows that ᾱ is a variation of γ in Ω̃1, if and only if (fi) satisfies
the following differential equation:

∑

i

dfi

ds

(
δik + aiks +

∑

j

aikjfj

)
+

(
bks +

∑

j

bkjfj

)
= 0,

where aik, aikj , etc are given by

aik =
∫ 1

0

〈
Hi, Ak

dX

dt

〉
dt, aikj =

∫ 1

0

〈
Hi, Ak

dHj

dt

〉
dt,

bk =
∫ 1

0

〈
X, Ak

dX

dt

〉
dt, bkj =

∫ 1

0

〈
X, Ak

dHj

dt

〉
dt.

This being said, we solve differential equation (∗) under the initial condition
fi(0) = 0, and denote by (fi) its unique solution, which clearly satisfies
(dfi/ds)(0) = 0. Therefore if we define the mapping ᾱ by the use of the
solution (fi), we know that ᾱ is a variation of γ in Ω̃1, completing the proof
of Theorem 2.2.

2.4. Critical paths
Let us consider the energy functional E1 : Ω1 → R.For any path γ in
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Ω1 we denote by (dE1)γ the differential of E1 at γ, which is the linear form
on Tγ(Ω̃1) defined by

(dE1)γ(X) =
d

ds
E1(ᾱ(s))

∣∣∣∣
s=0

, X ∈ Tγ(Ω̃1),

where ᾱ is some variation of γ in Ω1 which induces X. As is well known,
(dE1)γ(X) may be described as follows:

1
2
(dE1)γ(X) = −

∫ 1

0

〈
X,

d2γ

dt2

〉
dt +

∑
0<t<1

〈
X(t),∆t

dγ

dt

〉

(see [3, Section 12]). Here, ∆t(dγ/dt) stands for the discontinuity of dγ/dt

at t:

∆t
dγ

dt
=

dγ

dt
(t−)− dγ

dt
(t+).

Let us new consider the energy functional Ẽ1 : Ω̃1 → R, being the
restriction of E1 to Ω̃1. For any path γ in Ω̃1 we denote by (dẼ1)γ the
restriction of (dE1)γ to ITγ(Ω̃1), which is called the differential of Ẽ1 at γ.
Now, the path γ is called a critical path for Ẽ1, if (dẼ1)γ = 0.

The path γ is called a reduced geodesic path if it is smooth, and satisfies
a differential equation of the following form:

d2γ

dt2
= A

dγ

dt
,

Note that a reduced geodesic path γ is non-singular, if and only if A is
uniquely determined by γ where A ∈ A . Then we assert that a geodesic
path γ is a critical path for Ẽ1. Indeed we have

(dẼ1)γ(X) = −
∫ 1

0

〈
X, A

dγ

dt

〉
dt = 0, X ∈ ITγ(Ω̃1),

because ITγ(Ω̃1) ⊂ Tγ(Ω̃1).

Theorem 2.3 Let γ be a non-singular path in Ω̃1. Then γ is a critical
path for the energy functional Ẽ1, if and only if it is a reduced geodesic path.
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Proof. Assume that γ is a critical path for Ẽ1. We take any Y ∈ Tγ(Ω1),
and set

Ỹ = Y −
∑

i

( ∫ 1

0

〈
Y, Ai

dγ

dt

〉
dt

)
Hi.

Clearly we have

∫ 1

0

〈
Ỹ , Ai

dγ

dt

〉
dt = 0,

meaning that Ỹ is in Tγ(Ω̃1). Since ITγ(Ω̃1) = Tγ(Ω̃1) by Theorem 2.2, it
follows that

1
2
(dẼ1)γ(Ỹ ) = −

∫ 1

0

〈
Ỹ ,

d2γ

dt2

〉
dt +

∑
t

〈
Ỹ ,∆t

dγ

dt

〉
= 0.

We have
∫ 1

0

〈
Ỹ ,

d2γ

dt2

〉
dt =

∫ 1

0

〈
Y,

d2γ

dt2
−A

dγ

dt

〉
dt,

where

A =
∑

i

diAi with di =
∫ 1

0

〈
Hi,

d2γ

dt2

〉
dt.

We have

∑
t

〈
Ỹ ,∆t

dγ

dt

〉
=

∑
t

〈
Y,∆t

dγ

dt

〉
.

Accordingly we have shown that

−
∫ 1

0

〈
Y,

d2γ

dt2
−A

dγ

dt

〉
dt +

∑
t

〈
Y, ∆t

d2γ

dt

〉
= 0.

As is well known, it follows that
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d2γ

dt2
= A

dγ

dt
, ∆t

dγ

dt
= 0,

from which follows especially that γ is smooth. We have thus proved Theo-
rem 2.3.

2.5. Supplements to Theorems 2.2 and 2.3
In Theorems 2.2 and 2.3 we have assumed that the path γ in Ω̃1 is a non-

singular path. There naturally arises the problem of whether the theorems
remain true or not in the case when γ is a singular path. First of all we
study this problem in the case where A is abelian, that is, AB = BA for
all A,B ∈ A . Clearly this condition is satisfied, if dim g2 = 1. It should be
noted that if dim g2 ≥ 2, the condition depends on the choice of the inner
product on g1.

Proposition 2.4 Assume that A is abelian, and let γ be a path in Ω̃1.

(1) Every vector field X in Tγ(Ω̃1) is integrable in Ω̃1 : ITγ(Ω̃1) = Tγ(Ω̃1).
(2) γ is a critical path for Ẽ1, if and only if it is a reduced geodesic path.

Proof. We shall use the notations as in the proof of Theorem 2.2. Since
A is abelian we have AHi = 0 for all A ∈ A (γ).

(1) We take any X ∈ Tγ(Ω̃1) and consider the mapping ᾱ : (−ε, ε) → Ω1

in that proof which is determined by X and arbitrary functions fi(s) with
fi(0) = (dfi/ds)(0) = 0. Then we have

∫ 1

0

〈
∂α

∂s
,A

∂α

∂t

〉
dt = 0, A ∈ A (γ)

because AHi = 0, and

∫ 1

0

〈
X, A

dX

dt

〉
dt = 0.

Hence it follows that ᾱ is a variation of γ in Ω̃1, if and only if

∫ 1

0

〈
∂α

∂s
,Ak

∂α

∂t

〉
dt = 0.

Therefore, reasoning in the same manner as before, we find that X is inte-
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grable in Ω̃1, proving the first assertion.
(2) Assume that γ is a critical path for Ẽ1. We denote by Cγ(Ω1) the

cone of Tγ(Ω1) consisting of all Y ∈ Tγ(Ω1) such that

∫ 1

0

〈
Y, A

dY

dt

〉
dt = 0, A ∈ A (γ).

We take any Y ∈ Cγ(Ω1), and set

Ỹ = Y −
∑

i

( ∫ 1

0

〈
Y, Ai

dγ

dt

〉
dt

)
Hi.

Then we have
∫ 1

0

〈
Ỹ , Ai

dγ

dt

〉
dt = 0,

∫ 1

0

〈
Ỹ , A

dỸ

dt

〉
dt− 0, A ∈ A(γ),

meaning that Ỹ ∈ Tγ(Ω̃1).
Furthermore we have ITγ(Ω̃1) = Tγ(Ω̃1), as we have just seen. There-

fore, reasoning in the same manner as in the proof of Theorem 2.3, we
obtain

−
∫ 1

0

〈
Y,

d2γ

dt2
−A

dγ

dt

〉
dt +

∑
t

〈
Y,∆t

dγ

dt

〉
= 0,

where Y ∈ Cγ(Ω1), and A is given by

A =
∑

i

diAi with di =
∫ 1

0

〈
Hi,

d2γ

dt2

〉
dt.

Now, let f be any piece-wise smooth function on [0, 1] such that f(0) =
f(1) = 0, and let x be any vector of g1. Clearly the vector field fx is in
Cγ(Ω1) and Tγ(Ω1) is spanned by the vector fields of this form. Accordingly
the equality above for Y ∈ Cγ(Ω1) holds likewise for any Y ∈ Tγ(Ω1). Hence
it follows that

d2γ

dt2
= A

dγ

dt
, ∆t

dγ

dt
= 0,
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proving the second assertion.
We shall now explain another result in this paragraph, which is due to

Mr. Moriyuki Honma who was a postgraduate student of Hokkaido Univer-
sity.

Let γ be a path in Ω̃1. We denote by Σγ the subspace of Tγ(Ω1) con-
sisting of all vector fields X in Tγ(Ω1) which take values in Σ(γ). Clearly
the intersection Σγ ∩ Tγ(Ω̃1) is composed of all X ∈ Σγ which satisfy the
equation

∫ 1

0

〈
X, A

dγ

dt

〉
dt = 0, A ∈ A .

Remark As we have remarked, Σ(γ) in the smallest subspace of g1 con-
taining the path γ. This being said, we denote by Ω1(γ) the subset of Ω1

consisting of all paths γ′ ∈ Ω1 which are contained in Σ(γ). Then Ω1(γ)
may be regarded as an infinite dimensional submanifold of Ω1 and Σγ as
the tangent vector space to Ω1(γ) at γ. Honma’s basic idea of the problem
is solely to consider variations of γ in Ω1(γ) ∩ Ω̃1.

For any A ∈ A we now define a skew-symmetric endomorphism Ā of
Σ(γ) by

〈Āx, y〉 = 〈Ax, y〉, x, y ∈ Σ(γ).

It is clear that if γ satisfies a differential equation of the form as in Theorem
2.3, A leaves the subspace Σ(γ) of g1 invariant, γ satisfies the following
differential equation:

d2γ

dt2
= Ā

dγ

dt
.

These being prepared, Honma’s result may be stated as follows, which above
all assumes the regularity of a singular critical path.

Proposition 2.5 (1) Every vector filed X in Σγ ∩Tγ(Ω̃1) is integrable in
Ω̃1.

(2) If γ is a critical path for Ẽ1, then γ is smooth and satisfies a differential
equation of the following form:
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d2γ

dt2
= Ā

dγ

dt
,

where A ∈ A .

