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On topology of some Riemannian manifolds

of negative curvature with a compact Lie group of isometries
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Abstract. We topologically characterize negatively curved Riemannian manifolds

which are of cohomogeneity two under the action of a compact Lie group of isometries.
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1. Introduction

A G-manifold of cohomogeneity k is a manifold M with smooth action
of a Lie group G such that the maximum of the dimensions of the G-orbits
is dim M − k. When k is small, Lie group theory can be applied to study
geometric and topological properties of M . This is one of the reasons that
actions of low cohomogeneity are of so much interest to mathematicians. If
M has negative curvature and k = 0 or k = 1, it is proved that either M is
simply connected or π1(M) = Zp for some positive integer p ([7], [13]). We
are interested in the topological properties of cohomogeneity two Rieman-
nian manifolds of negative curvature. This article follows previous papers
[9], [10], [11], where we proved various results about topological properties
of cohomogeneity two negatively curved G-manifold M under some special
conditions on M or G. Here, we study the topology of M under the as-
sumption that G is compact and the action does not have singular orbits of
positive dimension. Our main result is Theorem 3.5. The ideas of the proof
are similar to those of the main result of [11].

2. Preliminary

Later we will need the following classical result by H. Weyl.

Theorem 2.1 ([15]) If G is a connected compact semisimple Lie group,
it’s universal covering group G̃ is compact.
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In the following we will denote by S1 and B the unite circle and the
Moebius band, respectively. We also denote by MG ⊂ M the fixed point
set of the action of G on M .

Theorem 2.2 ([9]) Let Mn+2 be a nonsimply connected and complete
Riemannian manifold of negative curvature which is of cohomogeneity two
under the action of a closed and connected Lie group G of isometries with
MG 6= ∅. Then M is diffeomorphic either to S1 ×Rn+1 or B ×Rn.

If M is a simply connected Riemannian manifold of nonpositive curva-
ture and γ is a geodesic in M , then we denote by [γ] the asymptotic class
of geodesics containing γ (see [6]). The following set is by definition the
infinity of M :

M(∞) = {[γ] : γ is a geodesic in M}.

For any x ∈ M and [γ] ∈ M(∞), there exists a unique (up to parametriza-
tion) geodesic γx ∈ [γ] such that x ∈ γx and there is a unique hypersurface
Sx, which contains x and is perpendicular to all elements of [γ]. The hyper-
surface Sx is called horosphere determined by x and [γ].

For any isometry δ : M → M of a Riemannian manifold M , let us
denote by d2

δ : M → R the squared displacement function namely

d2
δ(x) = (dist(x, δ(x)))2

We recall the following (see [1] and [5])

Theorem 2.3 Let M be a complete, simply connected Riemannian man-
ifold of negative curvature and δ ∈ Iso(M). Then the squared displacement
function d2

δ satisfies one and only one of the following properties:

(1) d2
δ has no minimum point ;

(2) the minimum point set of d2
δ coincides with the fixed point set of δ;

(3) the minimum point set of d2
δ coincides with the image of exactly one

geodesic γ, translated by δ (i.e., there is a positive real number t0 such
that δ(γ(t)) = γ(t + t0) for all t ∈ R).

The isometries, for which property (1), (2) or (3) holds, are called
parabolic, elliptic or axial, respectively. The geodesic γ in (3) is called the
axes of δ. We remark that if g is axial, there exists exactly one geodesic
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γ such that g(γ) = γ, while if g is parabolic, there exists exactly one
[γ] ∈ M(∞) such that g[γ] = [γ].

The argument of [3, Lemma 3], shows that if g ∈ Iso(M) and g([γ]) = [γ]
for some [γ] ∈ M(∞), then either g maps each horosphere S determined by
[γ] into itself or it is axial with axis in the class [γ].

From Lemma 3.1 and Remark 3.2 in [14], the next lemma follows.

