
Hokkaido Mathematical Journal Vol. 43 (2014) p. 275–325

Radiation condition at infinity

for the high-frequency Helmholtz equation:

optimality of a non-refocusing criterion
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Abstract. We consider the high frequency Helmholtz equation with a variable re-

fraction index n2(x) (x ∈ Rd), supplemented with a given high frequency source term

supported near the origin x = 0. A small absorption parameter αε > 0 is added, which

prescribes a radiation condition at infinity for the considered Helmholtz equation. The

semi-classical parameter is ε > 0. We let ε and αε go to zero simultaneously. We

study the question whether the prescribed radiation condition at infinity is satisfied

uniformly along the asymptotic process ε → 0.

This question has been previously studied by the first autor in [4], where it is proved

that the radiation condition is indeed satisfied uniformly in ε, provided the refraction

index satisfies a specific non-refocusing condition. The non-refocusing condition re-

quires, in essence, that the rays of geometric optics naturally associated with the

high-frequency Helmholtz operator, and that are sent from the origin x = 0 at time

t = 0, should not refocus at some later time t > 0 near the origin again.

In the present text we show the optimality of the above mentioned non-refocusing

condition. We exhibit a refraction index which does refocus the rays of geometric op-

tics sent from the origin near the origin again, and we show that the limiting solution

does not satisfy the natural radiation condition at infinity in that case.

Key words: High-frequency Helmholtz equation, Radiation condition at infinity, pseu-

dodifferential operator, stationary phase theorem.

1. Introduction

1.1. General introduction
In this article, we study the convergence as ε approaches 0 of wε, solution

to the following rescaled Helmholtz equation

iεαε wε(x) +
∆x

2
wε(x) + n2(εx)wε(x) = S(x), x ∈ Rd (d ≥ 3). (1)

Here αε is an absorption parameter, n2(x) is a space-dependent refraction
index1 and S(x) is a given and smooth source term. In the sequel, we assume
the following:
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• The absorption parameter αε satisfies2

αε > 0, αε−→
ε→0

0.

• The smooth refraction index n2(x) ∈ C∞(Rd) is a possibly long-range
perturbation of a positive constant n2

∞ > 0 at infinity, namely, for
some ρ > 0, we have

∀α ∈ Nd, ∃Cα, ∀x ∈ Rd,
∣∣∂α

x (n2(x)− n2
∞)

∣∣ ≤ Cα〈x〉−ρ−α, (2)

where we denote as usual 〈x〉 := (1 + |x|2)1/2.
• The source term S(x) belongs to the Schwartz class3 S(Rd).

The question we raise is the following. Thanks to the absorption pa-
rameter αε > 0 in (1), the sequence of solutions wε is uniquely defined (see
below for the limiting case αε = 0+). On top of that, and as a consequence
of specific homogeneous bounds obtained by Perthame and Vega in [14] (see
[5] for extensions by Jecko and the first author, as well as [6]), it is clear
that the sequence wε is bounded in some weighted L2 space, uniformly in
ε. Hence the sequence wε possesses a limit (up to subsequences), say in
the distribution sense, and the limit w = lim wε satisifies in the distribution
sense the Helmholtz equation

∆x

2
w + n2(0)w = S, (3)

where the variable coefficients refraction index n2(εx) in (1) has now coef-
ficients frozen at the origin x = 0.

Now, the difficulty is, the Helmholtz equation (3) does not have a

1Here and below we use the standard notation n2(x), a squared term, assuming in doing

so that the corresponding term is everywhere non-negative. This is a harmless abuse of
notation, since the refraction index n2(x) that is eventually chosen in our analysis is

negative for certain values of x. The reader may safely skip this fact, since the Helmholtz

equation also arises in the spectral analysis of Schrödinger operators, where the refraction
index becomes E − V (x) where E is an energy and V (x) is a space-dependent potential,

and the term E − V (x) may change sign in that context.
2The limiting case αε = 0+ can be considered along our analysis, see below.
3This assumption may be considerably relaxed at the price of some irrelevant techni-

calities.
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uniquely defined solution. At least two distinct solutions exist, namely the
outgoing solution, defined as

wout(x) := lim
δ→0+

(
iδ +

∆x

2
+ n2(0)

)−1

S(x), (4)

and the incoming solution, defined similarly as win = limδ→0+(−iδ+∆x/2+
n2(0))−1S. Equivalently, the outgoing solution may be defined as the unique
solution to the Helmholtz equation (3) which satisfies the so-called Sommer-
feld radiation condition at infinity, namely

x

|x| .∇xwout(x) + i
√

2 n(0)wout(x) = O

(
1
|x|2

)
, as |x| −→ +∞. (5)

This formulation means that wout is required to oscillate like wout ∼
exp(−i

√
2 n(0)|x|)/|x| as |x| → ∞. Similarly, the incoming solution sat-

isfies the following radiation condition at infinity, namely (x/|x|) .∇xwin −
i
√

2 n(0)win = O(1/|x|2), meaning that win ∼ exp(+i
√

2 n(0)|x|)/|x| as
x →∞.

In that perspective, and due to the positive absorption parameter αε > 0
in (1), it is natural to expect that the previously defined sequence wε goes
to the outgoing solution wout to (3).

This is the question we address here.
It turns out that delicate analytical tools are needed to provide a clean

understanding of the phenomena at hand, and to establish whether wε ∼
wout as ε → 0. The basic difficulty is a conflict between a local and a
global phenomenon. On the one hand, the obvious fact that wε goes to a
solution to (3) is local: locally in x, i.e. in the distribution sense, the variable
refraction index n2(εx) goes to the value n2(0) at the origin. On the other
hand, the positive absorption parameter αε > 0 in (1) somehow asserts that
wε is an outgoing solution to ∆xwε/2 + n2(εx) wε = S, hence introducing
the value at infinity n∞ = limx→∞ n(εx) = limx→∞ n(x), the solution wε

should roughly oscillate like wε ∼ exp(−i
√

2 n∞|x|)/|x| at infinity. This is
a global phenomenon. Now, all this is to be compared with the fact that
wout oscillates like wout ∼ exp(−i

√
2 n(0)|x|)/|x| at infinity. Due to the fact

that n∞ 6= n(0), the radiation condition at infinity satisfied by wε for any
positive value ε > 0 is a priori incompatible with the radiation condition
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at infinity satisfied by the expected limit wout: the radiation condition at
infinity cannot be followed at once uniformly in ε, in any direct fashion (this
is not in contradiction with the expected local convergence of wε towards
wout.)

Before going further, let us mention that the above question stems from
a series of articles [1], [3] about the high-frequency Helmholtz equation (equa-
tion (1) is a low-frequency equation). We also refer to [9] and [10] for similar
considerations in the case of a discontinuous refraction index, as well as [16]
and [17] for the case of a variable absorption coefficient. The two papers
[1], [3] investigate the high-frequency behaviour, in terms of semi-classical
measures, of high-frequency Helmholtz equations of the form

iεαεuε(x) +
ε2

2
∆xuε(x) + n2(x)uε(x) =

1
εd/2

S

(
x

ε

)
(x ∈ Rd). (6)

The link between the low-frequency equation (1) that is the purpose of this
article, and the high-frequency equation (6), is provided by the following
basic observation: the function wε satisfies (1) if and only if the rescaled
function

uε(x) =
1

εd/2
wε

(
x

ε

)
(7)

satisfies (6). In that picture, the main phenomenon to be described in (6)
is the possibility of resonances between the high-frequency waves selected
by the Helmholtz operator ε2∆x/2 + n2(x), and the high-frequency waves
carried by the rescaled source term ε−d/2 S(x/ε), both having the same
wavelength ε. Amongst others, it is established in [1], [3] that the semi-
classical measure associated with uε can be completely computed, provided
wε indeed converges towards wout, this latter requirement being left as a
conjecture in the cited papers. This is the motivation for the question we
address here.

In [4], the first positive convergence result wε → wout is established.
This results requires, amongst others, a specific and original non-refocusing
condition on the refraction index n2(x) (called “transversality condition”
in the original paper), a condition that is first pointed out in the cited
paper. This condition (see below for details) roughly asserts that the rays
of geometric optics associated with the semi-classical Helmholtz operator
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ε2∆x/2 + n2(x) cannot focus at some positive time t > 0 near the origin
x = 0 when issued from the origin at time t = 0. Later, X.-P. Wang
and P. Zhang [19] proved a similar, positive result, using a so-called virial
assumption which is stronger than the above non-refocusing condition. J.-
F. Bony in [2] establishes along quite different lines a positive result that is
similar in spirit, requiring a weaker non-refocusing condition.

The goal of the present text is to prove in some sense the optimality of
the non-refocusing condition pointed out in [4].

We construct a refraction index n2(x) which violates the non-refocusing
condition (rays of geometric optics issued from the origin do refocus close to
the origin at some later time), and, by explicitly computing the asymptotic
behaviour of wε thanks to an appropriate amplitude/phase representation
developped in [4], we prove that

wε ∼
ε→0

wout + perturbation︸ ︷︷ ︸
6=0

,

where the perturbation is computed as well. It explicitly involves the con-
tribution of the rays issued from the origin which go back to the origin at
some positive time, modulated by a phase factor that is the action, along
these rays, of the hamiltonian associated with the high-frequency Helmholtz
operator.

1.2. The non-refocusing condition
As already mentionned, the asymptotic behaviour of wε is dictated by

that of the rescaled function uε(x) = ε−d/2 wε(x/ε). The function uε is wε

rescaled at the semi-classical scale, see (6) and (7). This is translated by the
following identity, valid for any smooth test function φ ∈ S(Rd), namely

∀φ ∈ S(Rd), 〈wε, φ〉 =
〈

uε,
1

εd/2
φ

(
x

ε

)〉
.

where we denote as usual 〈wε, φ〉 :=
∫
Rd wε(x) φ∗(x) dx, and ∗ denotes com-

plex conjugation. In other words, the weak limit 〈wε, φ〉 of wε can be com-
puted as the weak limit of uε at the semi-classical scale, namely the limit
of 〈uε, ε

−d/2φ(x/ε)〉. This first observation is the main reason why semi-
classical tools play a key role in our analysis.

Besides, the asymptotic study of (1) is done here by transforming the
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problem into a time-dependent problem. This approach, introduced in [4],
has been used since by J.F.-Bony ([2]) to study the Wigner measure associ-
ated with (6), or by J. Royer ([16]) when the absorption αε depends on x.
It consists in writing the solution wε as the integral over the whole time of
the propagator associated with iεαε + ∆x/2 + n2(ε x), namely

wε(x) = i

∫ +∞

0

e−αεteit(∆x/2+n2(ε x)) S(x) dt. (8)

In the same way the outgoing solution can be written as

wout(x) := i

∫ +∞

0

eit(∆x/2+n2(0)) S(x) dt.

In that picture, proving or disproving the convergence wε ∼ wout reduces to
passing to the limit in the above time integral.

Combining the two above observations, the basic first step of our anal-
ysis consists in writing, for any given test function φ, an in [4],

〈wε, φ〉 =
〈
uε, ε−d/2φ(x/ε)

〉

=
i

ε

∫ +∞

0

e−αε t
〈
Uε(t)Sε, φε

〉
dt, (9)

where we use the notation

Sε(x) :=
1

εd/2
S

(
x

ε

)
, and similarly φε(x) :=

1
εd/2

φ

(
x

ε

)
, (10)

and the semi-classical propagator associated with the semi-classical Hamil-
tonian ε2∆x/2 + n2(x) is

Uε(t) = exp
(

i
t

ε

(
ε2

2
∆x + n2(x)

))
(11)

It is fairly clear on formula (9) that the asymptotics ε → 0 in 〈wε, φ〉 is
dominated on the one hand by the concentration of the rescaled test function
φε close to the origin at the semi-classical scale ε, and on the other hand by
the oscillations induced by the semi-classical propagator Uε(t) at the semi-
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classical scale ε as well. The point is to measure the possible constructive
intereference between both waves.