Corollary Assume that the euclidean FGLA, ḡ = g1 + g2, is universal
and let γ be any path in Ω̃1. Then γ is a critical path for Ẽ1, if and only if
it is a reduced geodesic path.

Indeed the assumption means that A = Skew(g1). Hence it follows
that if A ∈ A , Ā is likewise in A . Here Ā should be naturally extended
to a skew-symmetric endomorphism of g1. Therefore the corollary is an
immediate consequence of the proposition. Let us now make some remarks
on the proof of Proposition 3.5. We denote by A0 the kerned of the linear
mapping A → Ā which consists of all A ∈ A sending Σ(γ) to its orthogonal
complement in g1 so that it vanished on the orthogonal complement of Σ(γ)
in g1. We then choose a complementary subspace A ′

0 in A . In the following
the indices i, j range over the integers 1, 2, . . . ,dimA ′

0 . Then we take a basis
(Ai) of A ′

0 and define vector fields H̄i ∈ Tγ(Ω1) by

H̄i = χĀi
dγ

dt
.

If we put

ρ̄ij =
∫

0

〈
H̄i, Aj

dγ

dt

〉
=

∫ 1

0

χ

〈
Āi

dγ

dt
, Āj

dγ

dt

〉
dt,

we see that the matrix (ρ̄ij) is symmetric and positive definite. Hence we
may assume that ρ̄ij = δij .

Now, the proof of the proposition can be carried out in the same manner
as in the proofs of Theorems 2.2 and 2.3 by considering the vector fields H̄i

instead of the vector fields Hi. The details are left to the readers as an
exercise.

3. Geodesics

3.1. Geodesics and the exponential mapping
In view of the discussion in paragraph 2.4 we first give the following

definition. A smooth curve γ(t) (t ∈ R) of g1 is called a reduced geodesic
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of the standard system (G,D, g) if it satisfies a differential equation of the
following form:

d2γ

dt2
= A

dγ

dt
, (rg)

where A ∈ A .
The reduced geodesic is called non-singular if A is uniquely determined

by γ, and singular otherwise.
Let us now recall that D defines a connection in the fibred manifold G

over g1 with projection π. Then a geodesic of the standard system (G,D, g)
is simply defined to be a horizontal lift ω of a reduced geodesic γ. Accord-
ingly let ω(t) (t ∈ R) be a smooth curve of G, and set ω(t) = (ω1(t), ω2(t)).
Then ω is a geodesic, if and only if it satisfies a system of differential equa-
tions of the following form:

(g.1)





d2ω

dt2
= A

dω1

dt
,

dω2

dt
=

1
2

[
ω1,

dω1

dt

]
,

where A ∈ A .
A geodesic ω is called non-singular (resp. singular) if so is the image

γ = π ◦ω1 of ω by π or the g1-component ω1 of ω, being a reduced geodesic.
Given an element A of A , a geodesic ω will be called corresponding to

A, if the defining equation (g, 1) for ω is considered with respect to the given
A. Furthermore let (x,A) be a point of g1 × A . Then there is a unique
geodesic ω corresponding to A satisfying the following initial condition:

ω(0) = e,
dω1

dt
(0) = x,

which will be called corresponding to (x,A).

Remark 1 (1) If ω is a geodesic, |(dω/dt)(t)| = |(dω1/dt)(t)| is constant.
Indeed we have

d

dt

〈
dω1

dt
,
dω1

dt

〉
= 2

〈
d2ω1

dt2
,
dω1

dt

〉
= 2

〈
A

dω1

dt
,
dω1

dt

〉
= 0,
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because A is a skew-symmetric endomorphism of g1.
(2) The geodesics corresponding to a given A are invariant under the

left translations of the Lie group G. Indeed let a be an element of G, and
ω(t) (t ∈ R) be a smooth curve of G. Set a = (a1, a2), ω(t) = (ω1(t), ω2(t))
and aω(t) = (ω̄1(t), ω̄2(t)). Then we have

ω̄1(t) = a1 + ω1(t), ω̄2(t) = a2 + ω2(t) +
1
2
[a1, ω1(t)],

from which follows that

d2ω̄

dt2
−A

dω̄1

dt
=

d2ω

dt2
−A

dω1

dt
,

dω̄2

dt
− 1

2

[
ω̄,

dω̄

dt

]
=

dω2

dt
− 1

2

[
ω1,

dω1

dt

]
.

This proves our assertion.

Now, let (x,A) be any point of g1×A , and ω the corresponding geodesic.
Let us consider the exponential mapping B → eB of Skew(g1) to the orthog-
onal group O(g1) of g1,

eB =
∞∑

m=0

1
m!

Bm, B ∈ Skew(g1).

Then we have

dω1

dt
(t) = etAx.

Hence the curves ω1 and ω2 may be described as follows:

ω1(t) =
etA − 1

A
x,

ω2(t) =
1
2

∫ t

0

[
eτA − 1

A
x, eτAx

]
dτ.

This being said, we define a mapping Φ1 of g1 ×A to g1 by
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Φ1(x,A) = ω1(1)− eA − 1
A

x,

a mapping Φ2 of g1 ×A to g2 by

Φ2(x,A) = ω2(1) =
1
2

∫ 1

0

[
eτA − 1

A
x, eτAx

]
dτ,

and a mapping Φ of g1 ×A to G by

Φ(x,A) = ω(1) = (Φ1(x,A), φ2(x,A)).

Clearly Φ is a real analytic mapping.
The mapping Φ obtained in this manner is called the exponential map-

ping of g1 ×A to G.

Remark 2 (1) For each (x,A) ∈ g1 ×A the curve t → Φ(tx, tA) of G is
a geodesic corresponding to (x,A).

(2) For each (x,A) ∈ g1 ×A the following equality holds:

Φ((s + t)x, (s + t)A) = Φ(sx, sA) · Φ(tesAx, tA),

where s, t,∈ R, and the dot “·” in the right hand side stands for the group
multiplication.

3.2. The geodesic flow
We denote by V the left invariant differential system on G induced by

the subspace g2 of g, which may be characterized as the vertical tangent
bundle of the fibred manifold G over g1 with projection π:

V = {X ∈ T (G) | dπ(X) = 0.}

Clearly T (G) = D + V (direct sum), and V is completely integrable. Then
we denote by V ∗ the vector bundle dual to V , and by T̃ the Whitney sum
D + V ∗ of D and V ∗.

Now the tangent bundle T (G) of G may be identified with the product
manifold G× g as vector bundles. Indeed, the mapping which maps energy
(a,X) ∈ G×g to dLaX ∈ T (G) gives a diffeomorphism of G×g onto T (G),
La being the left translation of the Lie group corresponding to a. On the
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Lie basis of this identification V ∗ may identified with the product manifold
G×g∗2, D with the product manifold G×g1, and T̃ with the product manifold
G× (g1 + g∗2).

Let us now consider a system of differential equations for curves
(ω(t), θ(t)) of V ∗:

(g.2)





d2ω1

dt2
= −Λθ

dω1

dt
,

dω2

dt
=

1
2

[
ω1,

dω1

dt

]
,

dθ

dt
= 0.

Here, we set ω(t) = (ω1(t), ω2(t)), and Lambdaθ means the function t →
Λθ(t)(∈ A ). If we put ξ = dω1/dt in system (g.2), we have the following
system of differential equations of the first order:

(g.3)





dω1

dt
= ξ

dω2

dt
=

1
2
[ω1, ξ],

dξ

dt
= −Λθξ,

dθ

dt
= 0.

If (ω(t), θ(t)) is a solution of system (g.2), θ(t) is constant, and ω(t) is
part of a geodesic corresponding to Λθ0 , where θ0 = θ(t). Then we see
that given θ0 ∈ g∗2 the projection of V ∗ onto G induces a one-to-one corre-
spondence between the maximal solutions (ω(t), θ(t)) of system (g.2) with
θ(t) = θ0 and the geodesics ω(t) corresponding to Λθ0 . Furthermore a so-
lution (ω(t), ξ(t), θ(t)) of system (g.3) may be regarded as a curve of T̃

through the identification (ω(t), ξ(t), θ(t)) = (ω(t), ξ(t) + θ(t)). Then we
see that the projection of T̃ onto V ∗ induces a one-to-one correspondence
between the maximal solutions (ω(t), ξ(t) + θ(t)) of system (g.3) and the
maximal solutions (ω(t), θ(t)) of system (g.2).
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For each t ∈ R we now define a mapping Φt of T̃ to itself as follows:
Take any (a, τ0) ∈ T̃ and set τ0 = ξ0 + θ0, where ξ0 ∈ g1, and θ0 ∈ g∗2.
Let (ω(t), ξ(t) + θ(t)) be the unique maximal solution of system (g.3) which
satisfies the initial condition:

ω(0) = a, ξ(0) = ξ0, and θ(0) = θ0,

Then Φt(a, τ0) is defined by

Φt(a, τ0) = (ω(t), ξ(t) + θ(t)).

Clearly the family Φt gives a one-parameter group of transformations of T̃ ,
which is called the geodesic flow associated with the riemannian differential
system (G,D, g). We denote by X the vector field on T̃ induced by the
geodesic flow, which is called the spray associated with the system (G,D, g).
We shall give a concrete description of the spray in terms of a canonical
coordinate system of T̃ .

For this purpose we first prepare some notations, which will be also
utilized in the next paragraph. In the following the indices i, j, k range over
the integers 1, . . .dim g1, and the indices α, β over the integers 1, . . . dim g2.
Let (ei) (resp. (fα)) be a basis of g1 (resp of g2), and (ei) (resp of (fα)) its
dual basis. Set

[ei, ej ] =
∑
α

Cα
ijfα.

(a) We denote by (xi) (resp by (yα)) the coordinate system of g1 (resp
of g2) associated with the basis (ei) (resp. (fα)). Then (xi, yα) gives a
coordinate system of G.

(b) We define 1-forms ηα on G by

ηα = dyα − 1
2

∑

i,j

Cα
ijx

idxj .