Lemma 2.4 Let M be a complete simply connected Riemannian manifold
of negative curvature and G ⊂ Iso(M) a closed connected group of isome-
tries with MG = ∅. Then there is at most one totally geodesic G-orbit in
M .

Theorem 2.5 ([7]) A homogeneous Riemannian manifold of negative cur-
vature is simply connected.

By [13, Theorems 3.5 and 3.7], we have the following

Proposition 2.6 Let M be a complete nonsimply connected Riemannian
manifold of negative curvature, with dimM ≥ 3 and of cohomogeneity one
w.r.t. the action of a group G ⊂ Iso(M). Then:

(a) If there is a singular orbit, it is unique and diffeomorphic to S1, so that
all orbits except one, are of dimension n− 1, n = dim M .

(b) If there is no singular orbit, then there exists an integer p such that
each orbit is diffeomorphic to T p × Rn−p−1 and M is diffeomorphic to
T p ×Rn−p.

Theorem 2.7 (see [3], [14]) Let G be a connected and solvable Lie sub-
group of isometries of a simply connected and negatively curved Riemannian
manifold M . Then one of the following claims is true:

(1) MG 6= ∅.
(2) There is a unique G-invariant geodesic.
(3) There is a unique class of asymptotic geodesics [γ] such that G[γ] = [γ].

Fact 2.8 (see [5, p. 57, 58]) Let M̃ be a complete and simply connected
Riemannian manifold of strictly negative curvature, i.e., with curvature
K ≤ c < 0 for some negative constant c, and let S be a horosphere in M̃

determined by asymptotic class of geodesics [γ]. The function f : M̃ → R,
f(p) = limt→∞d(p, γ(t))− t, is called a Busemann function.

For each point p ∈ M̃ there is a point ηS(p) in S, which is the unique
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point in S of minimal distance from p, and the following map is a homeo-
morphism:

φ : M̃ → S ×R, φ(p) = (ηS(p), f(p)).

Fact 2.9 (see [2], [10]) Let M be a Riemannian manifold and G be a
connected subgroup of Iso(M), and let M̃ be the universal Riemannian
covering manifold of M with covering map κ : M̃ → M and deck transfor-
mation group ∆. Then there is a connected Lie group G̃ and covering map
π : G̃ → G such that G̃ acts isometrically on M̃ and

(1) Each δ ∈ ∆ maps G̃-orbits onto G̃-orbits.
(2) If x ∈ M and x̃ ∈ π−1(x) then κ(G̃(x̃)) = G(x).
(3) M̃

eG = κ−1(MG).
(4) The deck transformation group centralizes G̃ (i.e., for each δ ∈ ∆ and

g̃ ∈ G̃, δg̃ = g̃δ).
(6) If M̃

eG is a one point set then M = M̃ .

Fact 2.10 Let M be a complete non simply connected Riemannian man-
ifold of strictly negative curvature and S be a horosphere related to an
asymptotic class of geodesics [γ] in M̃ such that ∆S = S. Then

(1) M is homeomorphic to S/∆×R.
(2) If for each g ∈ G̃, g[γ] = [γ] then G̃S = S.

Proof. (1) let ηS , f and φ be the maps mentioned in Fact 2.8. Since
∆S = S, the homeomorphism φ : M̃ → S × R induces a homeomorphism
φ1 : M̃/∆ = M → S/∆×R.

(2) If g ∈ G̃ and gS 6= S then g is axial isometry and there is a unique
geodesic λ in [γ] such that g translates it. Since g commutes with all elements
of ∆, we get from uniqueness of λ that for each δ ∈ ∆, δλ = λ. But,
intersection of λ and S is a one point set. So, we get from δS = S that δ

has a fixed point, which is a contradiction for the elements of ∆ that are
different from the identity. Therefore, gS = S. ¤

Fact 2.11 (See [3, Lemma 3]) If δ is a parabolic isometry of M̃ such that
δ[γ] = [γ] then for each horosphere S determined by [γ], δS = S.
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3. Results

In the following lemmas and theorem, we keep the notations of Fact 2.9.

