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Continuity of Julia sets and its Hausdorff dimension

of Pc(z) = zd + c

Wei Zhuang
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Abstract. Given d ≥ 2 consider the family of monic polynomials Pc(z) = zd + c, for

c ∈ C. Denote by Jc and HD(Jc) the Julia set of Pc and the Hausdorff dimension of Jc

respectively, and let Md = {c|Jc is connected} be the connectedness locus; for d = 2

it is called the Mandelbrot set. We study semihyperbolic parameters c0 ∈ ∂Md: those

for which the critical point is not recurrent by Pc0 , 0 ∈ Jc0 , and without parabolic

cycles. We prove that if Pcn → Pc0 algebraically, then for some C > 0,

dH(Jcn , Jc0 ) ≤ C|cn − c0|1/d
,

where dH denotes the Hausdorff distance. If, in addition, Pcn → Pc0 preserving

critical relations, then Pcn is semihyperbolic for all n À 0, and

HD(Jcn ) → HD(Jc0 ).
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1. Introduction and main results

Let R(z) be a rational map of degree d = deg R ≥ 2 on the complex
sphere C. The Julia set J(R) of a rational function R is defined to be the
closure of all repelling periodic points of R, its complement set is called Fatou
set F (R). It is known that J(R) is a perfect set (so J(R) is uncountable,
and no point of J(R) is isolated), and also that if J(R) is disconnected, then
it has infinitely many components.

Let C be the set of critical points of a rational map R. Then the set of
critical values of Rn is

Ctvn(R) = R(C) ∪R2(C) ∪ · · ·Rn(C).

The ω-limit set of the set Ctvn(R) of critical values of R : C 7→ C is defined
by

2000 Mathematics Subject Classification : 37F35.



386 W. Zhuang

Ω(R) =
∞⋂

n=0

∞⋃

k=n

Rk(Ctvn(R)).

In other words z ∈ Ω(R) if and only if there exist c ∈ Ctvn(R) and a
sequence nk →∞ (k ≥ 1) of positive integers such that z = limk→∞Rnk(c).

We call a critical point c of R recurrent if c ∈ Ω(R); otherwise c is called
non-recurrent, denoted by NCP maps.

In this paper we consider the NCP maps R : C → C called semihyper-
bolic maps: those for which the critical points are not recurrent by R and
without parabolic cycles.

We say rational maps Rn converge to R algebraically if deg Rn = deg R

and, when Rn is expressed as the quotient of two polynomials, the coef-
ficients can be chosen to converge to those of R. Equivalently, Rn → R

uniformly in the spherical metric.
Given that Rn → R algebraically. Let b ∈ J(R) be a preperiodic critical

point, satisfying Ri(b) = Rj(b) for some i > j > 0. Suppose for all such b

and for all n À 0, the maps Rn have critical points bn ∈ J(Rn) with the
same muliplicity as b, bn → b and Ri

n(bn) = Rj
n(bn). Then we say Rn → R

preserving critical relations.
In this paper we study dynamics of polynomials Pc = zd +c, d ≥ 2, such

that the critical point 0 is not recurrent and 0 ∈ Jc. These polynomials are
semihyperbolic in the sense of [1].

HD denotes the Hausdorff dimension; n À 0 means for all n sufficiently
large. We have the following main theorem:

Main Theorem Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic. If
Pcn

→ Pc0 algebraically, then for some C > 0,

dH(Jcn
, Jc0) ≤ C|cn − c0|1/d,

where dH denotes the Hausdorff distance.
If, in addition, Pcn

→ Pc0 preserving critical relations, then Pcn
is

semihyperbolic for all n À 0, and

HD(Jcn) → HD(Jc0).
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2. Preliminaries and the construction of a net

Let X be a connected complex manifold. A holomorphic family of ra-
tional maps, parameterized by X, is a holomorphic map R : X × C → C.
We denote this map by Rλ(z), where λ ∈ X and z ∈ C; then Rλ : C→ C is
a rational map.

Let x be a basepoint in X. A holomorphic motion of a set E ⊂ C
parameterized by (X, x) is a family of injections

φλ : E → C,

one for each λ in X, such that φλ(e) is a holomorphic function of λ for each
fixed e, and φx = id.

Given a holomorphic family of rational maps Rλ, we say the correspond-
ing Julia sets J(Rλ) ⊂ C move holomorphically if there is a holomorphic
motion

φλ : J(Rx) → C

such that φλ(J(Rx)) = J(Rλ) and

φλ ◦Rx(z) = Rλ ◦ φλ(z)

for all z in J(Rx). Thus φλ provides a conjugacy between Rx and Rλ on
their respective Julia sets. The motion φλ is unique if it exists, by density
of periodic cycles in J(Rx).

The Julia sets move holomorphically at x if they move holomorphically
on some neighborhood U of x in X.