Then (dxi, ηα) gives a basis of the space L ∗(G) of Maurer- Cartan forms
on G which corresponds to the basis (ei, fα) of g∗. Let us now consider the
cotangent bundle T ∗(G) of G. Since T (G) = D + V (direct sum) we have
T ∗(G) = D∗ + V ∗ (direct sum). Clearly (dxi) (resp. (ηα)) gives a global



Variational problem associated with differential systems 131

moving frame of D∗ (resp. of V ∗).
(c) We define vector fields Xi on G by

Xi =
∂

∂xi
+

1
2

∑

j,α

Cα
jixj

∂

∂yα
.

Then (Xi, ∂/∂yα) gives a basis of the Lie algebra L (G) of left invariant
vector fields on G which corresponds to the basis (ei, fα) of g. Clearly (Xi)
(resp. (∂/∂yα)) give a global moving frame of D (resp. of V ).

(d) We denote by (xi, yα, uj , vβ) the coordinate system of T̃ associ-
ated with the coordinate system (xi, yα) of G and the global moving frame
(Xi, η

α) of T̃ :

d̃ =
∑

i

ui(d̃)(Xi)a +
∑
α

vα(d̃)(ηα)a, d̃ ∈ T̃ ,

where a = ρ(d̃), ρ being the projection of T̃ onto G.
We are now in a position to describe the spray in terms of the canonical

coordinate system. Let us consider the dependent variables ω1, ω2, ξ and θ

in system (g, 3), and set

ω1 =
∑

i

xiei, ω2 =
∑
α

yαfα,

ξ =
∑

i

uiei, θ =
∑
α

vαfα.

Then system (g.3) may be rewritten as follows:





dxi

dt
= ui,

dyα

dt
=

1
2

∑

i,j

Cα
ijx

iuj ,

dui

dt
= −

∑

α,j

Cα
ijvαuj ,

dvα

dt
= 0
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It follows immediately that

(S.1)





X xi = ui

X yα =
1
2

∑

i,j

Cα
ijx

iuj ,

X ui = −
∑

α,j

Cα
ijvαuj

X vα = 0,

giving the desired description of the spray X .

3.3. The spray and the hamiltonian mechanics
Let us consider the vector bundle T̃ = D+V ∗ and the cotangent bundle

T ∗(G) = D∗ + V ∗.
First of all the inner product g of D naturally gives rise to an isomor-

phism ϕ of D onto D∗:

〈d, ϕ(δ)〉 = g(d, δ), d, δ ∈ Da, a ∈ G.

Then the isomorphism ϕ together with the identity mapping naturally gives
rise to an isomorphism of T̃ onto T ∗(G), which is denoted by the same letter
ϕ.

Next, we denote by Θ the canonical symplectic form on T ∗(G):

Θ = −dψ.

Here, ψ is the canonical 1-form on T ∗(G), and is defined by

ψ(X) = 〈d$(X), d∗〉, X ∈ Td∗(T ∗(G)), d∗ ∈ T ∗(G),

$ being the projection of T ∗(G) onto G. For any smooth function f on
T ∗(G) there is a unique vector field Xf on T ∗(G) such that

1
2
df = XfcΘ,

that is,
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1
2
df(Y ) = Θ(Xf , Y ), Y ∈ Td∗(T ∗(G)), d∗ ∈ T ∗(G),

which is called the Hamiltonian vector field corresponding to f .
Finally we define the energy function E on D∗ by

E(d∗) = |d∗|2,

where |d∗| stands for the norm of d∗ with respect to the inner product g of
D. The function E may be naturally confounded with a function on T ∗(G)
through the projection of T ∗(G) onto D∗, which is also called the energy
function. These being prepared, we shall prove the following.

Proposition 3.1 The differential dϕ of the isomorphism ϕ of T̃ onto
T ∗(G) sends the spray X to the Hamiltonian vector field XE corresponding
to the energy function E on T ∗(G).

Let (xi, yα, uj , vβ) be the coordinate system of T ∗(G) associated with
the coordinate system (xi, yα) of G and the moving frame (dxi, ηα) of T ∗(G):

d∗ =
∑

i

ui(d∗)(dxi)a +
∑
α

vα(d∗)(ηα)a, d∗ ∈ T ∗(G),

where a = $(d∗). Then we have

E =
∑

i

u2
i ,

ψ =
∑

i

uidxi +
∑
α

vαηα,

where ηα should be confounded with 1-forms on T ∗(G) through the projec-
tion $ of T ∗(G) onto G. Hence we obtain

1
2
dE =

∑

i

uidui,

Θ =
∑

i

dxi ∧ dui +
∑
α

ηα ∧ dvα +
1
2

∑
Cα

ijvαdxi ∧ dxj .

Then we have
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XEcΘ = EXExidui −
∑

i

XEuidxi +
∑
α

ηα(XE)dvα

−
∑

XEvαηα +
∑

α,i,j

Cα
ijvαXExidxj .

Since (1/2)dE = XEcΘ, it follows that

(S.2)





XExi = ui

XEyα 1
2

∑

i,j

Cα
ijx

iuj ,

XEui = −
∑

α,j

Cα
ijvαuj ,

XEvα = 0.

Now in terms of the coordinate systems of T̃ and T̃ (G), the isomorphism
ϕ : T̃ → T ∗(G) may be defined by

xi ◦ ϕ = xi, yα ◦ ϕ = yα, ui ◦ ϕ = ui, uα ◦ ϕ = vα.

Consequently we conclude from systems (S.1) and (S.2) that dϕ(X ) = XE ,
proving Proposition 3.1.

4. Minimizing geodesic segments and the exponential mapping

4.1. Preliminaries
Let V be a euclidean vector space and A a skew-symmetric endomor-

phism of V .
(A) The canonical decomposition of V with respect to A.
We denote by V c the complexification of V . The inner product of V c

as a complex vector space, and A an endomorphism of V c which will be
denoted by the same letter A. Note that Ã = (1/

√−1)A is a hermitian
endomorphism of gc

1.
We denote by λi(A) (1 ≤ i ≤ k(A)) the distinct positive eigenvalues of

Ã, where we promise that

λ1(A) > · · · > λk(A)(A).
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Then ±λi(A) (1 ≤ i ≤ k(A)) are the distinct nonzero eigenvalues of Ã and
for each i the eigenvalues λ(A) and −λi(A) have the same multiplicity. For
each 1 ≤ i ≤ k(A) we now denote by Ui(A) the eigenspace of Ã correspond-
ing to the eigenvalue λi(A):

Ui(A) = {x ∈ V c | Ãx = λi(A)x}.

Then the conjugate Ui(A) of Ui(A) with respect to the real form V of V c

is the eigenspace of Ã corresponding to the eigenvalue −λi(A), and V c is
orthogonally decomposed as follows:

V c = U0(A) +
k(A)∑

i=1

Ui(A) +
k(A)∑

i=1

Ui(A),

where U0(A) denotes the kernel of Ã.
For each 1 ≤ i ≤ k(A) we denote by Vi(A) the real part of Ui(A)+Ui(A):

Vi(A)C = Ui(A) + Ui(A).

Then V is orthogonally decomposed as follows:

V =
k(A)∑

i=0

Vi(A),

where V0(A) denotes the kernel of the skew-symmetric endomorphism A of
g1: V0(A) = V ∩U0(A). For each 1 ≤ i ≤ k(A) we then denote by Ii(A) the
natural complex structure on Vi(A):

Ui(A) =
{
x ∈ Vi(A)c | Ii(A)x =

√−1x
}
.

Then we have

Ax = λi(A)Ii(A)x, x ∈ Vi(A).

According to the decomposition above of V every vector x ∈ V is decom-
posed as follows:
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x =
k(A)∑

i=0

xi(A) with xi(A) ∈ Vi(A).

Furthermore, if we set

r(A) =
1
2

rank(A),

ri(A) =
1
2

dimVi(A) (= dimUi(A)), 1 ≤ i ≤ k(A).

We have

r(A) =
k(A)∑

i=1

ri(A).

(B) The quadratic form HA.
We denote by T(V ) the vector space of all piece-wise smooth vector fields

X : [0, 1] → V such that X(0) = X(1) = 0. We then define a quadratic
form HA on T(V ) by

HA(X) =
∫ 1

0

∣∣∣∣
dX

dt

∣∣∣∣
2

dt +
∫ 1

0

〈
X, A

dX

dt

〉
dt, X ∈ T(V ).

We also denote by ‖A‖ the operator norm ‖A‖ of the skew-symmetric en-
domorphism A of g1:

‖A‖ = Max
x6=0

|Ax|
|x| ,

which is equal to the maximum of the positive eigenvalues of the hermitian
endomorphism Ã. Hence we have

‖A‖ = λ1(A).

These being prepared, we shall prove the following.

Proposition 4.0 (1) If ‖A‖ < 2π, then HA is positive define.
(2) If ‖A‖ = 2π, then HA is positive semi-definite, and its null space con-

sists of all vector fields X ∈ T(V ) of the following form:
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X = e2πtI1(A)c− c,

where c ∈ V1(A).
(3) If ‖A‖ > 2π, then HA is indefinite.

For simplicity we set k = k(A), λi = λi(A) and Ii = Ii(A). Now, let X

be a vector field in T(V ). For each 0 ≤ i ≤ k we denote by Xi the Vi(A)-
component of X with respect to the decomposition V =

∑k
i=0 Vi(A). Then

for each 1 ≤ i ≤ k Xi can be expanded to a Fourier series as follows:

Xi =
∑

n

e2nπtIici,n,

where ci,n ∈ Vi(A).

Lemma 4.0 In terms of the Fourier series of Xi (1 ≤ i ≤ k) HA(X) may
be described as follows:

HA(X) =
∫ 1

0

∣∣∣∣
dX0

dt

∣∣∣∣
2

dt + 2π

k∑

i=1

∑
n

(2n2π − nλi)|ci,n|2.

Proof. We have

HA(X) =
k∑

i=0

∫ 1

0

∣∣∣∣
dXi

dt

∣∣∣∣
2

dt +
k∑

i−1

λi

∫ 1

0

〈
Xi, Ii

dX

dt

〉
dt.

