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ABSTRACT: Perturbation problem of embedded eigenvalues is considered
for operators with infinite degrees of freedom acting in the tensor product
of L^{2}(R) and the Boson Fock space over a Hilbert space

- A general
class of operators for which the problem is “exactly soluble” is construct
ed. In the case \mathscr{H}=L^{2}(R^{d}) , the class contains the Hamiltonians of stan-
dard models of a one dimensional quantum harmonic oscillator coupled
quadratically to a quantum scalar field on the d+1 dimensional space-
time and gives a unification for those models.

I. Introduction

Perturbation problem of embedded eigenvalues for operators with
infinite degrees of freedom arises in quantum field theory (QFT) in a nat-
ural way and to solve the problem is of great importance. For example,
the radiation theory including the theory of the Lamb shift and the shape
of spectral lines of an atom, which is usually formulated in terms of quan-
tum electrodynamics with a formal perturbation theory, may be regarded
as one of the most interesting examples for such perturbation problem
(see, e.g. , [10, 12, 19] for the physical aspects and [1, 4, 18] for some
attempts to construct a mathematically rigorous theory). Besides applica-
tions to QFT , the problem has mathemqtical interests also in its own
right as an extension of perturbation theory of embedded eigenvalues in
the case of operators with finite degrees of freedom, typically finite dimen-
sional Schr\"odinger operators. In fact, Hamiltonians arising in QFT may
be considered as infinite dimensional Schr\"odinger operators.

Experiences in the case of finite dimensional Schr\"odinger operators (e .
g. , [24] ) and in some quantum field models [2, 3, 4] show that embedded
eigenvalues have a tendency to be unstable in the sense that they dis-
appear under perturbation. On the other hand, we have a counter exam-
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pie [5] in the case of infinite degrees of freedom, in which the instability
of embedded eigenvalues depends on the range of the parameters of the
relevant operator (In this example, we note also that, after a “renormal-
ization” of a parameter, the embedded eigenvalues become unstable in-
dependently of the range of the parameters. The same kind of
phonomenon occurs also in the quantum field models considered in [2, 4] .
These facts suggest that, in the case of infinite degrees of freedom, any
relation between “renormalization” and instability of embedded
eigenvalues may exist). In this situation, it is interesting to ask of to
what extent the instability of embedded eigenvalues is general in the case
of infinite degrees of freedom.

In this paper we consider the problem with operators in the Hilbert
space

(1. 1) \mathscr{I}^{-}=L^{2}(R)\otimes \mathscr{F}_{\overline{s}}(\mathscr{H}) ,

where \mathscr{F}_{S}’(\mathscr{H}) is the Boson (or symmetric) Fock space over a Hilbert
space \mathscr{H}(see(2.1)) . We construct a general class of operators for which
the perturbation problem is exactly soluble and which is favorable to the
instability of embedded eigenvalues. The novelty of our work is in (1)
that the class of operators is so general that, in the special case \mathscr{H}=

L^{2}(R^{d}) , it contains the Hamiltonians of standard models of a one dimen-
sional quantum harmonic oscillator coupled quadratically to a quantum
scalar field on the d+1 dimensional space-time (e. g., [2-5]) and hence it
gives a mathematical unification for those models and, related to (1), in
(2) that we have found a class of exactly soluble models of a quantum
harmonic oscillator coupled quadratically to an “abstract quantum scalar
field” and clarified their intrinsic mathematical structures.

To describe the main idea of our work, let

(1.2) h_{0}= \frac{1}{2}(-\frac{d^{2}}{dq^{2}}+\omega_{0}^{2}q^{2}-\omega_{0)}, q\in R ,

with a constant \omega_{0}>0 and d\Gamma(h) be the second quantization of a non-
negative self-adjoint operator h in \mathscr{H}([23], [21, \S X. 7], [25]). Then we take
the non-negative self-adjoint operator