A periodic point z of Rx of period n is persistently indifferent if there
is a neighborhood U of x and a holomorphic map W : U → C such that
W(x) = z, Rn

λ(W(λ)) = W(λ), and |(Rn
λ)′(W(λ))| = 1 for all λ in U . (Here

(Rn
λ)′(z) = dRn

λ/dz.)

Lemma 2.1 ([2], Characterizations of stability) Let Rλ be a holomorphic
family of rational maps parameterized by X, and let x be a point in X. Then
the following conditions are equivalent :

1. The number of attracting cycles of Rλ is locally constant at x.
2. The maximum period of an attracting cycle of Rλ is locally bounded at x.
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3. The Julia set moves holomorphically at x.
4. For all y sufficiently close to x, every periodic point of Ry is attracting,

repelling or persistently indifferent.
5. The Julia set Jλ depends continuously on λ (in the Hausdorff topology)

on a neighborhood of x.
Suppose in addition that ci : X → C, are holomorphic maps parameter-
izing the critical points of Rλ. Then the following conditions are also
equivalent to those above:

6. For each i, the function λ 7→ Rn
λ(ci(λ)), n = 0, 1, 2, . . . form a normal

family at x.
7. There is a neighborhood U of x such that for all λ in U , ci(λ) ∈ Jλ if

and only if ci(x) ∈ Jx.

The definition of conformal measures for rational maps was first given by
Sullivan as a modification of the Patterson measures for limit sets of Fuch-
sian groups. A more general definition, showing the connection to ergodic
theory, has been given by M. Denker and M. Urbański earlier. Let t ≥ 0, a
probability measure m on J(R) is called t-conformal for R : J(R) → J(R)
if m(J(R)) = 1 and

m(R(A)) =
∫

A

|R′|tdm

for every Borel set A ⊂ J(R) such that R|A is injective.
Let R be an NCP map. Denote by Λ(R) the set of all parabolic peri-

odic points of R (these points belong to the Julia set and have an essential
influence on its fractal structure), and Crit(R) of all critical points of R.
We put

Crit(J(R)) = Ctit(R) ∩ J(R).

Set

Sing(R) =
⋃

n≥0

R−n(Λ(R) ∪ Crit(J(R))).

Definition 2.1 We define the conical set Con(R) of R as follow. First,
say x belongs to Con(R, r) if for any ε > 0, there is a neighborhood U of x

and n > 0 such that diam(U) < ε and
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Rn : U → B(Rn(x), r)

is a homeomorphism. Then set

Con(R) =
⋃
r>0

Con(R, r).

We have x ∈ Con(R) if and only if arbitrary small neighborhood of x can
be blow up univalently by the dynamics to balls of definite size centered at
Rn(x).

Lemma 2.2 ([3]) If R : J(R) → J(R) is an NCP map, then

Con(R) = J(R) \ Sing(R).

Note that Curtis T. McMullen used the term radial Julia set Jrad(R)
instead of conical set Con(R) in analogy with Kleinian groups; see ref. [4].

By paper [4], we have the set Sing(R) is countable.
Let 0 < λ < 1. Then there exist an integer m ≥ 1, C > 0, an open

topological disk U containing no critical values of R up to order m and
analytic inverse branches R−mn

i : U → C of Rmn(i = 1, . . . , kn ≤ dnm, n ≥
0), satisfying:

(1) ∀n ≥ 0, ∀1 ≤ i ≤ kn+1, ∃1 ≤ j ≤ kn, Rm ◦R
−m(n+1)
i = R−mn

j ,
(2) diam(R−mn

i (U)) ≤ cλn for n = 0, 1, . . . and i = 1, . . . , kn,
(3) for each fixed n ≥ 1, for all i = 1, . . . , kn the sets R−mn

i (U) are pairwise
disjoint and R−mn

i (U) ⊂ U .

By Definition 2.1 and Lemma 2.2, the conical set Jc(R) is a hyperbolic
set. Now we state as a lemma the following consequence of (1)–(3).

Lemma 2.3 Let R(z) be a semihyperbolic map. For each n, let Nn =⋃{R−n
j (U) : j = 1, . . . , kn} and let N =

⋃Nn. Then N is a net of Con(R),
i.e. any two sets in N are either disjoint or one is a subset of the other.

Consider the net N , given by Lemma 2.3. For n ≥ 0, the preimages of
the sets Ni under Rn that intersect J(R) are called the nth step pieces of
the net. Note that for n ≥ 1 the collection of all the nth step pieces also is
a net; we call it a refinement of the net N .
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Lemma 2.4 Let W be an nth step piece of the net Ni, then the inverse of

Pn
c0

: W → Ni = Pn
c0

(W )

extends in a injective way to a neighborhood of Ni, only depending on i.