As is well known, the derivatives dXi/dt of Xi (1 ≤ i ≤ k) can be expanded
to a Fourier series as follows:

dXi

dt
=

∑
n

2nπIie
2nπtIici,n.

For each 1 < i ≤ k we therefore obtain

∫ 1

0

∣∣∣∣
dXi

dt

∣∣∣∣
2

dt = 4π2
∑

n

n2|ci,n|2,

∫ 1

0

〈
Xi, Ii

dXi

dt

〉
dt = −2π

∑
n

n|ci,n|2.
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From these equalities follows immediately Lemma 4.0.
We are now in a position to prove Proposition 4.0. Let X be as above,

and assume that ‖A‖ ≤ 2π. Then we have λi ≤ 2π for any 1 ≤ i ≤ k.
Hence we obtain 2n2π − nλi ≥ 0 for any 1 ≤ i ≤ k and any n. Therefore it
follows from Lemma 4.0 that HA(X) ≥ 0. Now, assume that HA(X) = 0.
We first consider the case where ‖A‖ < 2π. Then we have λi < 2π for any
1 ≤ i ≤ k. Hence we obtain 2n2π − nλi > 0 for any 1 ≤ i ≤ k and any
n 6= 0. Therefore it follows from Lemma 4.0 that dX0/dt = 0, and ci,n = 0
(1 ≤ i ≤ k, n 6= 0). Since Xi(0) = Xi(1) = 0 (0 ≤ i ≤ k), we have thus
shown that Xi = 0 (0 ≤ i ≤ k), that is, X = 0. Let us now consider the case
where ‖A‖ = 2π. Then we have λ1 = 2π and λi < 2π for any 2 ≤ i ≤ k.
Hence we obtain 2n2π − nλi > 0 for any 2 ≤ i ≤ k and any n 6= 0 and
2n2π − nλ1 > 0 for any n 6= 0. Since Xi(0) = Xi(1) = 0 (0 ≤ i ≤ k), it
follows from Lemma 4.0 that X0 = Xi = 0 (2 ≤ i ≤ k), and

X1(t) = e2πtI1c1,1 + c1,0 = e2πtI1c1,1 − c1,1.

Putting c = c1,1, we therefore obtain

X(t) = e2πtI1c− c, c ∈ V1(A).

Conversely it is clear that if ‖A‖ = 2π, a vector field of this form is in
the null space of HA. We have thus completed the proof of (1) and (2) of
Proposition 4.0. Finally the proof of (3) is left to the readers as an exercise.

4.2. Minimizing geodesic segments
Let (x,A) be a point of g1 ×A , and ω the corresponding geodesic seg-

ment, by which we mean the restriction to the interval [0, 1] of the geodesic
corresponding to (x,A). In other words ω(t) = Φ(tx, tA) (t ∈ [0, 1]). Let γ

be the g1-component of ω. We set a = ω(1) = Φ(x,A), and consider the
energy functionals E : Ω(G,D, a) → R and Ẽ1 : Ω̃1(g1, a) → R. Then ω

gives a path in Ω(G,D, a), and γ a critical path for Ẽ1 as a reduced geodesic
path. Furthermore we have

L(ω)2 = E(ω) = Ẽ1(γ) = |x|2.

In the discussion below we shall apply the notations explained in the previous
paragraph to the pair (V, A) = (g, A). (The symbols Vi(A) will be preserved,
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so that the canonical decomposition of g1 will take the following form: g1 =∑
i Vi(A).)

Theorem 4.1 Assume that ‖A‖ ≤ 2π.

(1) ω minimizes the energy functional E :

E(ω) ≤ E(ω′), ω ∈ Ω(G,D, a).

(2) Assume that E(ω) = E(ω′) for some ω′ ∈ Ω(G,D, a). If ‖A‖ < 2π,
then ω′ = ω. If ‖A‖ = 2π, then there is x′ ∈ g1 such that |x′| = |x|,
x′−x ∈ V1(A), and ω′ is the geodesic segment corresponding to (x′, A).

A geodesic segment θ(t) (t ∈ [t1, t2]) is called a minimizing geodesic
segment, if L(θ) = d(θ(t1), θ(t2)). By virtue of Proposition 1.3 we have the
following.

Corollary 1 If ‖A‖ < 2π, then ω is a unique minimizing geodesic seg-
ment. If ‖A‖ = 2π then ω is a minimizing geodesic segment.

Corollary 2 Let (x,A) be a point of g1 ×A . If ‖A‖ ≤ 2π, then

d(e,Φ(x,A)) = |x|.

Before proceeding to the proof of Theorem 4.1 we make a general consid-
eration on the energy functional Ẽ1. (For the time being we do not assume
that ‖A‖ ≤ 2π.)

For simplicity we set Ω1 = Ω1(g1, a1) and Ω̃1 = Ω̃1(g1, a), a1 being the
g1-component of a. If X ∈ T(g1) (= Tγ(Ω̃1)), γ +X gives a path in Ω1, and
the assignment X → γ + X a bijection of T(g1) to Ω1. Let us consider the
quadratic form HA on T(g1).

Lemma Let X be a vector field in T(g1).

(1) γ + X is in Ω̃1 if and only if

2
∫ 1

0

〈
X, B

dγ

dt

〉
dt +

∫ 1

0

〈
X, B

dX

dt

〉
dt = 0, B ∈ A .

(2) If γ + X is in Ω̃1, then
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Ẽ1(γ + X)− Ẽ1(γ) = HA(X).

Proof. We have

2(F (γ + X)− F (γ)) =
∫ 1

0

[
γ,

dX

dt

]
dt +

∫ 1

0

[
γ,

dX

dt

]
dt +

∫ 1

0

[
X,

dX

dt

]
dt.

Since X(0) = X(1) = 0, and

d

dt
[γ, X] =

[
dγ

dt
, X

]
+

[
γ,

dX

dt

]
,

it follows that

2(F (γ + X)− F (γ)) = 2
∫ 1

0

[
X,

dγ

dt

]
dt +

∫ 1

0

[
X,

dX

dt

]
dt.

Hence we see that γ + X is in Ω̃1, if and only if

2
∫ 1

0

[
X,

dγ

dt

]
dt +

∫ 1

0

[
X,

dX

dt

]
dt = 0

or equivalently

2
∫ 1

0

〈
X, B

dγ

dt

〉
dt +

∫ 1

0

〈
X, B

dX

dt

〉
dt = 0, B ∈ A ,

proving the first assertion. Next, we have

Ẽ1(γ + X)− Ẽ1(γ) =
∫ 1

0

∣∣∣∣
dX

dt

∣∣∣∣
2

dt + 2
∫ 1

0

〈
dX

dt
,
dγ

dt

〉
dt.

Accordingly we must prove the equality

2
∫ 1

0

〈
dX

dt
,
dγ

dt

〉
dt =

∫ 1

0

〈
X, A

dX

dt

〉
dt.

First of all we see from the first assertion that
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2
∫ 1

0

〈
X, A

dγ

dt

〉
dt +

∫ 1

0

〈
X, A

dX

dt

〉
dt = 0.

Furthermore we have

d

dt

〈
X,

dγ

dt

〉
=

〈
dX

dt
,
dγ

dt

〉
+

〈
X, A

dγ

dt

〉
,

because d2γ/dt2 = A(dγ/dt). Since X(0) = X(1) = 0, it follows that

∫ 1

0

〈
dX

dt
,
dγ

dt

〉
+

∫ 1

0

〈
X, A

dγ

dt

〉
dt = 0.

We have therefore established the desired equality, proving the second as-
sertion.

Remark Let Y be any vector field in ITγ(Ω̃1), and take a variation ᾱ :
(−ε, ε) → Ω̃1 of γ in Ω̃1 which induces Y . For each |s| < ε set X(s) =
ᾱ(s)− γ. By the lemma we then have

Ẽ1(ᾱ(s))− Ẽ1(γ) = HA(X(s)).

Since

X(0) = 0,
d

ds
X(s)

∣∣∣∣
s=0

= Y,

it follows that

1
2

d2

ds2
Ẽ1(ᾱ(s))

∣∣∣∣
s=0

= HA(Y ).

Accordingly the restriction of HA to ITγ(Ω̃1) is denoted by H̃γ , and is called
the Hessian of Ẽ1 at the critical path.

We are now in a position to prove Theorem 4.1. Let ω′ be a path in
Ω(G,D, a), and γ′ its g1-component. Set X = γ′ − γ (∈ T(g1)). Then it
follows from the lemma that

E(ω′)− E(ω) = Ẽ1(γ + X)− Ẽ1(γ) = HA(X).
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Therefore the first assertion as well as the first half of the second assertion
follows immediately from Proposition 4.0. Let us prove the second half. By
the same proposition we then have X = e2πtI1c − c with some c ∈ V1(A),
where I1 = I1(A). Hence we obtain

γ′(t) = γ(t) + e2πtI1c− c.

Since d2γ/dt2 = A(dγ/dt), it follows that

d2γ′

dt2
= A

dγ′

dt
.

Then we have

dγ′

dt
(0) = x + 2πI1c.

If we set x′ = x + 2πI1c, we have therefore seen that x′ − x ∈ V1(A),
and ω′ is the geodesic segment corresponding to (x′, A). Furthermore we
have |x′|2 = E(ω′) = E(ω) = |x|2, proving the second half. We have thus
completed the proof of Theorem 4.1.

4.3. Injectivity and regularity for the exponential mapping
Let (x,A) be a point of g1 ×A . Let ω be the corresponding geodesic,

and γ its g1-component. Then we denote by Σ(x,A) the subspace of g1

spanned by (dγ/dt)(t) (t ∈ R), and define a subspace A (x,A) of A by

A (x,A) =
{

B ∈ A

∣∣∣∣B
dγ

dt
= 0

}

= {B ∈ A | BΣ(x,A) = {0}}

(cf. the subspace Σ(γ) of g1 and the subspace A (γ) of A defined in para-
graph 2.3). Since (dγ/dt)(t) = etAx, Σ(x,A) is spanned by the vectors
x,Ax, A2x, . . . . The point (x,A) is called nonsingular or preferably regular,
if A (x,A) = {0}, and singular otherwise. Clearly the point (x,A) is regular
if and only is so is the corresponding geodesic ω.