As standard in semiclassical analysis we define the semiclassical symbol

h(x, ξ) =
|ξ|2
2
− n2(x), (12)

associated with the semiclassical Schrödinger operator −(ε2/2)∆x − n2(x).
The semi-classical propagator Uε(t) is known to roughly propagate the in-
formation along the rays of geometric optics, defined as the solutions to the
Hamiltonian ODE associated with h, namely (see e.g. [8], [13], or [15])





∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x,

∂

∂t
Ξ(t, x, ξ) = ∇xn2(X(t, x, ξ)), Ξ(0, x, ξ) = ξ.

(13)

It is clear as well that the integral
∫ +∞
0

. . . in (9) carries most of its energy,
semi-classically, on the zero energy level of h, defined as

H0 :=
{
(x, ξ) ∈ R2d, s.t. h(x, ξ) = 0

}
. (14)

In view of the integral (9) and of the above considerations, the following
definitions are natural. The first definition is standard.

Definition 1.1 (non-trapping condition) The refraction index n2 is said
non-trapping on the zero energy level whenever for each (x, ξ) ∈ H0, the
associated trajectory (X(t, x, ξ),Ξ(t, x, ξ)) satisfies

lim
t→+∞

|X(t, x, ξ)| = +∞.

When the refraction index is non-trapping, the rough idea is that any
trajectory X(t, x, ξ) on the zero energy level leaves any given neighbourhood
of the origin x = 0 in finite time, making the above integral

∫ +∞
0

. . . in (9)
converge with respect to the bound t = +∞.

The second definition comes from [4] (this assumption is called
“transversality condition” in the original text).

Definition 1.2 (non-refocusing condition) We say that n2 satisfies the
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non-refocusing condition if the refocusing set, defined as

M :=
{

(t, ξ, η) ∈]0,+∞[×R2d

s.t.
|η|2
2

= n2(0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η

}
(15)

is such that M is a submanifold of ]0,+∞[×R2d and M satisfies

dimM < d− 1.

When the non-refocusing condition is satisfied, the rough idea is that
the trajectories X(t, 0, ξ) on the zero energy level issued from the origin
x = 0 at time t = 0 cannot accumulate in any given neighbourhood of the
origin x = 0 at later times t > 0 (this is encoded in the requirement on
dimM). Technically speaking, an appropriate stationary phase argument
in formula (9) allows to exploit in [4] the non-refocusing condition and to
prove the weak convergence of wε towards wout under this assumption. The
main result in [4] is the following: when the refraction index is both non-
trapping and satisfies the above non-refocusing condition, then wε ∼ wout

as ε → 0 weakly.
Recently, J. F. Bony in [2] shows the convergence of the Wigner measure

associated with wε. He requires a geometrical assumption on the index of
refraction that is in the similar spirit, yet weaker, than the above non-
refocusing condition, namely

measd−1

{
ξ ∈

√
2n2(0)Sd−1; ∃ t > 0 X(t, 0, ξ) = 0

}
= 0, (16)

where measd−1 is the Euclidian surface measure on
√

2n2(0)Sd−1 and Sd−1

denotes the unit sphere in dimension d. Besides, inspired by [4], he con-
structs a refraction index which is both non-trapping and does not satisfy
condition (16), and in that case he proves the non-uniqueness of the limiting
of the Wigner measure.

The goal of this paper is to construct a refraction index that is both non-
trapping and violates the non-refocusing condition, and to establish in that
case that wε goes weakly to a function of the form “wout+perturbation”,
for some explicitly computed and non-zero perturbation. To be more accu-
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rate, we construct below a refraction index for which the above refocusing
manifold M = {(t, ξ, η) s.t. |η|2/2 = n2(0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η}
is smooth, yet has dimension dimM = d − 1, a critical case, and we prove
wε ∼ “wout+perturbation” in that situation.

1.3. Construction of the refraction index and statement of our
main result

Let us first examine the case of dimension d = 2. Let Ms be a circular
mirror centered at the origin. Any standard ray issued from the origin x = 0
hits the mirror and goes back to the origin at some later time: refocusing
occurs in a strong fashion. However all rays are trapped inside the circular
mirror, leading to a trapping situation, in the sense of Definition 1.1. To
recover a non-trapping and refocusing situation, it is necessary to consider
an angular aperture of the circular mirror, with total aperture < π. This is
shown in Figure 1: the circular mirror with total aperture < π provides a
(non-smooth) non-trapping and refocusing refraction index. To transform
the above paradigm into a smooth one, some regularizations need to be
performed. The construction needs to be done in any dimension d ≥ 2 as
well.

Let us first introduce the hyperspherical coordinates (r, θ1, . . . , θd−1) in
dimension d ≥ 2

x1 = r cos(θ1),

x2 = r sin(θ1) cos(θ2),

x3 = r sin(θ1) sin(θ2) cos(θ3),

Figure 1. Spherical mirror in dimension 2.
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...
xd−1 = r sin(θ1) . . . sin(θd−2) cos(θd−1),

xd = r sin(θ1) . . . sin(θd−2) sin(θd−1), (17)

with

θ1 ∈ [0, π], θj ∈ [0, 2π] whenever j ≥ 2 when d ≥ 3,

and θ1 ∈ [−π, π] when d = 2.

Next, we choose a fixed, smooth cut-off function χ on R such that

χ(t) = 1, ∀ |t| ≤ 1, χ(t) = 0, ∀ |t| ≥ 2, χ(t) ≥ 0, ∀ t ∈ R. (18)

We also require a technical assumption:

χ′(t) > 0, ∀ t ∈]− 2,−1[, χ′(t) < 0, ∀ t ∈]1, 2[. (19)

We choose a radius R > 0 and define the radial function

f(x) ≡ f(r) := χ(2(r −R)), ∀ x = (r, θ1, . . . , θd−1). (20)

We choose an angle (aperture) θ0 ∈ [0, π/4[, and define the angular function

g(x) ≡ g(θ1) := χ

(
θ1

θ0

)
, ∀ x = (r, θ1, . . . , θd−1). (21)

a smooth version of the angular aperture |θ1| ≤ θ0. Finally, we choose two
parameters n2

∞ > 0 and λ > 0 such that

n2
∞ < λ. (22)

We introduce the following

Definition 1.3 (refraction index) We define the refraction index, retained
in the whole subsequent analysis, as the following smooth version of the
circular mirror with total aperture θ0 < π/4, namely4

4The refraction index is negative in a bounded region of x. As already mentioned, we
still use the abuse of notation consisting in using the squared of n.
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Figure 2. The function n2
∞ − n2(x) = λ f(x) g(x) in dimension d = 2.

n2(x) := n2
∞ − λf(x)g(x) ≡ n2

∞ − λf(r)g(θ1), ∀x ∈ R. (23)

We are now in position to state our main result. Let (e1, . . . , ed) be
the canonical basis of Rd. Since the direction e1 is a symmetry axis for
our refraction index, we introduce for later purposes the space Md(R) of
square matrices of dimension d, we denote by Od(R) the space of orthogonal
matrices, and we introduce the notation

Od,1(R) := {A ∈ Od(R), s.t. Ae1 = e1}. (24)

The refraction index n2(x) in (23) is invariant under the action of Od,1(R).
We last introduce a particular set of speeds, namely the set of initial speeds
ξ such that the zero energy trajectory X(t, 0, ξ) issued from the origin at
time t = 0 is reflected towards the origin at some later time t > 0. With the
retained value of n2(x), we arrive at the definition

Definition 1.4 (reflected rays) The reflection set Iθ0 is defined as

Iθ0 =
{
ξ := (|ξ|, θ1, . . . , θd−1) ∈ Rd s.t. θ1 ∈ [−θ0,+θ0] and |ξ| =

√
2 n2(0)

}
.

Note that the (intuitive) fact that a velocity ξ is such that X(t, 0, ξ)
hits the origin at some time t > 0 if and only if ξ ∈ Iθ0 , is proved later (see
Section 2.2).

Our main result in this text is the
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Theorem 1.5 (Main Result) Let n2 be the refraction index defined in (23).
Assume the aperture θ0 < π/4 and the radius R > 0 satisfy the smallness
condition

1− cos(2θ0) <
1

2R
. (25)

Assume d ≥ 3. Then, the following holds:

i) The index n2 is non-trapping on the zero-energy level H0 = {(x, ξ) s.t.
|ξ|2/2− n2(x) = 0}.

ii) The refocusing set M = {(t, ξ, η) s.t. |η|2 = 2n2(0), X(t, 0, ξ) = 0,

Ξ(t, 0, ξ) = η} (see (15)) is a smooth submanifold of ]0,+∞[×R2d, with
boundary, and its dimension has the critical value

dim(M) = d− 1.

iii) Assume the source term S satisfies S ∈ S(Rd). Then, we have

∀φ ∈ S(Rd),
〈
wε − (wout + Lε), φ

〉−→
ε→0

0,

where the distribution Lε is defined for any φ ∈ S(Rd) through

〈Lε, φ〉 = Cn2,d

∫

Iθ0

exp
(

i

ε

∫ TR

0

( |Ξ(s, 0, ξ)|2
2

+ n2(X(s, 0, ξ))
)

ds

)

× Ŝ(ξ)φ̂∗(−ξ) dσθ0(ξ). (26)

Here dσθ0 denote the natural Euclidean surface measure on Iθ0 (see
Definition 1.4), the return time TR > 0 is the unique time5 such that
for any ξ ∈ Iθ0 we have X(TR, 0, ξ) = 0, and the constant Cn2,d 6= 0
can be explicitly computed and depends only on the index n2 and on the
dimension d.

Remark The condition (25) is technical, and requires the aperture θ0 to
be small: it ensures the trajectories cannot be trapped by the refraction
index.

5The fact that all these quantities exist and are well defined is part of the Theorem,
and is proved in Section 2.2.
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Remark Note in passing that the constraint d ≥ 3, which is also needed
in reference [4], comes from a stationary phase argument. This constraint
on the dimension is standard in the analysis of Schrödinger-like operators.
It comes from the fact that the dispersion induced by the free Schrödinger
operator acts like t−d/2, a factor that is integrable close to t = +∞ whenever
d ≥ 3.

Remark Let ξ0 := (
√

2 n(0), 0, . . . , 0). The distribution Lε can as well be
written as

〈Lε, φ〉 = Cn2,d exp
(

i

ε

∫ TR

0

( |Ξ(s, 0, ξ0)|2
2

+ n2(X(s, 0, ξ0))
)

ds

)

×
( ∫

Iθ0

Ŝ(ξ)φ̂∗(−ξ) dσθ0(ξ)
)

.

This formulation illustrates in a clearer way the fact that if the source S

radiates towards the mirror, then wε converges towards a non-trivial per-
turbation of wout.

Note that in the present counterexample, as in the paper by J.-F. Bony
[2], only subsequences of wε converge, due to the above oscillatory factor
exp(i const./ε).

Remark We underline that a similar counterexample is used in [2] to
prove that the Wigner measure associated with (6) has at least two limits
when the condition (16) is not satisfied.

Remark In the chosen hyperspherical coordinates, the Euclidean mea-
sure dσθ0(ξ) coincides with dσθ0(ξ) = n(0)d−1 dσ(θ1, . . . , θd−1), where
dσ(θ1, . . . , θd−1) denotes the standard euclidean surface measure on the unit
sphere Sd−1.