Lemma 3.1 If M has negative curvature and all orbits are of dimension
bigger than 1, then for each δ ∈ ∆ and each x ∈ M̃ , δG̃(x) = G̃(x).

Proof. Suppose that there is a δ ∈ ∆ and x ∈ M̃ such that δG̃(x) 6= G̃(x).
It is proved in [1] that the squared displacement function fδ is strictly convex
except at the minimum point set, which is at most the image of a geodesic.
Letγ be a geodesic in M̃ , which is not the minimum point set of fδ and
joins a point in G̃(x) to a point in δG̃(x). We get from strict convexity
criterion that for each t ∈ R, (fδ(γ(t))′′ > 0. Consider g1, g2 ∈ G̃ with the
property that γ(0) = g1(x) ∈ G̃(x) and γ(1) = δg2(x) ∈ δG̃(x) and put
h(t) = fδ(γ(t)). Since δ commutes with the elements of G̃, we have

h(1) = fδ(γ(1)) = fδ(δg2(x)) = d2(δg2(x), δδg2(x)) = d2(δg2(x), δg2δ(x))

= d2(x, δ(x)) = d2(g1(x), g1δ(x)) = d2(g1(x), δg1(x)) = fδ(γ(0)) = h(0)

h is strictly convex, so it has a (unique) minimum point t0 between 0, 1.
Since fδ is constant along orbits, G̃(γ(t0)) is the minimum point set of fδ and
G̃(γ(t0)) must be at most the image of a geodesic. Then dim G̃(γ(t0)) ≤ 1,
which is a contradiction. ¤

Lemma 3.2 ([9]) If M is a connected and complete cohomogeneity k

Riemannian G-manifold, then k > dimMG.

Lemma 3.3 Let M be a complete and nonsimply connected Riemannian
G-manifold of negative curvature such that dimM > 3 and all G-orbits are
of dimension equal to dimM − 2. If there is a nontrivial totally geodesic
submanifold W of M̃ such that G̃W = W then π1(M) = Zp, for some
positive integer p.

Proof. Let dim M = n + 2, n > 1. If dimW = 1 then we get from
G̃W = W that there is an orbit of dimension ≤ 1, which is in contradiction
with hypotheses. Then, dimW > 1. Since W is a union of G̃-orbits and
all orbits are of dimension n, then n ≤ dimW < n + 2, so dim W = n

or dim W = n + 1. In the first case, W is a G̃-orbit and by uniqueness
criterion in Lemma 2.4, we get that ∆(W ) = W , so κ(W ) = W/∆. But
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κ(W ) is a totally geodesic G-orbit in M and by Theorem 2.5, it must be
simply connected. Then ∆ is trivial and M is simply connected, which is a
contradiction. In the second case (dimW = n + 1), W is a cohomogeneity
one G̃-manifold. By Lemma 3.1, for all δ ∈ ∆ and all x ∈ M̃ , δG̃(x) = G̃(x).
Then ∆(W ) = W and π1(M) = π1(κ(W )). But, κ(W ) is a totally geodesic
cohomogeneity one G-submanifold of M without singular orbits (because,
if there is a singular orbit then by Proposition 2.6, it must be of dimension
one). So, there is a positive integer p such that each G-orbit in κ(W ) is
diffeomorphic to T p×Rs, p+s = dim W −1 = n, and κ(W ) is diffeomorphic
to T p ×Rs+1. Then, π1(M) = π1(κ(W )) = Zp. ¤

Lemma 3.4 Let M be a nonsimply connected Riemannian manifold of
strictly negative curvature such that dimM > 3 and all G-orbits are of di-
mension dimM − 2. If there is a unique class [γ] of asymptotic geodesics
in M̃ such that G̃[γ] = [γ] then M is a parabolic manifold homeomorphic to
S/(π1(M)) × R, where S is a horosphere in M̃ and S/(π1(M)) is a coho-
mogeneity one G-manifold.