Now, let (x,A) and (x′, A′) be two points of g1 × A . Let ω and ω′

be the corresponding geodesics and let γ and γ′ be their g1-components.
Then (x′, A′) is said to be equivalent to (x,A), if ω = ω′ or equivalently
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γ = γ′. We can easily verify that (x′A′) is equivalent to (x,A), is and only
if x = x′ and A′ −A ∈ A (x,A). Finally assume that (x,A) and (x′, A′) are
equivalent. Then we make an obvious remark that

(∗) For example a point (x,A) of g1 ×A is a singular point,
if either x = 0 or A 6= 0 and x ∈ V0(A).

(i)
∑

(x,A) =
∑

(x′, A′), (ii) A (x,A) = A (x′, A′), and (iii) Φ(x,A) =
Φ(x′, A′), and (iv) (x,A) = (x′, A′), if (x,A) is a regular point.

Proposition 4.2 Let (x,A) and (x′, A′) be two points of g1 × A , and
assume that ‖A‖, ‖A′‖ ≤ 2π.

(1) The case where ‖A‖ < 2π. Then Φ(x,A) = Φ(x′, A′), if and only if
(x,A) and (x′, A′) are equivalent.

(2) The case where ‖A‖ = 2π. If (x,A) and (x′, A′) are equivalent, then
Φ(x′, A′) = Φ(x′, A′), then |x′| = |x|, x′ − x ∈ V1(A), and (x′, A) and
(x′, A′) are equivalent.

Corollary Let (x,A) and (x′, A′) be two points of g1 ×A . Assume that
‖A‖ < 2π and ‖A′‖ ≤ 2π, and that (x,A) is a regular point. Then Φ(x,A) =
Φ(x′, A′) if and only if (x,A) = (x′, A′).

Proof of Proposition 4.2. Let ω and ω′ be the geodesic segments corre-
sponding to (x,A) and (x′, A′). Assume that Φ(x,A) = Φ(x′, A′). Then it
follows from (1) of Theorem 4.1 that E(ω) = E(ω′).

(1) The case where ‖A‖ < 2π. By (2) of Theorem 4.1 we have ω = ω′,
meaning that (x,A) and (x′, A′) are equivalent.

(2) The case where ‖A‖ = 2π. By (2) of Theorem 4.1, these is x′′ ∈ g1

such that |x′′| = |x|, x′′ − x ∈ V1(A), and ω′ is the geodesic segment corre-
spondent to (x′′, A). Then it follows that (x′, A′) and (x′′, A) are equivalent,
implying that x′′ = x. We have thus proved the second assertion.

Now, let (x,A) be a point of g1×A , and let us consider the differential
(dΦ)(x,A) of Φ at (x,A). Then we assert that the kernel of (dΦ)(x,A) contains
the subspace 0×A (x,A) of g1×A . Indeed, we have Φ(x,A) = Φ(x,A+tB)
for any B ∈ A (x,A) and t ∈ R, because (x,A) and (x,A+tB) are equivalent.
Hence we obtain (dΦ)(x,A)(0, B) = 0, proving our assertion.

Proposition 4.3 Let (x,A) be a point of g×A , and assume that ‖A‖ ≤
2π.
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(1) If ‖A‖ < 2π, then the kernel of (dΦ)(x,A) coincides with the subspace
0×A (x,A) of g×A .

(2) If ‖A‖ = 2π, then the kernel of (dΦ)(x,A) contains the subspace 0 ×
A (x,A) of g1×A , and is contained in the subspace V1(x,A)×A (x,A)
of g1 ×A , where V1(x,A) = {z ∈ V1(A) | 〈z, x1(A)〉 = 0}.

Corollary Let (x,A) be a point of g1 × A , and assume that ‖A‖ < 2π.
Then Φ is regular at (x,A), if and only if (x,A) is a regular point.

Before proceeding to the proof of the proposition we make a general
consideration on infinitesimal variations (by geodesics) of a geodesics ω.

Let (x,A) be any point of g1×A, and ω the corresponding geodesic. Set
ω(t) = (γ(t), δ(t)). Let (z, B) be any vector of g1 ×A , and take a smooth
curve (xs, As)(|s| < ε) of g1 × A , ε being a small positive number, which
satisfies the following conditions:

x0 = x,
dxs

ds

∣∣∣∣
s=0

= z,

A0 = A
dAs

ds

∣∣∣∣
s=0

= B.

For each s let ωs be the geodesic corresponding to the point (xs, As), and
set ωs(t) = (γs(t), δs(t)). Then ω0 = ω or γ0 = γ, δ0 = δ, and ωs satisfies
the following system of differential equations as well as the following initial
condition:





d2γs

dt2
= As

dγs

dt
,

dδs

dt
=

1
2

[
γs,

dγs

dt

]
,

γs(0) = 0,
dγs

dt
(0) = xs, δs(0) = 0.

Now, we define vector fields J,K : R→ g1 as follows:

J(t) =
∂

∂s
γs(t)

∣∣∣∣
s=0

, K(t) =
∂

∂s
δs(t)

∣∣∣∣
s=0

.
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Then we have

(a)
d2J

dt2
= A

dJ

dt
+ B

dγ

dt
,

(b)
dK

dt
=

1
2

[
J,

dγ

dt

]
+

1
2

[
γ,

dJ

dt

]

(c) J(0) = 0,
dJ

dt
(0) = z, K(0) = 0.

Here, we remark that the pair (J,K) can be characterized as a unique so-
lution of the system of equations (a) and (b) satisfying the initial condition
(c), which is therefore uniquely determined by the vector (z, B). This be-
ing said, the pair (J,K) will be called the Jacobi field along the geodesic ω

corresponding to the vector (z, B).
Since Φ(xs, As) = ωs(1) = (γs(1), δs(1)), we have

(dΦ)(x,A)(z, B) = (J(1),K(1)).

Let us consider the quadratic form HA on T(g1), and denote by J̄ the
restriction of J to the interval [0, 1].

Lemma (1) (z, B) is in the kernel of (dΦ)(x,A), if and only if J(1) = 0,
and

∫ 1

0

〈
J, C

dγ

dt

〉
dt = 0, C ∈ A .

(2) If (z, B) is in the kernel of (dΦ)(x,A), then J̄ satisfies the following
equation:

HA(J̄) =
∫ 1

0

∣∣∣∣
dJ

dt

∣∣∣∣
2

dt +
∫ 1

0

〈
J, A

dJ

dt

〉
dt = 0.

Proof. Equation (b) can be rewritten as follows:

dK

dt
=

[
J,

dγ

dt

]
+

1
2

d

dt
[γ, J ].

Since J(0) = K(0) = 0, it follows that
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K(1) =
∫ 1

0

[
J,

dγ

dt

]
dt +

1
2
[γ(1), J(1)].

Hence we see that (z,B) is in the kernel of (dΦ)(x,A), is and only if J(1) = 0,
and

∫ 1

0

[
J,

dγ

dt

]
dt = 0,

or equivalently

∫ 1

0

〈
J, C

dγ

dt

〉
dt = 0, C ∈ A ,

proving the first assertion. Especially we have

∫ 1

0

〈
J,B

dγ

dt

〉
dt = 0.

Therefore it follows from equation (a) that

∫ 1

0

〈
J,

d2J

dt2

〉
dt =

∫ 1

0

〈
J, A

dJ

dt

〉
dt.

Since J(0) = J(1) = 0, and

d

dt

〈
J,

dJ

dt

〉
=

∣∣∣∣
dJ

dt

∣∣∣∣
2

+
〈

J,
d2J

dt2

〉
,

we have thus shown that HA(J̄) = 0, proving the second assertion.
We are now in a position to prove Proposition 4.3. For this purpose it

suffices to show that the notations being as above, (z, B) ∈ 0×A (x,A) or
(z, B) ∈ ‖V1(x,A)XA (x,A), according as ‖A‖ < 2π or ‖A‖ = 2π. We first
consider the case where ‖A‖ < 2π. Since HA(J̄) = 0 by the lemma above, it
follows from Proposition 4.0 that J = 0. Hence we have z = (dJ/dt)(0) = 0.
Furthermore we see from equation (a) that B(dγ/dt) = 0, meaning that B ∈
A (x,A). Let us now consider the case where ‖A‖ = 2π. Since HA(J̄) = 0,
it follows from the proposition cited above that
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J = e2πtI1c− c,

where c ∈ V1(A), and I1 = I1(A). Hence we have z = 2πI1c, implying that

J =
e2πtI1 − 1

2πI1
z.

By the lemma above we have

∫ 1

0

〈
J, A

dγ

dt

〉
dt = 0.

Since dγ/dt = etAx, it therefore follows that

∫ 1

0

〈
(e2πtI1)z, e2πtI1x1(A)

〉
dt = 0.

As is easily verified, this means 〈z, x1(A)〉 = 0, that is, z ∈ V1(x,A).
Furthermore we have

d2J

dt2
= A

dJ

dt
.

Consequently it follows from equation (a) that B(dγ/dt) = 0, meaning that
B ∈ A (x,A). We have thus completed the proof of Proposition 4.3.

5. The singular points of g1 × A and the cut locusoid

5.1. The singular points of g1 × A
Let V be a (real) algebraic set of Rn. Then the dimension of V may

be defined to be the maximum of the dimensions of all submanifolds of Rn

which are open sets of V , where V as well as the submanifolds is equipped
with the relative topology. For the standard definition of the dimension, see
the book [1] of R. Benedetti and J. J. Risler. Let V ′ be the complement of V

in Rn, and O a connected open subset of Rn. Then it can be shown that if
codim V ≥ 2, the intersection on V ′ is a connected open dense subset of O.

Now, we denote by R (resp.by S ) the set of all regular (resp. singular)
points of g1 ×A . Then we shall prove the following.

Theorem 5.1 S is an algebraic set of g1 × A , and codim S ≥ 2. Ac-
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cordingly if O is a connected open subset of g1 × A , then the intersection
O ∩R is a connected open dense subset of O.

The proof is preceded by several lemmas.