1.4. Preliminary reduction of the proof
Our main result contains three distinct statements. Items (i) and (ii)

are of geometric nature, and merely concern the behaviour of the classical
trajectories associated with the retained refraction index. Their proof is
performed in Sections 2.1 and 2.2, respectively. Item (iii) is the main item,
and concerns the asymptotic analysis of wε. Since our analysis heavily relies
on tools previously developped in [4], we briefly recall here some of these
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tools and indicate how the analysis of wε can be reduced to a simpler sub-
problem. We postpone the analysis of the reduced subproblem, hence of
item (iii) of our main result, to Section 3 below.

As already indicated, given a smooth test function φ, we start from the
formulation

〈wε, φ〉 =
i

ε

∫ +∞

0

e−αεt
〈
Uε(t)Sε, φε

〉
dt.

(See above for the notation). The next step consists in splitting the above
time integral into four time scales, namely very small, small, moderate, and
large time scales. To do so, we take one small parameter θ > 0 and two
large parameters T0 > 0 and T1 > 0, and split the above time integral into
the four zones

0 ≤ t ≤ T0 ε, T0 ε ≤ t ≤ θ, θ ≤ t ≤ T1, T1 ≤ t ≤ +∞
(θ ¿ 1, T0, T1 À 1).

Technically, we use a smooth splitting, based on the already used cut-off
function χ (see (18)). Besides, we also distinguish between the contribution
of zero and non-zero energies, namely taking a small parameter δ > 0,
we write, in the sense of functional caculus for self-adjoint operators, the
identity

1 = χδ(Hε) + (1− χδ)(Hε), where Hε :=
ε2

2
∆x + n2(x),

and χδ(s) := χ

(
s

δ

)
(s ∈ R, δ ¿ 1).

The main intermediate result of the present subsection is the following

Proposition 1.6 (Main intermediate result) Take a test function φ ∈
S(Rd). Define w̃ε as

〈w̃ε, φ〉 :=
i

ε

∫ T1

θ

(1− χ)
(

t

θ

)
e−αεt

〈
Uε(t) χδ(Hε) Sε, φε

〉
dt.

Then, there is a large T1 > 0 such that for any small δ > 0, and any small
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θ > 0, there exists a constant Cθ,δ > 0 such that for any small ε > 0, we
have

∣∣〈(wε − (wout + w̃ε)), φ
〉∣∣ ≤ Cθ,δ

(
1

T
d/2−1
0

+
1
T0

+ α2
ε + ε

)
.

This result roughly asserts that wε is asymptotic to wout + w̃ε as ε → 0,
up to carefully choosing the various parameters T0, T1, etc. Hence the proof
of item (iii) of our main result essentially reduces to proving that w̃ε ∼ Lε

as ε → 0.

Proof of Proposition 1.6. The proof is obtained by gathering the state-
ments of Proposition 1.7, Proposition 1.8, Proposition 1.9, Proposition 1.10
below. ¤

The remainder part of this paragraph is devoted to a brief idea of proof
of the above auxiliary Propositions that lead to Proposition 1.6.

• Contribution of very small times 0 ≤ t ≤ T0 ε.
The contribution of very small times to 〈wε, φ〉 = i ε−1

∫ +∞
0

e−αεt

×〈Uε(t)Sε, φε〉dt, is

i

ε

∫ 2T0ε

0

χ

(
t

T0ε

)
e−αεt

〈
Uε(t)Sε, φε

〉
dt.

It is the main contribution to wε, provided T0 is large enough. Indeed, we
have the following fact, whose proof is based on a simple weak convergence
argument.

Proposition 1.7 (See [4]) Let n2(x) be any bounded and continuous re-
fraction index. Then, if S and φ belong to S(Rd), we have

( i ) For all time T0 > 0,

i

ε

∫ 2T0ε

0

χ

(
t

T0ε

)
e−αεt

〈
Uε(t)Sε, φε

〉
dt

−→
ε→0

i

∫ 2T0

0

χ

(
t

T0

)〈
exp

(
it

(
∆x

2
+ n2(0)

))
S, φ

〉
dt.
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( ii ) There exists Cd > 0 which only depends on the dimension such that

∣∣∣∣
(

i

ε

∫ 2T0ε

0

χ

(
t

T0

)〈
exp(it(∆x/2 + n2(0)))S, φ

〉
dt

)
− 〈wout, φ〉

∣∣∣∣

≤ Cd

T
d/2−1
0

.

• Contribution of small, up to large times, away from the zero-
energy level.

The contribution to 〈wε, φ〉 = i ε−1
∫ +∞
0

e−αεt〈Uε(t)Sε, φε〉dt that is
associated with small, up to large times, away from the zero-energy level, is

i

ε

∫ +∞

T0ε

e−αεt(1− χ)
(

t

T0ε

)〈
(1− χδ)(Hε)Uε(t)Sε, φε

〉
dt.

It is seen to be small, using a non-stationary phase argument in time, see
[4] (this is the reason for the previous cut-off close to the initial time t = 0,
where integrations by parts in time are forbidden). Indeed, we have the

Proposition 1.8 (See [4])) Let n2 be any long-range refraction index. Let
S and φ belong to L2(Rd). Then there exists a constant Cδ > 0, which only
depends on δ > 0, such that for any small ε > 0 and any T0 > 0, we have

∣∣∣∣
1
ε

∫ +∞

T0ε

e−αεt(1−χ)
(

t

T0ε

)〈
(1−χδ(Hε))Uε(t)Sε, φε(t)

〉
dt

∣∣∣∣ ≤ Cδ

(
1
T0

+α2
ε

)
.

• Contribution of large times, near the zero-energy level.
The contribution to 〈wε, φ〉 = i ε−1

∫ +∞
0

e−αεt
〈
Uε(t)Sε, φε

〉
dt that is

associated with large times, close to the zero-energy level, is

i

ε

∫ +∞

T1

e−αεt〈χδ(Hε)Uε(t)Sε, φε〉dt.

It is seen to be of order O(εN ), for all N ∈ N, see [4]. Indeed, the semiclas-
sical support of χδ(Hε)Uε(t)Sε goes to infinity in the x direction at speed of
the order 1 (i.e. the semi-classical support lies in a region that is at distance
of order t from the origin – this uses an argument due to Wang, see [18]),
while the semi-classical support of φε remains close to the origin. This argu-
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ment relies on the fact that for T1 large enough, the semiclassical supports
of the two functions are disconnected, which in turn uses the non-trapping
behaviour of the refraction index. We arrive at

Proposition 1.9 (See [4]) Let n2 be any long-range refraction index that
is non-trapping. Let S and φ be in S(Rd). Then there exist δ0 > 0 and
T1(δ0) > 0 such that for all time T1 ≥ T1(δ0) and any 0 < δ < δ0, there
exists a constant Cδ such that

∣∣∣∣
1
ε

∫ +∞

T1

e−αεt
〈
χδ(Hε)Uε(t)Sε, φε

〉
dt

∣∣∣∣ ≤ Cδε.

• Contribution of small times near the zero-energy level.
The contribution to 〈wε, φ〉 = i ε−1

∫ +∞
0

e−αεt〈Uε(t)Sε, φε〉 dt that is
associated with small times, close to the zero-energy level, is

i

ε

∫ 2θ

T0ε

e−αεt (1− χ)
(

t

T0ε

)
χ

(
t

θ

)〈
Uε(t)χδ(Hε)Sε, φε

〉
dt.

Unlike in the previous case, the semiclassical supports of Uε(t)χδ(Hε)Sε

and φε may intersect for these values of time t. The whole point in [4] lies,
roughly speaking, in proving a dispersion estimate. The key is to prove
that the variable coefficients Schrödinger propagator Uε(t) has the same
dispersive properties than the free Schrödinger propagator, corresponding
to the case when n2 ≡ 0, at least for small values of t such that 0 ≤
t ≤ θ (for later times, the semiclassical support of Uε(t) Sε is close to the
classical trajectories (X(t),Ξ(t)), trajectories which in turn may come back
close to the origin and contradict any dispersion effect). Indeed, for small
times, the trajectory (X(t),Ξ(t)) is close to its first order expansion in time,
which is the key to obtaining dispersive effects similar to the one at hand
in the free case. Technically speaking, the proof relies on establishing that
the propagator Uε(t) behaves like the free Schrödinger propagator for small
times, a propagator whose symbol is exp(it|ξ|2/ε), and which in turn has
size (ε/t)d/2 thanks to a stationary phase argument.

To obtain the desired statement, a wave packet approach is actually
introduced, which strongly uses the work by Combescure and Robert ([7]). It
allows to compute explicitly the propagator Uε(t) Sε, using the Hamiltonian
flow and related, linearized, quantities, to obtain a representation of the
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form

i

ε

∫ 2θ

T0ε

e−αεt(1− χ)
(

t

T0ε

)
χ

(
t

θ

)〈
Uε(t)χδ(Hε)Sε, φε

〉
dt

=
1

ε(5d+2)/2

∫ θ

T0ε

∫

R6d

e(i/ε)ψ(t,X) aN (t,X)dt dX + Oθ,δ(εN ), (27)

where X = (q, p, x, y, ξ, η) ∈ R6d, where N is a possibly large integer, and
the remainder term Oθ,δ(εN ) is upper bounded by Cθ,δ εN for some Cθ,δ > 0
independent of ε, which depends on the chosen θ > 0 and δ > 0. Note that
the amplitude aN is defined in (40) below, while the complex phase function
ψ is defined in (39) below. We refer to Section 3 for details about the
representation formula (27), which is a key ingredient in our proof of the
main theorem.

With this representation at hand, we arrive at the

Proposition 1.10 (See [4])) Let n2 be any long-range potential which is
non-trapping. For θ and δ small enough, there exists Cθ > 0 and Cθ,δ > 0
such that for all ε ≤ 1 we have

∣∣∣∣
1
ε

∫ 2θ

T0ε

χ

(
t

θ

)(
1−χ

(
t

T0ε

))
e−αεt〈Uε(t)χδ(Hε)Sε, φε〉dt

∣∣∣∣ ≤
Cθ

T
d/2−1
0

+Cθ,δ ε.

(28)

2. Properties of the refraction index

2.1. Non-trapping behaviour
The goal of this subsection is to prove item (i) of our main Theorem

1.5.
We prove that the chosen refraction index n2(x) = n2

∞ − λf(r)g(θ1) in
(23) is non-trapping on the zero-energy level H0 = {(x, ξ) ∈ R2d, s.t. ξ2/2 =
n2(x)}.

We first observe that the zero energy level has the more explicit value

H0 =
{

(x, ξ) ∈ R2d, s.t. x = (r, θ1, . . . , θd−1),
ξ2

2
= n2

∞ − λf(r)g(θ1)
}

.

We readily define the following two regions. The first one is usually called
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the classically forbidden region: any trajectory living on the zero-energy
level cannot reach the set B∅. The second one is sometimes called here the
bump of the refraction index: it is the region where the refraction index
actually varies with x. Outside this region, the refraction index is constant
and the Hamiltonian trajectories associated with h(x, ξ) = |ξ|2/2 + n2(x)
are straight lines.

Definition 2.1

( i ) We denote by B∅ the set (classically forbidden region)

B∅ := {x ∈ Rd, s.t. n2(x) < 0}
= {x = (r, θ1, . . . , θd−1), s.t. n2

∞ < λf(r)g(θ1)}.

( ii ) We denote by Bp the set (bump)

Bp := {x = (r, θ1, . . . , θd−1), s.t. R− 1 ≤ r ≤ R + 1, |θ1| ≤ 2θ0}.