(1.3) H_{0}=h_{0}\otimes I+I\otimes d\Gamma(h)

as the unperturbed part of each operator in the class, where I denotes
identity. If the continuous spectrum of h is not empty, then H_{0} has em-
bedded eigenvalues coming from the eigenvalues \{n\omega_{0}\}_{n=0}^{\infty} of h_{0} . Thus, H_{0}

serves as an unperturbed operator for perturbation problem of embedded
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eigenvalues in \mathscr{P}_{r}^{-} As for the perturbation part H_{I} , we shall take a gen-
eral class of operators quadratic in id/dq , q , and the boson creation and
annihilation operators in \mathscr{L}_{s}^{-}(\mathscr{H})(see(3.4)) . Then the main point (TheO-
rem 3.1) is to show that, under some conditions, the perturbed operator
H=H_{0}+H_{I} is unitarily equivalent to the operator d\Gamma(h)+E_{0} acting in

\swarrow^{_{S}}(\mathscr{H}) with a constant E_{0}\in R . The result implies that, if the spectrum of
h is purely continuous, then H has no eigenvalues greater than E_{0} and
hence all the non-zero eigenvalues of H_{0} disappear under the perturbation,
that is, they are unstable. This result is in accordance with the above
mentioned “general” nature of embedded eigenvalues.

Our method in the present paper consists of abstract and elaborated
versions of the methods used in the previous papers [2-5] and clarifies
“intrinsic” mathematical structures lying in those models in [2-5].

This paper is organized as follows: Section II is devoted to prelimi-
naries, where some fundamental estimates and facts in \mathscr{F}_{s}(\mathscr{H}) are given.
In Section III we define the class of operators H and prove the main result
mentioned above. In Section IV we prove the existence of the ground
state of H, which is assumed to obtain the main result in Section III.
This is done by extending Berezin’s method [11] to the present case. In
Section V we give a general scheme to generate the class of operator H.
In Sections VI and VII, considering the case \mathscr{H}=L^{2}(R^{d}) , we show that
there exists a variety of operators H which contains standard model
Hamiltonians with quadratic interactions as mentioned above. In the last
section we give briefly remarks on other aspects of the model H.

II. Preliminaries–some estimates and facts in an abstract Boson Fock
space

The Boson (or symmetric) Fock space \mathscr{F}_{s}(\mathscr{H}) over a complex Hilbert
space \mathscr{H} is defined by

(2. 1) \mathscr{A}_{s}(\mathscr{H})=\bigoplus_{n=0}^{\infty}S_{n}\mathscr{H}^{n}

where S_{n}\mathscr{H}^{n} is the symmetric n-fold tensor product of \mathscr{H} with the conven-
tion S_{0}\mathscr{H}^{0}=C ([20, p. 53]). We denote by \mathscr{I}^{-}0 the subspace of “finite parti-
cle vectors” in \mathscr{F}s(\mathscr{H}) , which is spanned by vectors \Psi=\{\Psi\}_{n=0}^{\infty}\in \mathscr{F}_{s}(\mathscr{H})

such that \Psi^{(n)}=0 for all but finitely many n ([21, \S X. 7, p. 208]). The sub-
space \mathscr{F}0 is dense in \mathscr{F}_{S}(\mathscr{H}) .

In what follows, we shall denote by D(A) the domain of operator A.
Let b(f) , f\in \mathscr{H}, be the annihilation operator in \mathscr{F}_{S}(\mathscr{H})[21, \S X. 7, p .

208], which is a closed linear operator with D(b(f))\supset \mathscr{I}_{0}^{-} and leaves \mathscr{I}^{-}0
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invariant satisfying the canonical commutation relations

(2.2) [ b(f), b(g)^{*}]=(f, g)_{\mathscr{L}},I ,

(2. 3) [ b(f), b(g)]=0=[b(f)^{*}, b(g)^{*}] , f, g\in \mathscr{H},

on \mathscr{F}0 , where [A, B]=AB-BA and( )_{\mathscr{L}} is the inner product of \mathscr{H}(We

use the convention that b(f) and (f, g)_{\mathscr{L}}, are complex linear in f respec-
tively).

Let h be a non-negative self-adjoint operator in \mathscr{H} with Ker h=\{0\} so
that h^{-1} is also non-negative self-adjoint. We denote by d\Gamma(h) the sec-
ond quantization of h([23], [21, \S X. 7, p. 208]), which is non-negative self-
adj oint in \mathscr{F}_{S}^{-}(\mathscr{H}) .