Lemma 1 S is an algebraic set of g1 ×A .

Proof. Set n = dim g1. By the Cayley-Hamilton theorem we know that
if A ∈ A , An may be described as a linear combination of the n endo-
morphisms 1, A, . . . , An−1. It follows that if (x,A) ∈ g1 ×A , the subspace
Σ(x,A) of g1 is spanned by the n vectors x,Ax, . . . , An−1x. This being said,
for each (x,A) ∈ g1 ×A we define a linear mapping ϕ(x,A) of A to gn

1 , the
product of n copies of g1, by

ϕ(x,A)(B) = (Bx,BAx, . . . , BAn−1x), B ∈ A .

Then we see that (x,A) ∈ S , if and only if rankϕ(x,A) < dimA , from
which follows immediately the lemma.

Lemma 2 If (x,A) ∈ g1 ×A , then Σ(x,A) is spanned by the 2k(A) + 1
vectors

x0(A), xi(A), Ii(A)xi(A) (1 ≤ i ≤ k(A)).

Proof. For simplicity we set k = k(A), λi = λi(A), Ii = Ii(A) and xi =
xi(A). Then we have

x = x0 +
k∑

i=1

xi,

and

(−1)jA2j−1x =
k∑

i=1

λ2j−1
i Iixi,

(−1)jA2jx =
k∑

i=1

λ2j
i xi.

Since det(λ2j
i )1≤i,j≤k 6= 0, the lemma follows immediately from these equal-

ities.
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Now, let N be a submanifold of g1 × A which is an open set of the
algebraic set S . We shall show that codim N ≥ 1. For our purpose N may
be clearly replaced by its open submanifold.

First of all we may assume that A 6= 0 for any (x,A) ∈ N . Indeed
suppose that dimA = 1. Then we have S = V0(A0) × A , where A0 is
a basis of A (see paragraph 5.3). Hence we have codimS ≥ 2γ(A0) ≥ 2.
Now, suppose that dimA ≥ 2 and A = 0 for any (x,A) ∈ N . Then we
have codim N ≥ codim(g1 × 0) ≥ 2. Clearly these considerations justify
our assumption.

Let us now denote by N∗ the largest open set of N on which both the
functions (x,A) ∈ N → γ(A) ∈ Z and (x,A) ∈ N → k(A) ∈ Z are locally
constant. Since these functions are lower semi-continuous, we know that
N∗ is a dense subset of N , implying that N∗ 6= φ. Furthermore we know
that the functions (x,A) ∈ N∗ → λi(A) (1 ≤ i ≤ k(A)) are continuous, and
hence the functions (x,A) ∈ N∗ → ri(A) ∈ Z (1 ≤ i ≤ k(A)) are upper
semi-continuous. Since r(A) =

∑
ri(A) for any (x,A) ∈ N∗, it follows that

the functions (x,A) ∈ N∗ → ri(A) are locally constant.
Therefore we may further assume that being restricted to N , the func-

tions (x,A) → r(A), (x,A) → k(A) and (x,A) → ri(A) are all constant.
Then we set

γ = γ(A), k = k(A) and γi = γi(A) for (x,A) ∈ N.

Lemma 3 For any (x,A) ∈ N at least one of the components xi(A)
(1 ≤ i ≤ k) of x vanishes.

Proof. Assume that there is (x,A) ∈ N such that xi(A) 6= 0 for any
1 ≤ i ≤ k, (x,A) being a singular point, we can take a nonzero element B

of A (x,A). Since (x,A) and (x,A + tB) are equivalent for any t ∈ R, we
see that (x,A + tB) is a singular point: (x,A + tB) ∈ S . Since N is an
open set of S , there is a positive number ε such that (x,A + tB) ∈ N for
any |t| < ε. Then we assert that λi(A + tB) = λi(A) for any 1 ≤ i ≤ k and
|t| < ε. Indeed, we have Bxi(A) = BIi(A)xi(A) = 0 by Lemma 2. If we put
yi = xi(A)−√−1Ii(A)xi(A), it follows that

1√−1
(A + tB)yi =

1√−1
Ayi = λi(A)yi.
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Since yi 6= 0 (1 ≤ i ≤ k), we see that λi(A) (1 ≤ i ≤ k) are the positive
eigenvalues of A + tB for any |t| < ε, proving our assertion.

Let us now consider the characteristic polynomials χA and χ(A+tB) of
the skew-symmetric endomorphism A and A + tB. Then we have shown
that

χ(A+tB)(λ) = χA(χ)

= λn−2γ(λ2 + λ2
1)

γ1 · · · (λ2 + λ2
k)γk , |t| < ε,

where n = dim g1 and λi = λi(A). Since χ(A+tB)(λ) is a polynomial of the
two variables t and λ, this equality is valid for any t ∈ R. In particular it
follows that

‖A + tB‖ = λ1(A) = ‖A‖, t ∈ R.

Hence we obtain

|t|‖B‖ ≤ ‖A + tB‖+ ‖A‖ = 2‖A‖, t ∈ R,

which contradicts to the fact that ‖B‖ 6= 0. We have thus proved the lemma.
We are now in a position to prove Theorem 5.1. Let $ denote the

projection of N to A : $(x,A) = A for any (x,A) ∈ N . Now, we take any
point A of $(N), and set

V̂j(A) =
∑

i∈Ij

Vi(A), 1 ≤ j ≤ k,

V̂ (A) =
k⋃

j=1

V̂j(A),

where Ij = {i ∈ Z | 0 ≤ i ≤ k, i 6= j}. Then we see from Lemma 2 that,
being regarded as a subspace of g1, $−1(A) is contained in the algebraic
set V̂ (A) of g1. Furthermore since $ is smooth, we may assume that (i)
$ is of constant rank, and hence $−1(A) is a submanifold of N for each
A ∈ $(N), (ii) $(N) is a submanifold of A , and (iii) $−1(A) is connected
for each A ∈ $(N). In particular it follows that for each A ∈ $(N), $−1(A)
is contained in some V̂j(A). Since codim V̂j(A) = 2γj ≥ 2, it is now clear
that codim N ≥ 2, completing the proof Theorem 5.1.
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Finally we add the following

Proposition 5.2 Let (x,A) be a singular point of g1 × A. If ‖A‖ < 2π,
there is A′ ∈ A such that (x,A) and (x,A′) are equivalent, and ‖A′‖ = 2π.

Proof. (x,A) being a singular point, we can take a nonzero element B of
A (x,A). Let us consider the function f(t) = ‖A + tB‖ on the straight line.
Since |t|‖B‖−‖A‖ ≤ ‖A+tB‖ and ‖B‖ 6= 0, f(t) tends to +∞, as t tends to
+∞. Since f(t) is continuous, and f(0) = ‖A‖ < 2π, it follows that there is
t0 ∈ R such that f(t0) = 2π. If we put A′ = A+ t0B, we have thus seen that
(x,A) and (x,A′) are equivalent, and ‖A′‖ = 2π, proving the proposition.

5.2. The domain ∆ and the cutlocusoid Γ
Using the operator norm ‖ ‖ in the space A , we define an open neigh-

borhood of the origin of g1 ×A by

V = {(x,A) ∈ g1 ×A | ‖A‖ < 2π},

and denote by ∂V the boundary of V in g1 ×A :

∂V = {(x,A) ∈ g1 ×A | ‖A‖ = 2π}.

We then define subsets ∆ and Γ of G as follows:

∆ = Φ(V ∩R), Γ = Φ(∂V ),

Φ being the exponential mapping of g1 ×A to G.
By the use of most results above we shall prove the following.

Theorem 5.3 (1) V ∩R is a (star-shaped) connected open dense subset
of V , ∆ is an open set of G, and the exponential mapping Φ gives a
diffeomorphism of V ∩R onto ∆. Furthermore Φ maps V ∩S into Γ.

(2) Every point of ∆ can be connected to the identity element e of G by a
unique minimizing geodesic segment, and every point of Γ by a mini-
mizing geodesic segment.

(3) Γ coincides with the boundary ∂∆ of ∆ in G.
It should be to be remarked that Γ is an unbounded continuum through

the identity element e and hence ∆ is not a neighborhood of e. (Since the
origin of g1 × A is in V ∩S , e is in Γ. To verify the unboundedness we
reduce the problem to the case where dim g2 = 1, and use Proposition 5.4 in
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the next paragraph.)

We now proceed to the proof of Theorem 5.3. The first assertion of (1)
follows from the corollary to Proposition 4.2, the corollary to Proposition
4.3 and Theorem 5.1, and the second assertion from Proposition 5.2. (2)
follows immediately from Corollary 1 to Theorem 4.1. Let us now prove
(3). Since V ∩ R is dense in V , and since ∆ ∩ Γ = ∅ by the corollary to
Proposition 4.2, we see that Γ ⊂ ∂∆. Conversely we assert that ∂∆ ⊂ Γ.
Indeed, take any point a of ∂∆. Then there is a sequence {(xα, Aα)}α≥1 of
points of V ∩R such that

lim
α→∞

Φ(xα, Aα) = a.

Since d(e,Φ(xα, Aα)) = |xα| and since ‖Aα‖ < 2π, we may assume that the
sequence converges to a point, say (x,A), of the closure V of V in g1 ×A .
Then we have Φ(x,A) = a. Furthermore we see from (1) that (x,A) is in
the union (V ∩S ) ∪ ∂V , and in turn a is in Γ, proving our assertion. We
have thus completed the proof of Theorem 5.3.

Corollary Let X be the complement of Γ in G, being an open set of G.
Then ∆ is a connected component of X whose boundary in G coincides with
Γ. Accordingly if X is connected, then the closure ∆(= ∆ ∪ Γ) of ∆ in
G coincides with the whole of G, and hence any two points of G can be
connected by a minimizing geodesic segment.

By Theorem 5.3 we have known that Γ is something like the cut locus at
a point of a complete riemannian manifold. Accordingly it will be called the
cut locusoid of the standard riemannian differential system (G,D, g) (at the
identity element e).