Remark From the definition of B∅ and the two functions f(r) = χ(2(r−
R)) and g(θ1) = χ(θ1/θ0) it is clear that there exists µ ∈]1, 2[ such that

B∅ ⊂
{

R− µ

2
≤ r ≤ R +

µ

2
, |θ1| ≤ µθ0

}
. (29)

It suffices to take µ such that

0 < χ(µ) <
n∞√

λ
(hence µ ∈]1, 2[). (30)

Our main step lies in proving the following escape estimate

Lemma 2.2 Select the refraction index n2(x) as in (23) and assume con-
dition (25) is fulfilled, namely 1 − cos(2θ0) < 1/(2R). Take a Hamilto-
nian trajectory X(t, x, ξ) ≡ X(t) living on the zero-energy level and define
x0 := (R, 0, . . . , 0) in Cartesian coordinates.

Then, there exists α > 0, as well as β ∈ R and γ ∈ R, such that

∀ t ≥ 0, |X(t)− x0|2 ≥ α t2 + β t + γ.

An immediate corollary of the above Lemma is
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Figure 3. Bump of refraction index, and classically forbiden region.

Corollary 2.3 Assume condition (25) is fulfilled, namely 1 − cos(2θ0) <

1/(2R). Then the refraction index n2(x) in (23) is non-trapping on the
zero-energy level.

Proof of Corollary 2.3. Apply the preceding lemma and let t → +∞. ¤

Proof of Lemma 2.2.
• First step. We compute the second derivative of |X(t)− x0|2 and get

1
2

d2

dt2
|X(t)− x0|2 =

〈
d2

dt2
X(t), X(t)− x0

〉
+

∣∣∣∣
dX

dt
(t)

∣∣∣∣
2

,

= 〈∇n2(X(t)), X(t)− x0〉+
∣∣∣∣
dX

dt
(t)

∣∣∣∣
2

,

= 〈∇n2(X(t)), X(t)− x0〉+ n2(X(t)), (31)

where we have used the fact that the Hamiltonian trajectory (X(t),Ξ(t))
belongs to H0. Now, letting X(t) = (r, θ1, . . . , θd−1) in hyperspherical
coordinates, we introduce the radial vector ~ur = X(t)/|X(t)| as well as
the orthoradial vector ~uθ1 associated with the angular variable θ1, whose
Cartesian coordinates are (− sin(θ1), cos(θ1) cos(θ2), cos(θ1) sin(θ2) cos(θ3),
. . . , cos(θ1) sin(θ2) sin(θ3) · · · sin(θd−2) cos(θd−1), cos(θ1) sin(θ2) sin(θ3) · · ·
sin(θd−2) sin(θd−1)) (see equation (17)). We have
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〈∇n2(X(t)), X(t)− x0〉 =
〈
− λf ′(r)g(θ1)~ur − λ

f(r)
r

g′(θ1)~uθ1 , r ~ur −R~e1

〉
,

= Fr(r, θ1) + Fθ(r, θ1),

where

Fr(r, θ1) = −λf ′(r)g(θ1) (r −R cos(θ1)) ,

Fθ(r, θ1) = −λ
R

r
f(r)g′(θ1) sin(θ1).

(32)

Eventually we obtain

1
2

d2

dt2
|X(t)− x0|2 = Fr(r, θ1) + Fθ(r, θ1) + n2(X(t)). (33)

Therefore, the lemma is proved once we establish the existence of α > 0
such that

Fr(x) + Fθ(x) + n2(x) ≥ α > 0

whenever x ∈ ΠxH0 = Rd \B∅ (where Πx denotes the projection (x, ξ) 7→ x

from R2d to Rd).
We readily notice that n2 and Fθ are clearly non-negative function on

the whole of Rd.

• Step two: non-negativity of Fr. First, on Rd \Bp, the function Fr is
zero, hence non-negative. In the same way on Bp∩{R−1/2 ≤ r ≤ R+1/2},
we have f ′ ≡ 0, hence Fr ≡ 0 ≥ 0. There remains to study the non-
negativity of Fr on the two sets {R − 1 ≤ r ≤ R − 1/2, |θ1| ≤ 2θ0} and
{R + 1/2 ≤ r ≤ R + 1, |θ1| ≤ 2θ0}.

On {R− 1 ≤ r ≤ R− 1/2, |θ1| ≤ 2θ0}, we have

r −R cos(θ1) ≤ R− 1
2
−R cos(2θ0) = R(1− cos(2θ0))− 1

2
< 0,

thanks to our assumption (25). Since f ′ ≥ 0 on {R− 1 ≤ r ≤ R− 1/2}, we
get Fr ≥ 0 on {R − 1 ≤ r ≤ R − 1/2, |θ1| ≤ 2θ0}. A similar computation
proves that Fr ≥ 0 on the set {R + 1/2 ≤ r ≤ R + 1, |θ1| ≤ 2θ0}.

We have obtained that Fr ≥ 0 on the whole of Rd.
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• Step three: decomposition of Rd. We have just proved that Fr(x)+
Fθ(x) + n2(x) ≥ 0 for all x ∈ Rd. We now wish to obtain a positive
lower bound for x /∈ B∅. The argument relies on the fact that the re-
fraction index n2 is positive away from the boundary ∂B∅, where ∂B∅ :=
{(r, θ1, . . . , θd−1), f(r)g(θ1) = n2

∞/λ}, while the term Fr + Fθ stemming
from the gradient of the refraction index in (33) is positive close to the
boundary ∂B∅. This is the reason for the decomposition we now introduce.

We define the set (piece of ring)

Cα,β := {R− α ≤ r ≤ R + α, −β ≤ θ1 ≤ β}.

We know from the remark after Definition 2.1 that there exist µ ∈]1, 2[ such
that

B∅ ⊂ CR+µ/2,µθ0 .

We therefore decompose

Rd \B∅ = (Rd \ CR+µ/2,µθ0) ∪ (CR+µ/2,µθ0 \B∅).

We readily observe that, by construction of µ (namely χ(µ)2 ∈]0, n2
∞/λ[ –

see (30)), for any x ∈ Rd \ CR+µ/2,µθ0 , we have the lower bound

n2(x) = n2
∞ − λf(r)g(θ1) ≥ n2

∞ − λχ(µ)2 =: cn2 > 0,

There only remains to prove the existence of c∇ > 0 such that Fr +Fθ ≥ c∇
on CR+µ/2,µθ0 \B∅.

• Step four: positive lower bound for Fr + Fθ on CR+µ/2,µθ0
\ B∅.

Take ν ∈]1, 2[ such that

n∞√
λ

< χ(ν) < 1.

where χ is the truncation function defined in (18). With this choice of ν, we
clearly have, whenever x ∈ CR+ν/2,νθ0 , the relation n2(x) = n2

∞ − λχ(2(r−
R))χ(θ1/θ0) ≤ n2

∞ − λχ(ν)2 < 0, hence

CR+ν/2,νθ0 ⊂ B∅ ⊂ CR+µ/2,µθ0 .
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Therefore, it is enough to obtain a lower bound on Fr + Fθ on the set
CR+µ/2,µθ0 \ CR+ν/2,νθ0 .

To this end, we decompose (see Figure 4)

CR+µ/2,µθ0 \ CR+ν/2,νθ0 ⊂ Z1
r ∪ Z2

r ∪ Z1
θ ∪ Z2

θ , with

Z1
r := {R− µ/2 ≤ r ≤ R− ν/2, |θ1| ≤ νθ0},

Z2
r := {R + ν/2 ≤ r ≤ R + µ/2, |θ1| ≤ νθ0},

Z1
θ := {R− µ/2 ≤ r ≤ R + µ/2, −µθ0 ≤ θ1 ≤ −νθ0},

Z2
θ := {R− µ/2 ≤ r ≤ R + µ/2, νθ0 ≤ θ1 ≤ µθ0}.

Figure 4. Zone of study.

On Z1
r . We use the structural hypothesis (25) to get

Fr(x) = −λf ′(r)g(θ1)(r −R cos(θ1))

≥ −λf ′(r)g(θ1)
(

R− ν

2
−R cos(2θ0)

)

≥ λf ′(r)g(θ1)
ν − 1

2

≥ λ(ν − 1)
(

min
s∈[−µ,−ν]

χ′(s)
)(

min
|s|≤ν

χ(s)
)

=: c1 > 0. (34)

A similar proof establishes that, whenever x ∈ Z2
r we have
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Fr(x) ≥ λν
(

min
s∈[ν,µ]

[−χ′(s)]
)(

min
|s|≤ν

χ(s)
)

=: c2 > 0.

On Z1
θ . The important term is now Fθ. We have

Fθ(x) = −λ
R

r
f(r)g′(θ1) sin(θ1) ≥ λ

R

r
f(r)g′(θ1) sin(νθ0)

≥ λ
R sin(νθ0)

θ0(R + µ/2)

(
min
|s|≤µ

χ(s)
)(

min
s∈[−µ,−ν]

χ′(s)
)

=: c3 > 0.

A similar argument establishes that, whenever x ∈ Z2
θ we have

Fθ(x) ≥ λ
R sin(νθ0)

θ0(R + µ/2)

(
min
|s|≤µ

χ(s)
)(

min
s∈[ν,µ]

[−χ′(s)]
)

=: c4 > 0.

Gathering all estimates, there exists a positive constant c∇ > 0 such
that

∀x ∈ CR+µ/2,µθ0 \ CR+ν/2,νθ0 , Fr(x) + Fθ(x) ≥ c∇ > 0.

• Step five: end of the proof. Putting all estimates together, we obtain

∀x ∈ ΠxH0 = Rd \B∅, Fr(x) + Fθ(x) + n2(x) ≥ min(cn2 , c∇) =: α > 0.

The lemma is proved. ¤

2.2. Refocusing Set
The goal of this subsection is to establish part (ii) of our main Theorem

1.5.
Our main result is

Proposition 2.4 Let n2 be the potential defined in (23). Assume the
structural hypothesis (25) is fulfilled, namely 1− cos(2θ0) < 1/(2R). Then,
the refocusing set defined in Definition 1.2 as

M =
{

(t, ξ, η) ∈]0,+∞[×R2d

s.t.
|η|2
2

= n2(0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η

}
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satisfies

M =
{
(TR, ξ, η), s.t. ξ = −η = (r, θ1, . . . , θd−1), r =

√
2n2(0), |θ1| ≤ θ0

}
,

where TR > 0 is the unique positive time such that X(TR, 0, (
√

2n2(0),
0 . . . , 0)) = 0.

Proof of Proposition 2.4. Consider a trajectory X(t, 0, ξ) ≡ X(t) on the
zero energy level, with ξ = (r, θ1, . . . , θd−1) in hyperspherical coordinates.

If |θ1| ≥ 2θ0, it is clear that X(t) is a straight line which never enters
Bp, and the equation X(t, 0, ξ) = 0 with t > 0 has no solution.

We need to understand the geometry when the trajectory reaches Bp,
i.e. when |θ1| < 2θ0.

We prove below that two cases occur. If |θ1| ≤ θ0, the trajectory remains
along a line, and it is reflected by the refraction index towards the origin.
If θ0 < |θ1| < 2θ0, the force acting on the trajectory has a non-vanishing
component in the orthoradial direction, which prevents the trajectory to go
back to the origin. The proposition follows.

Let us come to a proof.

• First case: |θ1| ≤ θ0.
Consider the trajectory Y (t) defined in hyperspherical coordinates as

Y (t) = (r(t), θ1, . . . , θd−1),

with r(t) solution to the ordinary equation r′′ = −λf ′(r) with initial data

r(0) = 0, r′(0) =
√

2n2(0).

Then, (Y (t), Y ′(t)) satisfies the Hamiltonian ODE (13) associated with
h(x, ξ) = |ξ|2/2 + n2(x). Since Y (0) = X(0) = 0, and Y ′(0) = X ′(0) = ξ,
uniqueness provides X(t) = Y (t) for all t. The trajectory X(t) is radial.