Let X=C^{\infty}(h)\cap C^{\infty}(h^{-1}) and \mathscr{H}_{a} , \alpha\in R , be the completion of X in the
norm
(2.4) ||f||_{a}=||h^{a/2}f||_{\swarrow 0_{\ell}}f\in X .

Henceforth, we write simply as ||\cdot||_{0}=||\cdot|| and (\cdot, \cdot)_{0}=(\cdot, \cdot) .
A fundamental estimate is given by the following lemma.

LEMMA 2. 1. For all f\in \mathscr{H}_{-1}\cap \mathscr{H} and \Psi\in D(d\Gamma(h)^{1/2}) , the following
estimates hold :
(2. 5) ||b(f)\Psi||\leq||f||_{-1}||d\Gamma(h)^{1/2}\Psi||

(2. 6) ||b(f)^{*}\Psi||\leq||f||_{-1}||d\Gamma(h)^{1/2}\Psi||+||f||||\Psi||

The estimates (2.5) and (2.6) are abstract versions of those known

for concrete models of massless boson quantum fields [15, 1-5]. We omit
proof of (2.5) and (2.6), since it can be done in the same way as in the

case of concrete models.
We denote by \Phi 0 the Fock vacuum in \mathscr{F}s(\mathscr{H}):\Phi b^{0)}=1 , \Phi b^{n)}=0 , n\geq 1 .

LEMMA 2. 2. Let \mathscr{F}_{0,b}^{\infty}| be the subspace spanned by fifinite linear combi-

nation of vectors of the form b(f_{1})^{*} . b(f_{n})^{*}\Phi_{0} , n\geq 0 , f_{i}\in C^{\infty}(h)\cap

C^{\infty}(h^{-1}) , j=1, . n . Thcn, \mathscr{F}_{0,b}^{I^{\infty}} is a core for d\Gamma(h)^{a} for every \alpha>0 .

PROOF: It is obvious that \mathscr{F}_{0,b}^{\infty} is dense in \mathscr{F}_{S}(\mathscr{H}) and d\Gamma(h) maps
\mathscr{I}_{0,b}^{-\infty} into itself. Further, the one parameter unitary group V_{t}=\exp(itd\Gamma

(h)) , t\in R , leaves \mathscr{F}_{0,b}^{\infty} invariant with V_{t}d\Gamma(h)=d\Gamma(h)V_{t} on \mathscr{L}_{0,b}^{-\infty} , since
V_{t} can be written as V_{t}=\Gamma(e^{ith}) (see [23, 21, 25] for the definition of \Gamma(A)

with contraction operators A). It is obvious also that (d/dt)V_{t}\Psi=id\Gamma

(h)V_{t}\Psi for all \Psi in \mathscr{I}_{0,b}^{-\infty} . Therefore, by Chernoff’s lemma [14, Lemma 2.
1], we conclude that, for all integers n\geq 1 , d\Gamma(h)^{n} is essentially self-

adjoint on \mathscr{F}_{0,b}^{\infty} . On the other hand, it is not so diflcult to see that, for

every non-negative self-adjoint operator A in a Hilbert space and \alpha\in
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(o, n) , A^{a} is essentially self-adjoint on each core for A^{n} . Applying this
fact to the present case, we get the desired result. \square

We shall denote by b(f)^{\#} either b(f) or b(f)^{*} .

LEMMA 2. 3. For all n\geq 1 and f\in \mathscr{H}-1\cap \mathscr{H}_{2n}, b(f)^{\#} maps D(d\Gamma

(h)^{(2n+1)/2}) into D(d\Gamma(h)^{n}) and the following commutation relations hold:

(2. 7) [d \Gamma(h)^{n}. b(f)^{*}]\Psi=\sum_{k=1}^{n}C_{k}b(h^{k}f)^{*}d\Gamma(h)^{n-k}\Psi

(2.8) [d \Gamma(h)^{n}. b(f)]\Psi=-\sum_{k=1}^{n}C_{k}d\Gamma(h)^{n-k}b(h^{k}f)\Psi

for all \Psi in D(d\Gamma(h)^{(2n+1)/2}) .