5.3. Examples
In the present paragraph we shall treat with the domain ∆, the closed

domain ∆ and the cut locusoid Γ in the special case where dim g2 = 1 or A
is abelian or dim g2 = 3.

(A) The case where dim g2 = 1. Let A0 be a fixed basis of A with
‖A0‖ = 1. For simplicity we set k = k(A0), σi = λi(A0) (1 ≤ i ≤ k),
Ii = Ii(A0) (1 ≤ i ≤ k), and yi = yi(A0) (0 ≤ i ≤ k) for any y ∈ g1. Note
that σ1 = ‖A0‖ = 1, and hence 0 < σi < 1 (2 ≤ i ≤ k). Furthermore we
identify g∗2 with A through the natural isomorphism of g∗2 onto A . First
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of all let (x, λA0) be any point of g1 ×A , λ being a real number. We set
µi = λσi (1 ≤ i ≤ k). Then a direct calculation shows that the components
Φ1(x, λA0) and Φ2(x, λA0) of Φ(x, λA0) may be described as follows:

Φ1(x, λA0) = x0 +
k∑

i=1

1
µi

(sinµi · xi + (1− cos µi)Iixi)

〈Φ2(x, λA0), A0〉 =
−1
2λ

k∑

i=1

(
1− sinµi

µi

)
|xi|2.

Now, we set

ci =
τi(τi − sin τi)
8π(1− cos τi)

, 2 ≤ i ≤ k,

where τi = 2πσi. Clearly ci are positive numbers. Then we shall prove the
following.

Proposition 5.4 (1) The cut locusoid Γ may be described as the semi-
algebraic set of G which consists of all (y, z) ∈ G satisfying the following
equations:

y1 = 0, |〈z, A0〉| ≥
k∑

i=2

ci|yi|2.

(2) The closed domain ∆ coincides with the whole of G.

Note that if k = 1, the semi-algebraic set is reduced to the linear sub-
space V0(A0)× g2 of G = g1 × g2.

Now, let (x, λA0) be any point of ∂V . Since |λ| = 2π, we have

Φ1(x, λA0) = x0 +
k∑

i=2

1
µi
{sinµixi + (1− cos µi)Iixi},

〈Φ2(x, λA0), A0〉 =
1
2λ

{
|x1|2 +

k∑

i=2

(
1− sinµi

µi

)
|xi|2

}
.

If we set y = Φ1(x, λA0) and z = Φ2(x, λA), we easily see that
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x0 = y0, y1 = 0,

xi =
µi

2(1− cos µi)
{sinµiyi − (1− cos µi)Iyi·}, 2 ≤ i ≤ k,

〈z, A0〉 =
−1
2λ

{
|x1|2 +

k∑

i=2

µi(µi − sinµi)
2(1− cos µi)

|yi|2
}

.

Since τi = |µi|, we have

4πci =
µi(µi − sinµi)
2(1− cos µi)

.

Therefore it follows that

|〈z, A0〉| ≥
k∑

i=2

ci|yi|2.

Let us now denote by Γ0 the semi-algebraic set stated in Proposition 5.4.
Then we have shown that Γ ⊂ Γ0. Conversely we can easily verify that
Γ ⊃ Γ0. Hence we obtain Γ = Γ0, proving the first assertion. If we set

V̂1(A0) = V0(A0) +
k∑

i=2

Vi(A0),

we have Γ ⊂ V̂1(A0) × g2, and codim(V̂1(g0) × g2) = 2γ1(A0) ≥ 2. It
follows immediately that the complement X of Γ is connected. Consequently
we know from Corollary to Theorem 5.3 that ∆ = G, proving the second
assertion.

Now, we remark that the set S of singular points of g1 × A may be
described as follows:

S = V0(A0)×A ,

and the image Φ(S ) of S by the exponential mapping Φ as follows:

Φ(S ) = V0(A0)× 0(⊂ Γ).

(Note that if (x,A) is a singular point, the corresponding (singular) geodesic
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ω is of the following form: ω(t) = (tx, 0), where x ∈ V0(A0).
Furthermore we add the following

Proposition 5.5 (cf. Proposition 4.2 and 4.3)

(1) Let (x,A) and (x′, A′) be two points of ∂V . (a) Assume that (x,A) is
a regular point. Then Φ(x,A) = Φ(x′, A′), if and only if |x′| = |x|,
x′ − x ∈ V1(A0), and A = A′. (b) Assume that (x,A) is a singular
point. Then φ(x,A) = Φ(x′, A′), if and only if x = x′.

(2) Let (x,A) be a point of ∂V . (a) Assume that (x,A) is a regular point.
Then Ker(dΦ)(x,A) = V1(x,A0)×0. (b) Assume that (x,A) is a singular
point. Then Ker(dΦ)(x,A) = V1(A0)×A .

Here, Ker(dΦ)(x,A) denotes the kernel of the differential (dΦ)(x,A) of the
exponential mapping Φ, and we also recall that V1(x,A0) = {z ∈ V1(A0) |
〈z, x1(A0)〉 = 0}. The proof of this proposition is left to the readers as an
exercise.

Remark Let us consider the special case where k(A0) = 1 and 2γ(A0) =
dim g1, which means that A admits a basis I giving a complex structure
on g1. Clearly the FGLA, g = g1 + g2, together with the complex structure
I gives a strongly pseudo-convex FGLA, and the inner product 〈 , 〉 on
g1 is naturally associated with it. Accordingly the inner product g of D

is likewise naturally associated with the standard strongly pseudo-convex
manifold (G,D, I), and D is a contact structure. Now, we have

Γ = 0× g2.

Let us identify the Lie group G(= g1×g2) with a euclidean space in a natural
fashion, and each fibre of the contact structure D with a hyperplane of G.
Then we know that the fibre Da of D at any point a ∈ Γ is parallel to the
hyperplane De = g1 × 0, and that every geodesic issuing from the identity
element e describes a spiral in G so that the projection of it to the euclidean
space g1 describes a circle through the origin. This fact reminds us of the
navigation of an airplane. We mention that the variational problem in the
present case has been settled more than twenty years ago in our unpublished
paper, and our present study may be regarded as its generalization.

(B) The case where A is abelian. We denote by V0 the null space of A :
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V0 = {x ∈ g1 | Ax = 0 for any A ∈ A }.

Then there are a positive integer k and k subspaces Vi of gi equipped with
complex structures Ii(1 ≤ i ≤ k) and k nonzero linear forms ρi on Vi(1 ≤
i ≤ k) which satisfy the following conditions:

( i ) g1 =
∑k

i=0 Vi (direct sum),
( ii ) Ax = ρi(A)Iix, A ∈ A , x ∈ Vi, 1 ≤ i ≤ k,
(iii) The 2k linear forms ±ρi are distinct one another.

Note that the k + 1 subspaces Vi of g1 are mutually orthogonal, and the k

linear forms ρi span the dual space A ∗ of A .
For any x ∈ g1 and 0 ≤ i ≤ k let us denote by xi the Vi-component of

x with respect to the decomposition g1 =
∑

i Vi. Then we have

Φ1(x,A) = x0 +
k∑

i=1

1
ρi(A)

{sin ρi(A)xi + (1− cos ρi(A))Iixi}

Φ2(x,A) =
−1
2

k∑

i=1

1
ρi(A)

(
1− sin ρi(A)

ρi(A)

)
|xi|2ρi,

where (x,A) ∈ g1 ×A , and B ∈ A ∗, and g∗2 should be naturally identified
with A .

Here we shall prove the following proposition only. (The problem of
determining the cut locusoid Γ seems to be rather complicated, which is
therefore left to the readers as an exercise.)

Proposition 5.6 The closed domain ∆ coincides with the whole of G.

We set

V̂j =
∑

i∈Ij

Vi, 1 ≤ j ≤ k,

V̂ =
k⋃

j=1

V̂j ,

where Ij = {i ∈ Z | 0 ≤ i ≤ k, i 6= j}. We also define a subset Γ̂ of G by

Γ̂ = V̂ × g2.
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Since

‖A‖ = max
i
|ρi(A)|, A ∈ A ,

it follows from the expression above for Φ1(x,A) that Γ ⊂ Γ̂. Since dimVi ≥
2 (1 ≤ i ≤ k), Γ̂ is an algebraic set of g1 × A , and codim Γ̂ ≥ 2. Hence
we see that the complement of Γ̂ in G is a connected open dense subset
of G, from which follows that the complement X of Γ in G is connected.
Therefore we have shown that ∆̄ = G, proving Proposition 5.6.

(C1) The case where dim g1 = dim g2 = 3. Let k be a compact simple
Lie algebra of dimension 3. Hereafter the notations [ , ] and ad will be
exclusively used to denote the bracket operation in the Lie algebra k and the
adjoint representation of the Lie algebra k respectively, while the notation
[[ , ]] to denote the bracket operation in the Lie algebra g. We denote by 〈 , 〉
the inner product on k defined by the Killing form B of k: 〈x, y〉 = −B(x, y)
for any x, y ∈ k.

Now, the adjoint algebra ad(k) of k coincides with the space Skew(k).
Since the given euclidean FGLA, g = g1 + g2, is universal and dim g1 = 3,
it follows that the euclidean FGLA may be regarded as associated with the
pair (k, ad(k)) and hence we have the following:

( i ) g1 = k as euclidean vector spaces,
( ii ) A = ad(k),
(iii) g2 = A ∗,
(iv) 〈[[x, y]], ad(z)〉 = 〈x, ad(z)y〉, x, y, z,∈ k.

Remark We define an isomorphism ϕ of k onto g2 by

〈ϕ(x), ad(z)〉 = −〈x, z〉, x, z ∈ k.

Then we have

[[x, y]] = ϕ([x, y]), x, y ∈ k.

The spaces g2 and k will be soon identified through the isomorphism ϕ.
First of all we shall give a concrete description of the exponential map-

ping Φ.
Let z be a nonzero vector of k. Then there are an orthonormal basis
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(e0, e1, e2) of k such that

[e0, e1] = e2, [e1, e2] = e0, [e2, e0] = e1,

z = λe0 with λ = |z|.

Hence we obtain

ad(z)e0 = 0, ad(z)e1 = λe2, ad(z)e2 = −λe1.