It is clear that the radial trajectory t 7→ r(t) reaches the region {R−1 ≤
r ≤ R + 1} at time te = (R − 1)/|ξ| = (R − 1)/

√
2 n2(0) > 0, where

te = inf{t > 0, X(t) ∈ Bp}. Now, according to Corollary 2.3, the trajectory
r(t) necessarily leaves the region {R − 1 ≤ r ≤ R + 1} at some later time
ts > te, where ts = inf{t > te, X(t) /∈ Bp}. The trajectory can either leave
the bump at r = R − 1 or at r = R + 1. The case r = R + 1 is forbidden,
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for in the contrary case, using continuity, there would exist a time tc such
that r(tc) = R, hence X(tc) ∈ B∅, which is not allowed. Therefore, the
trajectory leaves the bump Bp at X(ts) where |X(ts)| = r(ts) = R − 1.
Energy conservation, together with the fact that the trajectory is radial,
implies that X ′(ts) = −ξ. Therefore, the trajectory for later times t ≥ ts is
a straight line with constant speed −ξ. We deduce that there exists a unique
TR > ts such that X(TR, 0, ξ) = 0, and we have as desired Ξ(TR, 0, ξ) = −ξ.

• Second case: θ0 < |θ1| < 2θ0.
We first assume that d = 2, and next generalize the argument to d ≥ 3

using the symmetries of the system. To fix the ideas, we assume in the
following that θ0 < θ1 < 2θ0, the proof being the same when θ1 has the
opposite sign.

∗ In dimension d = 2.
Let te = (R − 1)/|ξ| be the time when the trajectory enters Bp, as in

the preceding case.
On the one hand, since the velocity Ξ(te) is radial and satisfies Ξ(te) =

|ξ| ~ur, there is an ε > 0 such that R − 1 < |X(t)| < R + 1 whenever t ∈
]te, te +ε]. On the other hand, by assumption we have θ1(te) = θ1 ∈]θ0, 2θ0[,
and continuity implies there is an ε > 0 such that θ0 < θ1(t) < 2θ0 whenever
t ∈ [te, te + ε]. Hence we may define

ts := sup{t ≥ te, s.t. ∀t′ ∈ [te, t], θ1(t′) ∈]θ0, 2θ0[ and X(t′) 6= 0.}.

Now, Hamilton’s equations of motion (13) can be written in polar coordi-
nates as





r′′ − r(θ′1)
2 = −λf ′(r)g(θ1),

2r′θ′1 + rθ′′1 = −λ
f(r)

r
g′(θ1).

Examining the second equation, we have (r2θ′1)
′ = 2rr′θ′1 + r2θ′′1 =

−λf(r)g(θ1), and we get whenever r(t) 6= 0,

θ′1(t) = − λ

r2(t)

∫ t

te

f(r(s))g′(θ1(s))ds. (35)

Therefore, since f(r) ≥ 0 for any r ≥ 0 while f(r) > 0 whenever R − 1 <
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r < R + 1, and since g′(θ1) ≤ 0 when θ0 ≤ θ1 ≤ 2θ0, while g′(θ1) < 0 when
θ0 < θ1 < 2θ0 we get, with the above definitions and observations,

θ′1(t) > 0 ∀t ∈]te, ts].

With this observation at hand, two cases may occur.
If ts = +∞, there is nothing to prove, for by definition of ts, we have

X(t) 6= 0 whenever 0 < t ≤ ts = +∞.
In the case ts < +∞, we already know X(t) 6= 0 whenever 0 < t < ts.

Besides, since θ′1(t) > 0 whenever 0 < t < ts, it is clear that the case
X(ts) = 0 is impossible (for in that case the trajectory would be a straight
line passing through the origin on some interval [t∗, ts] with te < t∗ < ts, in
contradiction with θ′1(t) > 0 on [t∗, ts]). Hence θ1(ts) = 2θ0 and θ′1(ts) > 0.
For that reason, the trajectory X(t) for times t > ts is a straight line with
constant velocity, which lies entirely in the set 2θ0 < θ1 < 2θ0 + π. In
particular, since θ′1(ts) > 0, the trajectory cannot be radial and we have
X(t) 6= 0 whenever t > ts in that case. This concludes the proof.

∗ In dimension d ≥ 3.
We use the invariance of n2 under the action of Od,1(R).
Take ξ ∈ Rd such that |ξ| =

√
2n2(0). Write ξ = (

√
2n2(0), θ1, . . . ,

θd−1) in hyperspherical coordinates. There exists a matrix Aξ ∈ Od,1(R)
such that Aξ ξ = (

√
2n2(0), θ1, 0, . . . , 0). On the other hand, denote by

(r(t), θ1(t)) the solution of Hamilton’s equations of motion (13) with initial
data (

√
2n2(0), θ1) in dimension 2. We set Y (t) = A−1

ξ (r(t), θ1(t), 0 . . . , 0).
Then Y (t) satisfies Hamilton’s equations of motion (13), with initial data
Y (0) = 0, Y ′(0) = ξ. Uniqueness provides Y (t) = X(t) for any t > 0. This,
combined with the previous step, provides X(t) 6= 0 for any t > 0. ¤

3. Convergence proof

The goal of this section is to prove item (iii) of our main Theorem 1.5.
The proof is performed in a number of steps. We begin by defining some

necessary notation.

3.1. The linearized hamiltonian flow
Let ϕ(t, x, ξ) = (X(t, x, ξ),Ξ(t, x, ξ)) denote the flow associated with

Hamilton’s equations of motion (13). The linearized flow, written F (t, x, ξ)
below, is



302 F. Castella and A. Klak

F (t, x, ξ) =
Dϕ(t, x, ξ)

D(x, ξ)
:=

(
A(t, x, ξ) B(t, x, ξ)
C(t, x, ξ) D(t, x, ξ)

)
,

where A(t), B(t), C(t), D(t) are by definition

A(t, x, ξ) =
DX(t, x, ξ)

Dx
, B(t, x, ξ) =

DX(t, x, ξ)
Dξ

,

C(t, x, ξ) =
DΞ(t, x, ξ)

Dx
, D(t, x, ξ) =

DΞ(t, x, ξ)
Dξ

.

The linearisation of (13) leads to





∂

∂t
A(t, x, ξ) = C(t, x, ξ), A(0, x, ξ) = Id,

∂

∂t
C(t, x, ξ) =

D2n2

Dx2
(X(t, x, ξ))A(t, x, ξ), C(0, x, ξ) = 0,

(36)

as well as




∂

∂t
B(t, x, ξ) = D(t, x, ξ), B(0, x, ξ) = 0,

∂

∂t
D(t, x, ξ) =

D2n2

Dx2
(X(t, x, ξ))B(t, x, ξ), D(0, x, ξ) = Id,

(37)

where Id is the identity matrix. To simplify, we write At(x, ξ), Bt(x, ξ), etc.
instead of A(t, x, ξ), B(t, x, ξ), etc. Furthermore, when there is no ambiguity
on the value of (x, ξ), we only write At, Bt, etc.

Finally, we define for later purposes the matrix Γ(t, x, ξ) as

Γ(t, x, ξ) = (C(t, x, ξ) + iD(t, x, ξ)) . (A(t, x, ξ) + iB(t, x, ξ))−1. (38)

3.2. A wave packet approach: preparing for a stationary phase
argument

The intermediate result in Proposition 1.6 establishes roughly that
〈wε, φ〉 ∼ 〈wout + w̃ε, φ〉 as ε → 0. Therefore, item (iii) of our main The-
orem reduces to proving 〈w̃ε, φ〉 ∼ 〈Lε, φ〉 as ε → 0. For that reason, this
preliminary paragraph is devoted to express the quantity
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〈w̃ε, φ〉 =
i

ε

∫ T1

θ

(
1− χ

(
t

θ

))
e−αεt〈Uε(t)χδ(Hε)Sε, φε〉dt

as an appropriate oscillatory integral. Our approach uses the technique
developped in [4], which in turn strongly uses a wave packet theorem due
to M. Combescure and D. Robert (see [7]). We skip here the details of the
proof, referring to [4].

The main result in this paragraph is the following

Proposition 3.1 (See [7]) Whenever X = (q, p, x, ξ, y, η) ∈ R6d and t ∈ R,
define the complex phase

ψ(t,X) :=
∫ t

0

(
p2

s

2
+ n2(qs)

)
ds− p.(x− q) + pt.(y − qt)

+ x.ξ − y.η + i
(x− q)2

2
+

1
2
Γt(y − qt).(y − qt), (39)

where qt := X(t, q, p), pt := Ξ(t, q, p), and Γt := Γ(t, q, p). Select an integer
N ∈ N. Select two truncation functions χ0(q, p) and χ1(x, y) both lying in
C∞0 (R2d), and such that

supp χ0(q, p) ⊂ {|q| ≤ 2δ} ∪ {||p|2/2− n2(q)| ≤ 2δ},
χ0(q, p) ≡ 1 on {|q| ≤ 3δ/2} ∪ {||p|2/2− n2(q)| ≤ 3δ/2},
χ1(x, y) ≡ 1 close to (0, 0).

Define the amplitude

aN (t,X) := e−αεt(1− χ)
(

t

θ

)
Ŝ(ξ)φ̂∗(η)χ0(q, p)χ1(x, y)PN

(
t, q, p,

y − qt√
ε

)
,

(40)

where PN (t, q, p, z) satisfies

PN (t, q, p, x) :=
1

πd/4
det(A(t, q, p) + iB(t, q, p))−1/2

c QN (t, q, p, x), (41)

and the square root det(A(t, q, p)+ iB(t, q, p))−1/2
c is defined by continuously

following the argument of the relevant complex number, starting from the
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value det(A(0, q, p) + iB(0, q, p) = 1 at time t = 0, while QN (t, q, p, x) is
a polynomial in the variable x ∈ Rd, whose coefficients vary smoothly with
(t, q, p), and ε, and which satisfies

QN (t, q, p, x) = 1 + O(
√

ε)

in the relevant topology. More precisely, we have




QN (t, q, p, x) = 1 +
∑

(k,j)∈IN

εk/2−jpk,j(t, q, p, x),

IN = {1 ≤ j ≤ 2N − 1, 1 ≤ k − 2j ≤ 2N − 1, k ≥ 3j},
(42)

for some pk,j’s which have at most degree k in the variable x. The explicit
value of the pk,j’s is skipped here.

With this notation at hand, the following holds

〈w̃ε, φ〉 =
i

ε(5d+2)/2

∫ T1

θ

∫

R6d

e(i/ε)ψ(t,X)aN (t,X)dtdX + OT1,δ(εN ). (43)

Sketch of proof of Proposition 3.1. Using the short-hand notation χ̃δ(t) :=
e−αεt(1− χ)(t/θ), we have

〈w̃ε, φ〉 = i/ε

∫ T1

θ

χ̃δ(t) 〈χδ(Hε)Sε, Uε(−t)φε〉dt. (44)

To compute the term Uε(−t)φε accurately, we use a projection over the
overcomplete basis of L2(Rd) obtained by using the so-called gaussian wave
packets, namely the family of functions indexed by (q, p) ∈ R2d defined by

ϕε
q,p(x, ξ) :=

1
(πε)d/4

exp
(

i

ε
p.

(
x− q

2

))
exp

(
− (x− q)2

2ε

)
.

The point indeed is that, as proved by Combescure and Robert in [7], we
have

Uε(−t) ϕε
q,p(x, ξ)

= OT1,δ(εN ) +
1

εd/4
exp

(
i

ε
pt.