Proof. If δ ∈ ∆ then δ has no fixed point, so it is not elliptic. If there is a
unique geodesic λ such that δλ = λ then for each g ∈ G̃, δ(gλ) = gδλ = gλ.
Thus, we get from uniqueness of λ that gλ = λ. So, λ must be a G̃-orbit,
which is a contradiction (because, all orbits are of dimension dimM−2 > 1).
Thus, δ is not axial. This means that the elements of ∆ are parabolic. Since
the elements of ∆ commute with the elements of G̃, we get from uniqueness
of [γ] that ∆[γ] = [γ]. By Fact 2.11, for each δ ∈ ∆ and each horosphere
S determined by the asymptotic class [γ], δS = S. Now, by Fact 2.10, M

is diffeomorphic to S/(π1(M)) × R and all G̃-orbits of M̃ are included in
horospheres. Thus, S is a cohomogeneity one G̃-manifold and S/(π1(M)) is
a cohomogeneity one G-manifold. ¤

If M is a G-manifold of cohomogeneity k then there are two types of G-
orbits in M , which are called singular and principal orbits (see [2] or [8] for
definitions and details about singular and principal orbits). The dimension
of a principal orbit is equal to dimM − k and the dimension of a singular
orbit is ≤ dimM −k. The union of all principal orbits is an open and dense
subset of M . If there is no singular orbit or dimension of each singular orbit
is zero (i.e, singular orbits are fixed points of G), then we say that M is a
G-manifold of fixed point singular type.
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Theorem 3.5 Let M be a complete Riemannian manifold of strictly neg-
ative curvature and dimM = n+2, n > 1, and let G be a compact and con-
nected subgroup of Iso(M) such that M is a cohomogeneity two G-manifold
of fixed point singular type. Then one of the following claims is true:

(1) M is simply connected (i.e, it is diffeomorphic to Rn+2).
(2) M is diffeomorphic to S1 ×Rn+1 or B ×Rn (B is the moebius band).
(3) There is a positive integer number p such that π1(M) = Zp.
(4) M is a parabolic manifold homeomorphic to S/(π1(M))×R, where S is a

horosphere in the universal Riemannian covering of M and S/(π1(M))
is a cohomogeneity one G-manifold.

Proof. Suppose that M is not simply connected. The proof is obtained by
considering the following three cases.

(a) If M̃
eG 6= ∅ then MG 6= ∅, so by Theorem 2.2 we get that (2) is true.

(b) If G is semi-simple then by Theorem 2.1, G̃ is compact. It is well
known that a compact connected subgroup of the isometries of a simply con-
nected Riemannian manifold of nonpositive curvature has nonempty fixed
point set. So, M̃

eG 6= ∅ and, by (a), we get that (2) is true.
(c) If G is non-semisimple and M̃

eG = ∅ then by Fact 2.9, MG = ∅. So,
by assumptions of the theorem, there is no singular G-orbit in M and all G-
orbits are of dimension n. Therefore, all G̃-orbits of M̃ are n-dimensional.
Since G is non-semisimple, G̃ is non-semisimple. Let H be a connected
solvable normal subgroup of G̃ and put W = M̃H .

If W = ∅ then by Theorem 2.7, either there is a unique geodesic γ such
that H(γ) = γ or there is a unique class of asymptotic geodesics [γ] such
that H[γ] = [γ]. From normality of H in G̃, uniqueness of γ in the first
case, and uniqueness of [γ] in the second case, we get that G̃(γ) = γ or
G̃[γ] = [γ]. G̃(γ) = γ can not occur (because all orbits are of dimension
n > 1). So, G̃[γ] = [γ] and, by Lemma 3.4, we get that(4) is true. If W 6= ∅
then it is a nontrivial totally geodesic submanifold of M̃ . Let g ∈ G̃, h ∈ H

and x ∈ W . Since H is normal in G̃ then g−1hg ∈ H, so g−1hg(x) = x and
hg(x) = g(x). Therefore G(W ) = W and, by Lemma 3.3, we get that (3) is
true. ¤
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