A being identified with ad(k), ad(z) gives an element of A . If we put
A = ad(z), we therefore have the following : (i) k(A) = 1, (ii) λ1(A) = λ,
(iii) V0(A) is spanned by e0, and V1(A) is spanned by e1 and e2 and (iv)
I1(A) is defined by I1(A)e1 = e2 and I1(A)e2 = −e1. For simplicity we set
I = I1(A). Let us now take another vector x of k and consider the point
(x, ad(z)) of g1 ×A . Then we set

x = ξ0e0 + ξ1e1 + ξ2e2,

x0 = ξ0e0, x1 = ξ1e1 + ξ2e2.

We have

Ix1 = −ξ2e1 + ξ1e2, [x1, Ix1] = (ξ2
1 + ξ2

2)e0

[x0, x1] = −ξ0ξ2e1 + ξ0ξ1e2, [x0, Ix1] = −ξ0ξ1e1 − ξ0ξ2e2.

In the following we identify g2 with k through the isomorphism ϕ. Hence we
have [[x, y]] = [x, y] for any x, y ∈ k, and G = k×k. Then a direct calculation
proves the following:

Φ1(x, ad(z)) = x0 +
sinλ

λ
x1 +

1− cos λ

λ
Ix1,

Φ2(x, ad(z)) =
1
2

(
1
λ
− sinλ

λ2

)
[x1, Ix1] +

1
2

(
sinλ

λ
+

2(cos λ− 1)
λ2

)
[x0, x1]

− 1
2

(
1 + cos λ

λ
− 2 sin λ

λ2

)
[x0, Ix1].

Now, we define polynomial functions f1 and f−1 on G as follows:
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fε(a) = |a1|2|a2|2 − 〈a1, a2〉2 − ε

π
|a1|3〈a1, a2〉,

where ε ∈ {1,−1}, and a = (a1, a2) ∈ G. We also define open sets X0, X1

and X−1 of G as follows:

X0 = {a ∈ G | f1(a) > 0, f−1(a) > 0},
Xε = {a ∈ G | fε(a) < 0},

where ε ∈ {1,−1}. Then we shall prove the following.

Proposition 5.7 (1) The cut locusoid Γ may be described as the algebraic
set of G defined by the equation f1 · f−1 = 0.

(2) The open sets X0, X1 and X−1 are the connected components of the
complement X of Γ in G.

(3) The domain ∆ coincides with the component X0.

Unlike the preceding two examples, this proposition indicates that the
subset ∆ of G does not coincides with the whole of G.

Now, let (x, ad(z)) be any point of ∂V . Since ‖ ad(z)‖ = λ = 2π, we
have

Φ1(x, ad(z)) = ξ0e0,

Φ2(x, ad(z)) =
ξ2
1 + ξ2

2

4π
e0 +

ξ0ξ1

2π
e1 +

ξ0ξ2

2π
e2.

If we set a1 = Φ1(x, ad(z)) and a2 = Φ2(x, ad(z)), we easily see that

|a1|2|a2|2 − 〈a1, a2〉2 =
ε

π
|a1|3〈a1, a2〉,

where ε is 1 or −1, and is determined by ξ0 = ε|a1|, provided a 6= 0. Let us
now denote by Γ0 the algebraic set stated in Proposition 5.7. Then we have
shown that Γ ⊂ Γ0. Conversely it can be easily verified that Γ ⊃ Γ0. Hence
we obtain Γ = Γ0 proving the first assertion.

Let us now consider a moving point a = (a1, a2) of G with a1 6= 0 if
we put λ = |a1|, b1 = a1/|a1| and b2 = a2/|a1|2, fε(a) may be described as
follows:
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fε(a) = λ6

(
|b2|2 − 〈b1, b2〉2 − ε

π
〈b1, b2〉

)
.

Furthermore λ and b1 being fixed, b2 may be described as follows:

b2 = x + yb1,

where x ∈ k, y ∈ R, and 〈x, b1〉 = 0, and hence fε(a) as follows:

fε(a) = λ6

(
|x|2 − ε

π
y

)
.

From this discussion we easily deduce the second assertion.
It is clear that X0 is a unique connected component of X whose bound-

ary in G coincides with Γ. Therefore we know from Corollary to Theorem
5.3 that ∆ = X0, proving the third assertion.

Remark We have calculated the kernel of the differential (dΦ)(x,A) of the
exponential mapping Φ at any point (x,A) of G. The result indicates that
the behavior in the large of the geodesics issuing from the identity element
e of G is, to a great extent, complicated.

Finally we remark that the set S of singular points of g1 ×A consists
of all (x, ad(z)) ∈ g1×A such that x and z are linearly dependent, and that
the image Φ(S ) of S by Φ may be described as follows:

Φ(S ) = g1 × 0(⊂ Γ).

(C2) The case where dim g1 = 3 and dim g2 = 2. Let k be as in the
preceding example. The notations [ , ], ad and 〈 , 〉 will be used in the
same meaning as there. The notation [[ , ]]′ will used to denote the bracket
operation in the present euclidean FGLA.

Let m be a 2-dimensional subspace of k. Then ad(m) gives a 2-
dimensional subspace of Skew(k)(= ad(k)). Since the adjoint group of k

acts transitively on the Grassmann manifold of all 2-dimensional subspaces
of k, the euclidean FGLA, g = g1 + g2, may be regarded as associated with
the pair (k, ad(m)). Hence we have the following

( i ) g = k as euclidean vector spaces,
( ii ) A = ad(m),
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(iii) g2 = A ∗

(iv) 〈[[x, y]]′, ad(z)〉 = 〈x, ad(z)y〉, x, y ∈ k, z ∈ m.

Let m⊥ be the orthogonal complement of m in k. For x ∈ m we denote
by xm the m-component of x with respect to the decomposition: k = m+m⊥.
We now define an isomorphism of m onto g2 by

〈ϕ′(x), ad(z)〉 = −〈x, z〉, x, z ∈ m.

Then we have

[[x, y]]′ = ϕ′([x, y]m), x, y ∈ m.

In the following we identify g2 with m through the isomorphism ϕ. Hence
we have [[x, y]]′ = [x, y]m for any x, y,∈ k and G = k×m. Let us now denote
by Φ̂ the exponential mapping “Φ” in the preceding paragraph, which maps
k×ad(k) to k× k. As is clear from the definition of the exponential mapping,
we then have the following equalities:

Φ1(x, ad(z)) = Φ̂1(x, ad(z)),

Φ2(x, ad(z)) = (Φ̂2(x, ad(z)))m,

where (x, ad(z)) ∈ g×A .
Note that the reasoning above is essentially based on the universality

for the euclidean FGLA in the preceding example, which can be easily gen-
eralized to any euclidean FGLA, g and the associated universal euclidean
FGLA, ĝ.

Now, we denote by fε the restriction to m×m of the polynomial functions
fε on k × k defined in the preceding example. Then we shall prove the
following.

Proposition 5.8 (1) The cut locusoid Γ may be described as the semi-
algebraic set of m × m which consists of all a ∈ G such that f ′1(a) ≤ 0
or f ′−1(a) ≤ 0.

(2) The closed domain ∆ coincides with the whole of G.

We fix a unit vector e2 of m⊥. Let (x, ad(z)) be any point of g1 ×A (=
k× ad(m)) with z 6= 0. Then there is a unique orthonormal basis (e0, e1) of
m such that
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[e0, e1] = e2, [e1, e2] = e0, [e2, e0] = e1,

z = λe0 with λ = |z|.

We set

x = ξ0e0 + ξ1e1 + ξ2e2.

Suppose that (x, ad(z)) is in ∂V . In view of the equalities above for
Φ1(x, ad(z)) and Φ2(x, ad(z)) we then have the following:

Φ1(x, ad(z)) = ξ0e0,

Φ2(x, ad(z)) =
ξ2
1 + ξ2

2

4π
e0 +

ξ0ξ1

2π
e1.

If we set a1 = Φ1(x, ad(z)) and a2 = Φ2(x, ad(z)), we easily see that
(a1, a2) ∈ m×m, and

|a1|2|a2|2 − 〈a1, a2〉2 ≥ ε

π
|a1|3〈a1, a2〉,

where ε = 1 or −1, and is determined by ξ0 = ε|a1|, provided a1 6= 0. Let us
now denote by Γ0 the semi-algebraic set stated in the proposition. Then we
have shown that Γ ⊂ Γ0. Conversely it can be easily verified that Γ ⊃ Γ0.
Hence we obtain Γ = Γ0, proving the first assertion. Since Γ is a proper
semi-algebraic set of m×m(= k×m) it is clear that the complement X of Γ in
G is connected. Therefore we have shown that ∆ = G proving Proposition
5.8.

Finally we remark that the set S of singular points of g1 ×A consists
of all (x, ad(z)) ∈ g1 ×A such that x ∈ m, and x and z are linearly depen-
dent, and that the image Φ(S ) of Φ by the exponential mapping Φ may be
described as follows:

Φ(S ) = m× 0(⊂ Γ).

Notes Added by the Editors

Let us recall, for the convenience of the readers, the basic notions in the
theory of differential systems.
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Let M be a manifold. Then a subbundle D of the tangent bundle TM

is called a differential systems on M . For the sheaf of sections D to D, and
for ` > 0, we define the (weak) derived system D` of D by D1 = D and

D` = [D,D`−1] + D`−1.

Set D′ = ∪`D
` (see Appendix of [5]).

For a differential system (M, D), the condition (C0) introduced in the
sub-section 1.1 is compared with the following conditions (C) and (C ′):

(C) any two points p and q can be connected by a piece-wise smooth
integral curve of (M, D).

(C ′) Chow’s condition or the bracket generating condition: D′ = TM ,
the total sheaf of vector fields over M .

For related works on distances and geodesics in nilpotent groups, see
[8], [9] for instance. The general theory on sub-Riemann geometry can be
seen in [6], [13], [10], [11].

This paper has the origin in Tanaka’s original theory on differential
system. See for instance [12]. Moreover, to understand the works by Noboru
Tanaka we recommend to see also [7].
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