(
x− qt

2

))
exp

(
− |x− qt|2

2ε

)
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× exp
(

i

ε

[ ∫ t

0

(
p2

s

2
+ n2(qs)

)
ds− qt · pt − q · p

2

])
PN

(
t, q, p,

x− qt√
ε

)

(45)

in L∞([0, T1];L2(Rd)). In other words, we have a quite explicit complex-
phase/amplitude representation of the Schrödinger propagator when acting
on the gaussian wave packets.

This observation leads to writing, successively, in (44)

〈χδ(Hε)Sε, Uε(−t)φε〉 =
1

(2πε)d

∫

R2d

〈
χδ(Hε)Sε, ϕ

ε
q,p

〉〈
ϕε

q,p, Uε(−t)φε

〉
dq dp,

=
1

(2πε)d

∫

R2d

〈
χδ(Hε)Sε, ϕ

ε
q,p

〉〈
Uε(t)ϕε

q,p, φε

〉
dq dp.

Now, the idea is to replace the factor Uε(t)ϕε
q,p by its approximation de-

rived above. Yet a few preliminary steps are in order. The first one uses
the truncation in energy χδ(Hε), together with the functional calculus for
pseudo-differential operators of Helffer and Robert (see [11]), to replace this
truncation by an explicit truncation near the set p2/2 + n2(q) = 0, up to
small error terms. The second step consists in using the Parseval formula
to write (we want to exploit the source term Sε on the Fourier side)

〈Sε, φ
ε
q,p〉 =

1
(2πε)d/2

∫
ei(x·ξ/ε) Ŝ(ξ)φε

q,p(x) dx dξ

=
1

(2πε)d/2

∫
χ̃(x) ei(x·ξ/ε) Ŝ(ξ) φε

q,p(x) dx dξ,

for some function χ̃(x) that truncates close to x = 0, and similarly

〈
Uε(t)ϕε

q,p, φε

〉
=

1
(2πε)d/2

∫
χ̃(y) ei(y·η/ε) φ̂(η)

(
Uε(t)ϕε

q,p

)
(y) dy dη.

These two steps explain the truncation factors χ0 and χ1 in the Proposi-
tion, which act close to the zero energy-level in phase-space (this is where
functional calculus is used) and close to the origin in physical space. The
last step consists in exploiting formula (45) in the obtained representation.

Eventually, one obtains the desired formula. ¤
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3.3. Preparing for a stationary phase argument
This slightly technical paragraph is devoted to proving that the obtained

phase ψ in Proposition 3.1 satisfies the assumptions of the stationary phase
Theorem.

Our main result in this paragraph is the Proposition after the following
Lemma.

Lemma 3.2 Let n2 be any smooth refraction index. Then, the following
holds

( i ) The stationary set associated with the phase ψ in (39), defined as

MX :=
{
(t,X) = (t, q, p, x, ξ, y, η) ∈ [θ, T1]× R6d

s.t. ∇t,Xψ(t,X) = 0 and Im ψ(t,X) = 0
}

satisfies

MX = {(t, q, p, x, ξ, y, η)

s.t. x = y = q = 0, ξ = p, (t, p, η) ∈ M}, (46)

where we recall that M = {(t, p, η), X(t, 0, p) = 0, Ξ(t, 0, p) =
η, η2/2 = n2(0)} by definition.

( ii ) We have, whenever m = (t,X) ∈ MX , the relation6

Ker(D2ψ|m) =
{
(T, Q, P, X,Ξ, Y,H) ∈]0, +∞[×R6d,

X = Y = Q = 0, Ξ = P, ηT H = 0,

Bt(0, p)P + Tη = 0,

−H + Dt(0, p)P + T∇n2(0) = 0
}
. (47)

Note that this Lemma does not use the particular structure of our index.

Proof of Lemma 3.2. A mere computation of Imψ and ∇ψ allows to write
(46). Differentiating ∇ψ once allows to write (47). For more details, the
reader may check [4]. ¤

6the involved quantities Bt and Dt are those defined in (37).
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With this Lemma at hand, our key result in this section is the following

Proposition 3.3 Let n2 be the refraction index defined in (23). We recall
that the refocusing set M is computed in Lemma 2.4 and satisfies

M =
{
(TR, ξ, η) s.t. ξ = −η = (r, θ1, . . . , θd−1), r =

√
2n2(0), |θ1| ≤ θ0

}
.

Now, take any

m ∈
◦

MX =
{
(t, q, p, x, ξ, y, η) s.t. x = y = q = 0, ξ = p,

(t, p, η) ∈ M, with p = (r, θ1, . . . , θd−1), and |θ1| < θ0

}

Then, we have

KerD2ψ|m = TmMX ,

where TmMX denotes the space tangent to Mx at point m.

The remainder part of this subsection is devoted to the proof of Propo-
sition 3.3. We begin by proving the Proposition in the case

m = m0 := (TR, 0, p0, 0, p0, 0,−p0), where p0 :=
(√

2n2(0), 0, . . . , 0
)
.

We next generalize the result to other values of m, using the symmetries of
the problem.

3.3.1 Proof of Proposition 3.3 when m = m0

The computation of Tm0MX on the one hand is rather easy

Lemma 3.4 The space Tm0MX is given by

Tm0MX = {(T,Q, P, X,Ξ, Y,H)

s.t. = X = Y = Q = T = 0, Ξ = P = −H, P.p0 = 0}.

Proof of Lemma 3.4. This is a mere computation starting from the def-
inition of the refocusing set M written as M = {(t, p, η), X(t, 0, p) =
0, Ξ(t, 0, p) = η, η2/2 = n2(0)}. ¤

In order to determine KerD2ψ|m0
the first step it to compute the ma-



308 F. Castella and A. Klak

trices Bt and Dt involved in the linearized flow, see (37).

Lemma 3.5 Let n2 be the potential defined in (23). Then, we have

D(TR, 0, p0) :=
∂Ξ
∂ξ

(TR, 0, p0) = −Id,

B(TR, 0, p0) :=
∂X

∂ξ
(TR, 0, p0) =

(
b11 0
0 Od−1

)
,

(48)

where Id is the identity matrix, b11 ∈ R and Od−1 is a square matrix of
dimension d− 1 equal to 0.

Proof of Lemma 3.5. We recall that the index n2 is invariant under the
action of Od,1(Rd). Thus we first compute the components of D and B that
are invariant under Od,1(Rd), namely their first column. We next compute
the other columns by using the symmetries again, in conjunction with a
perturbation argument.

• Computation of (∂Ξ/∂ξ1)(TR,0, p0) and (∂X/∂ξ1)(TR,0, p0).
We start with (∂Ξj/∂ξ1)(TR, 0, p0) for j ≥ 2. We have

∂Ξj

∂ξ1
(TR, 0, p0)

= lim
ε→0

Ξj

(
TR, 0, (

√
2n2(0) + ε, 0 . . . , 0)

)− Ξj

(
TR, 0, (

√
2n2(0), 0 . . . , 0)

)

ε
.

Since the trajectory is radial we have

Ξj

(
TR, 0,

(√
2n2(0) + ε, 0 . . . , 0

))
= Ξj

(
TR, 0,

(√
2n2(0), 0 . . . , 0

))
= 0,

∀ j ≥ 2.

Hence, (∂Ξj/∂ξ1)(TR, 0, p0) = 0, ∀ j ≥ 2. A similar argument provides
(∂Xj/∂ξ1)(TR, 0, p0) = 0, ∀ j ≥ 2. There remains to determine the first
coefficient of D, namely (∂Ξ1/∂ξ1)(TR, 0, p0). Since the trajectory is radial,
and by conservation of the energy, we have for ε small enough

Ξ1

(
TR, 0,

(√
2n2(0) + ε, 0, . . . , 0

))
= −(√

2n2(0) + ε
)
,

Ξ1

(
TR, 0,

(√
2n2(0), 0, . . . , 0

))
= −

√
2n2(0).
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Thus,

d11 := lim
ε→0+

Ξ
(
TR, 0,

(√
2n2(0) + ε, 0, . . . , 0

))−Ξ
(
TR, 0,

(√
2n2(0), 0, . . . , 0

))

ε

= − 1.

On the other hand, using the same argument together with the fact that
X(t, 0, (λ, 0, . . . , 0)) is parallel to e1 for any value of t ∈ R and λ ∈ R,
provides the value of ∂X/∂ξ1(TR, 0, p0).

• Computation of ∂Ξ(TR, 0, p0)/∂ξj and ∂X(TR, 0, p0)/∂ξj (j ≥ 2).
Considering the symmetries of the problem, it is enough to consider

the case j = 2: the other components may be determined using the same
argument.

We perturb the initial speed along the direction e2, by a factor ε (see
Figure 5).

Figure 5. Perturbation of the initial speed.

Let Xε(t) be the solution of the perturbed problem

{
X ′′

ε (t) = ∇n2(Xε(t)), Xε(0) = 0, X ′
ε(0) = p0 + ε e2.

We expand Xε(t) with respect to ε and obtain Xε(t) = X0(t)+εX1(t)+ · · · .
With this notation we have X1(t) = (∂X/∂ξ2)(t) and X ′

1(t) = (∂Ξ/∂ξ2)(t).
To obtain the expansion in ε, we go back to the previous case (j = 1) using a
change of variables. Indeed, for ε small enough, we know that the trajectory
is radial along the direction X ′

ε(0). Let (ẽ1, . . . , ẽd) be a new basis defined
by ẽj := Oεej , with
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Oε :=




cos(θε) sin(θε) 0 . . . 0
− sin(θε) cos(θε) 0 . . . 0

0 0
...

... Id−2

0 0




,

cos(θε) =

√
2n2(0)√

2n2(0) + ε2
, sin(θε) =

ε√
2n2(0) + ε2

.

Let X̃ε be the coordinates of Xε in (ẽ1, . . . , ẽd), i.e. X̃ε = OεXε. We know
that for ε small enough we have n2(OεXε) = n2(Xε), and we deduce the
relations

X̃ε

′′
(t) = ∇n2(X̃ε(t)), X̃ε(0) = 0,

X̃ε

′
(0) =

(√
ε2 + p2

0, 0, . . . , 0
)

= p0 + O(ε2).

Hence it is clear that X̃ε(t) = X̃0(t) + O(ε2). Therefore, we recover

X0(t) + εX1(t) = O−1
ε

(
X̃0(t) + O(ε2)

)
= (Id + εE + O(ε2))

(
X̃0(t) + O(ε2)

)
,

with

E :=




0 − 1√
2n2(0)

0 . . . 0

1√
2n2(0)

0 0 . . . 0

0 0
...

... Od−2

0 0




.

In other words, we have

∀ t ∈ R, X0(t) = X̃0(t) and X1(t) = EX̃0(t).

Besides, the trajectory X̃0(t) is completely known, and in particular we have
X̃0(TR) = 0 and X̃0

′
(TR) = −p0. We deduce
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∂X

∂ξ2
(TR, 0, p0) = X1(TR) = EX̃0(TR) = 0,

∂Ξ
∂ξ2

(TR, 0, p0) = X ′
1(TR) = EX̃0

′
(TR) = −Ep0 = t(0,−1, 0, . . . , 0).

The columns of B and D (for j ≥ 3) are determined in the similar way. This
leads to (48). ¤

At this stage, we deduce the

Corollary 3.6 KerD2ψ|m0
= Tm0MX .

Proof of Corollary 3.6. According to (47), we have

Ker(D2ψ|m) =
{
(T,Q, P, X, Ξ, Y,H), X = Y = Q = 0,

Ξ = P, ηT H = 0, BTR
(0, p) P + Tη = 0,

−H + DTR
(0, p) P + T∇n2(0) = 0

}
.

Since η = −p0, we recover H = (0,H2, . . . , Hd) (in Cartesian coordinates).
Since ∇n2(0) = 0, we deduce that DTR

(0, p) P = H. According to Lemma
3.5, we deduce that H = −P . Finally, BTR(0,p)P = 0 hence T = 0. Thus,

KerD2ψ|m0
= {(T,Q, P, X,Ξ, Y,H),

X = Y = Q = T = 0, P = Ξ = −H, P.p0 = 0}.