Proof. Refining the net if necessary, we will prove that for some m ≥ 1 all
the mth step pieces (or some of the mth step pieces) of the net are compactly
contained in some Ni. Then the net formed by the mth step pieces will be
the desired net. Thus it is enough to prove that the diameters of the mth
step pieces of the net converge uniformly to zero as m →∞.

Let ε > 0, and N ≥ 1 be such that we can partition each Ni in at most
N connected sets of diameter less than ε > 0. If necessary we can refine the
disks Ni small enough, then Pc0 is injective in each cover of the net. Let W

be an mth step piece of the net, so that Pm
c0

is injective in W . Then by the
property (2) of net we have diam(W ) → 0 as m → ∞. The proof of this
lemma is complete. ¤

As in immediate consequence, together with the Koebe Distortion The-
orem, we obtain the Bounded Distortion Property.

Lemma 2.5 (Bounded Distortion Property) For any k ≥ 0 the distortion
of P k

c0
in each of the kth step pieces of the net is bounded by some constant

K > 1, independent of k.

3. Proof of the main Result

Proof of the Main Theorem.
Step 1: Since Pc0 is a semihyperbolic map, it has no Siegel disks and

Herman rings. For each x ∈ F (Pc0) = C− Jc0 (the Fatou set of Pc0), under
iteration P i

c0
(x) converges to an attracting or super-attracting fixed-point

c of Pc0 . Then this behavior persists under algebraic perturbation of Pc0 .
In fact there is a small neighborhood U of c such that Pcn(U) ⊂ U for all
n À 1. Thus U ⊂ F (Pcn

), and we have shown a neighborhood of c persists
in the Fatou set for large n. Therefore the multiplier of an attracting cycle
of a semihyperbolic map Pλ is constant as λ varies small, and hence the
number of repelling cycles of Pλ is constant in the neighborhood of λ. Thus
the repelling periodic points of sufficiently high period move holomorphically
and without collision as λ varies small. Since the repelling points are dense
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in the Julia set, the Julia set moves holomorphically by the λ-lemma ([2,
Theorem 4.1]). It follows by Lemma 2.1 (Characterizations of stability) that
the Julia set moves holomorphically at c0, and there is a unique holomorphic
motion

φcn
: Jc0 → C

such that φcn
(Jc0) = Jcn

and

φcn
◦ Pc0 = Pcn

◦ φcn
(z) (3.1)

for all z in Jc0 .
Since the holomorphic motion φcn

is a holomorphic function of cn in a
neighborhood of c0, and φc0 = id. We have

|φcn
(z)− z| = |φcn

(z)− φc0(z)|

for all z in Jc0 . By item 5 in Lemma 2.1, the Julia set Jcn depends contin-
uously on cn (in the Hausdorff topology) on a neighborhood of c0. So we
have

|φcn(z)− z| = |φcn(z)− φc0(z)| ∼ |cn − c0|, (3.2)

where A ∼ B means C−1B < A < CB for two numbers A and B and some
implicit constant C.

Let w = φcn
(z) ∈ Jcn

, where ∀z ∈ Jc0 . Then it follows by (3.1) and
(3.2) that

|w − z| ∼
∣∣P−1

cn
(φcn(z))− P−1

c0
(z)

∣∣ ∼
∣∣P−1

c0
(φcn(z))− P−1

c0
(z)

∣∣

∼
∣∣P−1

c0
(φcn(z)− z)

∣∣ ∼ |φcn(z)− z|1/d ∼ |cn − c0|1/d.

It follows that ∀z ∈ Jc0 , w = φcn
(z) ∈ Jcn

,

dist(w, z) ∼ |cn − c0|1/d.

Thus we get that for any small ε > 0 the Julia sets Jcn
are contained in the

ε-neighborhood of Jc0 for all n À 0.
Therefore
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dH(Jcn
, Jc0) ∼ |cn − c0|1/d.

So we obtain

dH(Jcn
, Jc0) ≤ C|cn − c0|1/d

for some constant C > 0 only depending on Pc0 , where dH denotes the
Hausdorff distance.

Step 2: Since Pcn
and Pc0 have the same critical point 0, we have

if 0 ∈ Jc0 , then 0 ∈ Jc0 is preperiodic, and so is 0 ∈ Jcn
and Pcn

has no
parabolic cycles for all n À 0 by our assumption that critical point relations
are preserved. Hence Pcn is semihyperbolic.

Now we only prove that

HD(Jcn
) → HD(Jc0).