Using Lemma 3.4, the proof is complete. ¤

3.3.2 Proof of Proposition 3.3 for any m

In this subsection, we prove the

Lemma 3.7 ∀m ∈
◦

MX , we have TmMX = Ker D2ψ|m .

Proof of Lemma 3.7. The idea is to use a family of transformations which

leave
◦

MX and n2 invariant (in a sense we define later), next to transport

the equality KerD2ψ|m0
= Tm0MX to any m ∈

◦
MX .

A family of transformations. Let m = (t, q, p, x, ξ, y, η) ∈
◦

MX .
We write m = (TR, 0, p, 0, p, 0,−p) for some p ∈

√
2n2(0)Sd−1. Thus, there
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exists Rp ∈ O(Rd) such that Rp(p) = p0. We define the map R̃m : R6d+1 −→
R6d+1 by

R̃m(t, q, p, x, ξ, y, η) =
(
t, Rp(q), Rp(y), Rp(p)︸ ︷︷ ︸

=p0

, Rp(ξ), Rp(y), Rp(η)
)
. (49)

By construction we have R̃m (m) = m0.
Action on the tangent place. We have identified that the set MX

satisfies

MX = {(t, q, p, x, ξ, y, η), s.t. t = TR, q = x = y = 0, p = ξ = −η, p2/2 = n2(0)}| {z }
:=gMX

∩ {p = (r, θ1, . . . , θd−1) with |θ1| ≤ θ0}.

The set M̃X is clearly invariant under the action of R̃m. Therefore, by

restricting the domain in the variable θ1, it is clear that whenever m ∈
◦

MX ,

there exists a neighbourhood U of m in
◦

MX such that U0 := R̃mU ⊂
◦

MX . Since the application R̃m is a linear map from U to U0 which satisfies
R̃m (m) = m0, we deduce

R̃m(TmMX) = Tm0MX .

Action on the kernel. We now compute the set R̃m(Ker(D2ψ|m)), as
follows

R̃m(Ker(D2ψ|m))

=
{
(T, Rp Q,Rp P, Rp X, Rp Ξ, Rp Y, Rp H), s.t. X = Y = Q = 0,

p.H = 0, BTR
(0, p)P + Tp = 0, DTR

(0, p) P = H
}
,

=
{
(T, Q, P, X,Ξ, Y,H), s.t. X = Y = Q = 0,

p.R−1
p H = 0, BTR

(0, p) R−1
p P + Tp = 0, DTR

(0, p) R−1
p P = R−1

p H
}
.

=
{
(T,Q, P, X,Ξ, Y,H), s.t. X = Y = Q = 0,

p0.H = 0, RpBTR
(0, p)R−1

p P + Tp0 = 0, RpDTR
(0, p)R−1

p P = H
}
.
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On the other hand, we claim that

RpBTR
(0, p)R−1

p = BTR
(0, p0), RpDTR

(0, p)R−1
p = BTR

(0, p0). (50)

Assuming the above identity is proved, we immediately deduce

R̃m (Ker(D2ψ|m)) = KerD2ψ|m0
.

We conclude by writing

R̃m (Ker(D2ψ|m)) = KerD2ψ|m0
= Tm0MX = R̃m (TmMX).

Thus, there only remains to prove (50). By construction of the potential we
clearly have

RpX(t, 0, p) = X(t, 0, p0), as well as n2(Rpx) = n2(x),

whenever x/|x| lies in the angular sector |θ1| ≤ θ0. This provides

D2n2

Dx2
(X(t, 0, p0)) =

D2n2

Dx2
(Rp X(t, 0, p)) = Rp

D2n2

Dx2
(X(t, 0, p))R−1

p .

Therefore, using the differential equation (37) relating the time evolution of
Bt and Dt, we recover the following system




∂

∂t
RpB(t, 0, p)R−1

p = RpD(t, 0, p)R−1
p , RpB(0, 0, p)R−1

p = 0,

∂

∂t
RpD(t, 0, p)R−1

p = Rp
D2n2

Dx2
(X(t, 0, p))B(t, 0, p)R−1

p ,

=
D2n2

Dx2
(RpX(t, 0, p))RpB(t, 0, p)R−1

p

=
D2n2

Dx2
(X(t, 0, p0))RpB(t, 0, p)R−1

p RpD(0, 0, p)R−1
p = Id.

Uniqueness of solutions to a differential system then gives

∀t, RpBt(0, p)R−1
p = Bt(0, p0), RpDt(0, p)R−1

p = Dt(0, p0).
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Relation (50) is proved. ¤

3.3.3 A useful byproduct of the proof of Proposition 3.3
Lemma 3.8 Let n2 be the refraction index defined in (23). Take any
m ∈ MX , written as m = (TR, 0, p, 0, p, 0,−p) with p =

(√
2n2(0), θ1, θ2,

. . . , θd−1

)
according to Lemma 2.4. Then,

ψ(m) is constant on the set |θ1| ≤ θ0.

Proof of Lemma 3.8. Considering the actual value of ψ(m), various terms
need to be computed. The term

∫ t

0
(p2

s/2 + n2(qs)) ds is clearly constant
whenever |θ1| ≤ θ0. The same statement holds for the factor pt · qt. The
only non-obvious factor is Γtqt · qt. As in the preceding proof we write

Γt(0, p)qt(0, p) · qt(0, p) = Γt(0, p)qt(0, R−1
p p0) · qt(0, R−1

p p0)

= RpΓt(0, p)R−1
p qt(0, p0) · qt(0, p0).

There remains to write

RpΓt(0, p)R−1
p = Rp(Ct(0, p) + iDt(0, p)) · (At(0, p) + iBt(0, p))−1R−1

p

=
(
RpCt(0, p)R−1

p + iRpDt(0, p)R−1
p

)

· (RpAt(0, p)R−1
p + iRpBt(0, p)R−1

p

)−1

= Γt(0, p0)

for we already know that RpBt(0, p)R−1
p = Bt(0, p0), RpDt(0, p)R−1

p =
Dt(0, p0), and a similar proof establishes RpAt(0, p)R−1

p = Bt(0, p0),
RpCt(0, p)R−1

p = Dt(0, p0). ¤

3.4. The stationary phase argument: Proof of item (iii) of our
main Theorem

The main result of the present section is

Proposition 3.9 Let n2 be the potential constructed according to (23).
Select a source S ∈ S(Rd). Then, the following holds.

( i ) If supp(Ŝ(ξ)) ∩ ∂Iθ0 = ∅, we have

∀φ ∈ S(Rd), 〈w̃ε − Lε, φ〉 = OT1,δ(
√

ε),
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where 〈Lε, φ〉 is defined in (26) above (see also the Remark after The-
orem 1.5), and ∂Iθ0 = {ξ = (|ξ|, θ1, . . . , θd−1) such that θ1 = ±θ0}
(see Definition 1.4).

( ii ) In the general case we have

∀φ ∈ S(Rd), 〈w̃ε − Lε, φ〉 = oT1,δ(ε0).

Proof of Proposition 3.9. Due to the fact that the stationary set MX in the
to-be-developped stationary phase argument has a boundary at θ1 = ±θ0,
the argument is in two steps. This is the reason why the above Proposition
distinguishes between two cases.

•• Proof of Proposition 3.9-part (i).
Outside the stationary set MX associated with the complex phase ψ, the

oscillatory integral (43) defining 〈w̃ε, φ〉 is of order O(ε∞). On the stationary
set MX and near the support of aN , the stationary set MX is a submanifold
without boundary, having codimension k = 6d+1− (d−1) = 5d+2. Indeed,
thanks to the hypothesis on the support of Ŝ, we have supp aN ∩ ∂MX = ∅.

Let us now come to the explicit application of the stationary phase
Theorem to the oscillatory integral (43). Writing p = (r, θ1, . . . , θd−1) in
hyperspherical coordinates, we define the application:

γ : R6d+1 ∩ supp aN −→ R5d+2 × Sd−1

(t, q, p, x, ξ, y, η) 7−→ (t− TR, q, x, y, ξ − p, η + p, r −
p

2n2(0)| {z }
=:α

, θ1, . . . , θd−1| {z }
=:θ

)

The map γ is a C∞-diffeomorphism between supp aN and γ(supp aN ).
Furthermore, we have by construction

(t,X) ∈ MX ∩ supp aN ⇐⇒ α = 0.

The new coordinates (α, θ) are adapted to the stationary set MX associated
with ψ. Making the change of variables (t,X) = γ−1(α, θ) in the integral
defining 〈w̃ε, φ〉 we have
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〈w̃ε, φ〉 = Oδ,T1(ε
N ) +

i

ε(5d+2)/2

∫

γ(supp aN )

e(i/ε)ψ◦γ−1(α,θ)

×
(

Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ−1(α, θ)χ3(α, θ) rd−1 dα dσ(θ),

(51)

where dσ(θ) denotes the standard euclidean surface measure on the unit
sphere Sd−1, and χ3 is a truncation function on some compact set, a neigh-
bourhood of MX , whose precise value is irrelevant. Here we have used the
non-stationary phase Theorem to reduce the original integral to an integral
on a given compact set.

Since for all point m ∈ MX ∩ supp aN we have Ker(D2ψ|m) = TmMX

(Lemma 3.7), the function D2ψ is non-degenerate in the normal direction
to MX , which gives

det
(

D2ψ ◦ γ−1

Dα2
(0, θ)

)
6= 0.

Furthermore, the projection of γ(supp aN ) onto the space variable θ is the
angular sector

ΠθIθ0 := {(θ1, . . . , θd−1), θ1 ∈]− θ0, θ0[},

where Πθ denotes the projection (r, θ1, . . . , θd−1) 7→ (θ1, . . . , θd−1). We can
now apply the stationary phase Theorem in (51). Remembering that the
codimension of the stationary set MX associated with ψ is 5d+2, we obtain
that for any integer L there exists a sequence (Q2`(∂))`∈{0,...,L} of operators
of order 2` such that

〈w̃ε, φ〉 = C1

∫

ΠθIθ0

exp
(

i
π

4
sgn

D2ψ ◦ γ−1

Dα2
(0, θ)

)

∣∣∣∣ det
D2ψ ◦ γ−1

Dα2
(0, θ)

∣∣∣∣
1/2

exp
(

i

ε
ψ ◦ γ−1(0, θ)

)

×
((

Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ−1χ3

)
(0, θ)dσ(θ)
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+
∫

ΠθIθ0

exp
(

i

ε
ψ ◦ γ−1(0, θ)

) L∑

`=1

ε` Q2`(∂)

×
((

Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ−1χ3

)
(0, θ)dσ(θ)

+ O

(
εL+1 sup

K≤2L+5d+5

∥∥∥∥∂K
(α,θ)

(
Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

)

◦ γ−1χ3

)∥∥∥∥
L∞

)
+ Oδ,T1(ε

N )

:= Iε + IIε + IIIε + Oδ,T1(ε
N ), (52)

with the value

C1 = (2π)(5d+2)/2 (2n2(0))(d−1)/2.

The last line in (52) serves as a definition of the three terms Iε, IIε and
IIIε, and the L∞-norm in IIIε is evaluated on a compact set of values of
(α, θ), whose precise value is irrelevant.

We compute these three contributions. Note that the retained value of
the integer L remains to be determined at this stage.

• Contribution of the remainder term IIIε in (52).
This term is best studied by coming back to the original variables (t,X)

instead of (α, θ). Expanding the k-th order derivatives involved in this term,
we clearly have

IIIε = O

(
εL+1 sup

K≤2L+5d+5

∥∥∥∥∂K
(t,X)

(
Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))∥∥∥∥
L∞

)

= O

(
εL+1 sup

K≤2L+5d+5

∥∥∥∥∂K
(t,X)PN

(
., ., .,

.√
ε

)∥∥∥∥
L∞

)
.

Hence, since

PN (t, q, p, x) = π−d/4 det(A(t, q, p) + iB(t, q, p))−1/2
c QN (t, q, p, x),

we recover
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IIIε = O
(
εL+1 sup

K≤2L+5d+5

∥∥∂K
(t,q,p,y)

(QN (t, q, p, (y − qt)/
√

ε)
)∥∥

L∞

)
.

Lastly, using (42) we have

QN (t, q, p, x) := 1 +
∑

(k,j)∈IN

εk/2−jpk,j(t, q, p, x),

where pk,j has at most degree k in x. We deduce

IIIε =
∑

(k,j)∈IN

O
(
εk/2−j+L+1 sup

K≤2L+5d+5

∥∥∂K
(t,q,p,y)

(
pk,j(t, q, p, (y − qt)/

√
ε)

)∥∥
)

=
∑

(k,j)∈IN

O
(
εk/2−j+L+1−k/2

)
= O

(
εL+1−(2N−1)

)
,

where we have used that j ≤ 2N − 1 whenever (k, j) ∈ IN (see (42)). There
remains to chose

L = 2N − 1

to recover

IIIε = O(ε).

• Contribution of IIε in (52).
This estimate is more delicate. Firstly, we have

IIε =
L∑

`=1

ε`O

(∥∥∥∥Q2`(∂)
((

Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ−1χ3

)
(0, θ)

∥∥∥∥
L∞

)
.

Hence, going back to the (t,X) variables again, and remembering that the
relation (α, θ) = (0, θ) implies y = qt = 0 and t = TR, we recover the identity

IIε =
L∑

`=1

ε`O

(
sup

K≤2`

∥∥∥∥∂K
(t,q,p,y)

∣∣
y=qt=0,t=TR

(
PN

(
t, q, p,

y − qt√
ε

))∥∥∥∥
L∞

)
,

where the L∞-norm is evaluated on some compact set of values of p. Now,
inserting the exact value of PN , we may write
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IIε =
L∑

`=1

ε`O

( ∑

(k,j)∈IN

sup
K≤2`

∥∥∥∥∂K
(t,q,p,y)

∣∣
y=qt=0,t=TR

×
(

εk/2−j pk,j

(
t, q, p,

y − qt√
ε

))∥∥∥∥
L∞

)

=
L∑

`=1

∑

(k,j)∈IN

ε` εk/2−j O

×
(

sup
K≤2`

∥∥∥∥∂K
(t,q,p,y)

∣∣
y=qt=0,t=TR

(
pk,j

(
t, q, p,

y − qt√
ε

))∥∥∥∥
L∞

)

Hence, using the fact that each pk,j is a polynomial in its last argument, so
that the above derivatives evaluated at y = qt = 0 only leave the zero-th
order term in the derived polynomial, we recover

IIε = O

( L∑

`=1

∑

(k,j)∈IN

ε` εk/2−j sup
K≤2`

ε−K/2

)

= O

( L∑

`=1

∑

(k,j)∈IN

ε` εk/2−j ε−`

)
= O

( L∑

`=1

∑

(k,j)∈IN

εk/2−j ε−`

)
= O(ε1/2),

where we have used that k − 2j ≥ 1 whenever (k, j) ∈ IN .

• Contribution of Iε in (52).
The integral defining Iε has the following more explicit value, where

p = (
√

2n2(0), θ1, . . . , θd−1), namely

Iε = π−d/4 C1

∫

ΠθIθ0

ei(π/4)sgn((D2ψ◦γ−1/Dα2)(0,θ))

∣∣∣∣ det
(

D2ψ ◦ γ−1

Dα2
(0, θ)

)∣∣∣∣
1/2

exp
(

i

ε
ψ(TR, 0, p, 0, p, 0,−p)

)

× det(A(TR, 0, p) + iB(TR, 0, p))−1/2
c Ŝ(p) φ̂∗(−p) dθ1 . . . dθd−1,

On top of that, we have

ψ(TR, 0, p, 0, p, 0,−p) =
∫ TR

0

( |ps(0, p)|2
2

+ n2(qs(0, p))
)

ds,
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while the fact that n2 is radial implies that ψ(TR, 0, p, 0, p, 0,−p) =
ψ(TR, 0, p0, 0, p0, 0,−p0) whenever p ∈ Iθ0 . For the same reason, we also
have whenever θ ∈ ΠθIθ0 the relation

ei(π/4)sgn((D2ψ◦γ−1/Dα2)(0,θ))

∣∣∣∣ det
(

D2ψ ◦ γ−1

Dα2
(0, θ)

)∣∣∣∣
1/2

=
ei(π/4)sgn((D2ψ◦γ−1/Dα2)(0,0))

∣∣∣∣ det
(

D2ψ ◦ γ−1

Dα2
(0, 0)

)∣∣∣∣
1/2

together with the identity, valid whenever p ∈ Iθ0 ,

det(A(TR, 0, p) + iB(TR, 0, p))−1/2
c = det(A(TR, 0, p0) + iB(TR, 0, p0))−1/2

c .

Eventually, we have obtained

Iε = Cn2,d e((i/ε)
R TR
0 (|ps(0,p0)|2/2+n2(qs(0,p0)))ds)

∫

Iθ0

Ŝ(p)φ̂∗(−p) dσθ0(p),

(53)
with

Cn2,d :=
π−d/4 (2π)(5d+2)/2ei(π/4)sgn((D2ψ◦γ−1/Dα2)(0,0))

∣∣∣∣ det
(

D2ψ ◦ γ−1

Dα2
(0, 0)

)∣∣∣∣
1/2

× det(A(TR, 0, p0) + iB(TR, 0, p0))−1/2
c .

This ends the proof of Proposition 3.9-part (i).

•• Proof of Proposition 3.9-part (ii).
In that case, the argument is essentially the same (a stationary phase

argument in the variable α), up to a convenient use of the dominated con-
vergence Theorem (to deal with the variable θ1, and more specifically with
the boundary θ1 = ±θ0).

Namely, we first write, as in the proof of part (i) of the Proposition,

〈w̃ε, φ〉 = Oδ,T1(ε
N ) +

1
ε(5d+2)/2

∫

γ(supp aN )

e(i/ε)ψ◦γ−1(α,θ)

×
(

Ŝ(.)φ̂∗(.)PN

(
., ., .,

.√
ε

))
◦ γ−1(α, θ)χ3(α, θ) rd−1 dα dσ(θ),

(54)
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where χ3 is a truncation function on some compact set, a neighbourhood of
MX , whose precise value is irrelevant. Here we have used the non-stationary
phase Theorem to reduce the original integral to an integral on a given
compact set. The key point now lies in writing,

〈fwε, φ〉 = Oδ,T1 (εN ) +

Z
dσ(θ)

„
1

ε(5d+2)/2

Z
dα e(i/ε)ψ◦γ−1(α,θ)

„
bS(.)bφ∗(.)PN

„
., ., .,

.√
ε

««
◦ γ−1(α, θ)χ3(α, θ) rd−1

«

| {z }
=:Jε(θ)

.

(55)

With this formulation in mind, our next objective is to prove that whenever
η > 0 is a small parameter we have

∫

|θ1±θ0|≤η

dσ(θ)|Jε(θ)| ≤ C η, (56)

for some C > 0 independent of ε and η. It is clear indeed that the upper-
bound (56), in conjunction with part (i) of the Proposition, provides a com-
plete proof of Proposition 3.9-part (ii).

Let us now concentrate on the case |θ1 − θ0| ≤ η (the proof in the case
|θ1 + θ0| ≤ η is the same).

In order to prove (56), we fix a value (θ0
2, . . . , θ

0
d−1) and we prove that,

given (θ0
2, . . . , θ

0
d−1), there is a ρ0 > 0, and a C > 0 independent of ε, such

that

∀θ such that
∣∣θ − (θ0.θ

0
2, . . . , θ

0
d−1)

∣∣ ≤ ρ0, we have |Jε(θ)| ≤ C. (57)

Covering the whole set {θ ∈ Sd−1; |θ1− θ0| ≤ η} by finitely many sets of the
form {|θ− (θ0.θ

0
2, . . . , θ

0
d−1)| ≤ ρ0} clearly provides the desired relation (56)

once (57) is proved.
Now, relation (57) results from an application of the stationary phase

Theorem, with complex phase and with parameter. Here α is the variable
used for the stationary phase itself, while θ is the parameter, and ψ ◦ γ−1 is
the complex phase. We introduce the short-hand notation θ0 = (θ0, (θ′)0) =
(θ0, θ

0
2, . . . , θ

0
d−1) for convenience. It has already been established7 that
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Im(ψ ◦ γ−1)(α, θ) ≥ 0, ∀(α, θ),

Im(ψ ◦ γ−1)(α = 0, θ = θ0) = 0,

∇α(ψ ◦ γ−1)(α = 0, θ = θ0) = 0,

det
(

D2ψ ◦ γ−1

Dα2

)
(α = 0, θ = θ0) 6= 0

Therefore, the stationary phase theorem with parameter ensures that close
to θ = θ0 there is an expansion of the form

Jε(θ) = eiφ(θ)/ε

( L∑

`=0

ε`

(
Q2`(∂α)

(
Ŝ(.) φ̂∗(.) PN

(
., .,

.√
ε

)
◦ γ−1 χ3(.)

))0

(θ)
)

+ R(ε, L, θ),

for some smooth functions φ and R(ε, L, θ), where the Q2`’s are differential
operators of order 2` in the variable α, and, for any function u(α, θ), the
notation u0(θ) refers to any smooth function u0(θ) that belongs to the same
residue class than the original function u(α, θ) modulo the ideal generated
by ∇αψ ◦ γ−1(α, θ) (see Hörmander [12, Section 7.7], for the details). With
this notation, we actually have φ = (ψ ◦γ−1)0. Besides, the remainder term
R satisfies as the term IIIε in the previous step an estimate of the form

|R(ε, L, θ)|

≤ CL εL+1

(
sup

K≤2(L+1)

∥∥∥∥∂K
α

((
Ŝ(.) φ̂∗(.) PN

(
., ., .,

.√
ε

)) ◦ γ−1 χ3(.)
)∥∥∥∥

L∞

)
,

for some constant CL > 0 independent of ε, provided θ is close to θ0 (inde-
pendently of ε). These two ingredients immediately provide, using the same
estimates as we did for the terms IIIε and IIε above, the upper-bound,
valid for θ close to θ0,

7Stricto sensu, these relations have only be proved when |θ1| < θ0, and we here extend

the result to the case θ1 = θ0. This is allowed due to the invariance of the phase on the
parameter θ whenever |θ1| ≤ θ0 – Lemma 3.8.
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|Jε(θ)| ≤ C

( L∑

`=0

ε`

(
Q2`(∂α)

(
Ŝ(.) φ̂∗(.) PN

(
., .,

.√
ε

)
◦ γ−1 χ3(.)

))0

(θ)
)

+ R(ε, L, θ),

Gathering powers of ε as in the previous part of the proof, provides the
upper bound

|Jε(θ)| ≤ C,

where C does not depend on ε and θ is close to θ0, independently of ε. Point
(57) is proved.

We immediately deduce that (56) holds, and the proof of Proposition
3.9 – part (ii) is complete. ¤

3.5. Conclusion
Gathering the intermediate result in Proposition 1.6, together with

Proposition 3.9, gives item (iii) of Theorem 1.5, by conveniently choosing
the parameters δ, θ, T0 and T1.
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