Let h = HD(Jc0) be the Hausdorff dimension of the Julia set Jc0 of the
semihyperbolic map Pc0 . It follows by [6] that there exists exactly one h-
conformal measure µ and this measure is atomless (the µ measure of a point
is zero). The unique h-conformal measure for Pc0 : Jc0 → Jc0 supported
on Jc0 has exponent h = HD(Jc0). For all n À 0, Pcn is a semihyperbolic
map. The unique hn-conformal probability measure µn for Pcn

: Jcn
→ Jcn

supported on Jcn
has exponent hn = HD(Jcn

) and it is atomless; see ref.
[6]. Thus to prove that

lim
n→∞

HD(Jcn
) = HD(Jc0)

it is enough to prove that there is a neighborhood Br(0) of the critical point
0 ∈ Jc0 such that

lim
r→0

lim
n→∞

µn(Br(0)) = 0.

Since Pc0 is semihyperbolic, there exists l > 1 such that P l
c0

(0) = w ∈ ω(0),
where the set ω(0) of accumulation points of the orbit of 0 is a hyperbolic
set of Pc0 . By the completely invariant property of the Julia set, it is enough
that we only prove the following

lim
r→0

lim
n→∞

µn(Br(w)) = 0.
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In fact any weak accumulation point ν of µn gives a Pc0-invariant measure
for Pc0 : Jc0 → Jc0 . The previous limit implies that µn → µ = ν, and it
follows that hn → h. Hence, we obtain that

HD(Jcn
) → HD(Jc0).

Since Pc0 is semihyperbolic, we consider the net N as in Lemma 2.3 and
consider constants C0 > 0 and θ0 ∈ (0, 1). Let w ∈ ω(0) be any point, then
we have

∣∣(Pm
cn

)′(w)
∣∣−1 ≤ C0θ

m
0 , (3.3)

for all m ≥ 1 and n À 0. Moreover we may suppose that there is a uniform
Bounded Distortion property: There is a constant K > 1 so that for every
k ≥ 1 and every kth step piece W of the net Ni, the distortion of P k

cn
in W

is bounded by K for all n À 0; see Lemma 2.5.
Let w ∈ ω(0) be any point and Bq be the qth step piece containing

uw = P l
c0

(w) and Vq be the pull-back of Bq by P l
c0

containing w. Since
Pcn → Pc0 algebraically and dH(Jcn , Jc0) ≤ C|cn − c0|1/d, we let Ṽq be the
pull-back of Bq by P l

cn
containing w, n À 0. It follows that for r > 0 small

there is q = q(r) → ∞, as r → 0 so that Br(w) ⊂ Ṽq for all n À 0. So we
only need to prove that

lim
n→∞

lim
q→∞

µn(Ṽq) = 0.

Let D be a disc containing w, small enough so that P l
cn
|D is at most of

degree d. Refining the net if necessary, suppose that B1 ⊂ P l
cn

(D). Since
the probability measure µn is atomless for all n À 0, we have

µn(Ṽq) =
∑

m≥q

µn(Ṽm − Ṽm+1).

Note that for m ≥ 1 we have

µn(Ṽm − Ṽm+1) ≤ dµn(Bm −Bm+1) inf
(eVm−eVm+1)∩Jcn

∣∣(P l
cn

)′(z)
∣∣−hn

.

By formula (3.3), we have



394 W. Zhuang

inf
(eVm−eVm+1)∩Jcn

∣∣(P l
cn

)′(z)
∣∣−hn

< C1

for all n À 0 and some constant C1. By the uniform Bounded Distortion
Property and considering that µn is a probability measure, for some constant
C2 we have

µn(Bm −Bm+1) ≤ Khn
∣∣(Pm

cn
)′(w)

∣∣−hn ≤ C2θ
mhn
0 ,

for all w ∈ Bm. So

µn(Ṽq) ≤
∑

C1C2θ
mhn
0 ≤

∑
C3θ

mhn
0 .

Since

∑

m≥q

θmhn
0 =

(θhn
0 )q

1− θhn
0

,

we conclude that

lim
n→∞

lim
q→∞

µn(Ṽq) = 0.

Therefor, we get

HD(Jcn) → HD(Jc0).

The proof of the Main Theorem is finished. ¤

We remark that this theorem is sharp, that is, O(|cn − c0|1/d) cannot
be replaced by o(|cn − c0|1/d). Assume that d = 2 and let c0 = −2. It
is well known, and can be easily checked, that the critical point 0 is pre-
periodic. It eventually lands on 2, which is a repelling fixed point. Moreover
we have J−2 = [−2, 2]. For any ε > 0 let cε = −2 − ε. The Julia set Jcε

is a Cantor set that lies on the real line and is symmetric with respect to
0. Its extreme points are Zε = (1 +

√
1− 4cε)/2, the positive fixed point,

and −Zε. Let zε =
√−Zε − cε. One easily compute that zε ∼

√
(2/3)ε and

that (−zε, zε) * Jcε . We can thus conclude that for ε small enough,
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dH(Jcε
, J−2) ∼

√
ε.

Since c0 − cε = ε, there is no hope to find a constant C such that

dH(Jcε
, J−2) ∼ o(|cn − c0|1/d).
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