PROOF: We prove the lemma only for the case of b(f)^{*} . We first
consider the case n=1 . Let \mathscr{F}_{0,b}^{\infty} be given as in Lemma 2. 2. Then, it is
easy to see that, for all \Psi in \mathscr{F}_{0,b}^{\infty} , b(f)^{*}\Psi is in D(d\Gamma(h)) and d\Gamma(h)\Psi is
in D(b(f)^{*}) with

(2.9) d\Gamma(h)b(f)^{*}\Psi=b(f)^{*}d\Gamma(h)\Psi+b(hf)^{*}\Psi .

Using this relation and the estimate (2.6), we have
||d\Gamma(h)b(f)^{*}\Psi||\leq const||(d\Gamma(h)+1)^{3/2}\Psi|| .

By a limiting argument using this estimate and Lemma 2. 2, one can see
that (2.9) extends to all \Psi in D(d\Gamma(h)^{3/2}) with the result that b(f)^{*}\Psi is
in D(d\Gamma(h)) for all \Psi in D(d\Gamma(h)^{s/2}) . Thus the case n=1 is proved.
We next assume that the assertion holds up to n=m\geq 1 . Let f be in \mathscr{H}_{-1}

\cap \mathscr{H}_{2(m+1)} . Then, for all \Psi in \mathscr{K}_{0,b}^{\infty}’ , b(f)^{*}\Psi is in D(d\Gamma(h)^{m+1}) . Using the
induction hypothesis, we see that (2.7) holds with n=m+1 and we have
the estimate

||d\Gamma(h)^{m+1}b(f)^{*}\Psi||\leq c||(d\Gamma(h)+1)^{(2nL+3)/2}\Psi|| ,

where c is a positive constant. Then, by a limiting argument similar to
the case n=1 , we conclude that, for all \Psi in D(d\Gamma(h)^{(2m+3)/2}) , b(f)^{*}\Psi is in
D(d\Gamma(h)^{m+1}) and (2. 7) holds with n=m+1. \square

We next consider fractional powers of d\Gamma(h) .

LEMMA 2. 4. Let 0<\alpha<1 and f be in \mathscr{H}_{-1}\cap \mathscr{H}_{2} . Then, b(f)^{\#} maps
D(d\Gamma(h)^{(2a+1)/2}) into D(d\Gamma(h)^{a}) and, for all \Psi in D(d\Gamma(h)^{(2a+1)/2}) and
\epsilon>0 , we have

(2. 10) [(d\Gamma(h)+\epsilon)^{a}b(f)^{\#}]||\Psi||\leq\epsilon^{a-1}c_{a}(||f||_{1}||d\Gamma(h)^{1/2}\Psi||+||f||_{2}||\Psi||) ,
where
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c_{a}= \frac{\sin\pi\alpha}{\pi}\int_{0}^{\infty}d\lambda\frac{\lambda^{a}}{(\lambda+1)^{2}} .

PROOF: Throughout the proof, we ses A=d\Gamma(h)+\epsilon . Applying a
general formula for fractional powers of a positive self-adjoint operator to
A(e . g. , [17, pp. 281-286], [20, p. 317]), we have

(2. 11) A^{a} \Psi=d_{a}\int_{0}^{\infty}d\lambda\lambda^{a-1}(A+\lambda)^{-1}A\Psi

for all \Psi in D(d\Gamma(h)) with d_{a}=\sin\pi\alpha/\pi . Let \Psi be in D(d\Gamma(h)^{3/2}) . Then,
by Lemma 2. 3, b(f)^{\#}\Psi is in D(d\Gamma(h)) . Hence A^{a}b(f)^{\#}\Psi is given by the
right hand side of (2.11) with \Psi replaced by b(f)^{\#}\Psi . Further, by (2.5)

and (2.6), we see that ||\lambda^{a-1}b(f)^{\#}(A+\lambda)^{-1}A\Psi|| is integrable on (0, \infty) and
hence that b(f)^{\#}A^{a}\Psi is given by the right hand side of (2.11) with
b(f)^{\#}(A+\lambda)^{-1} in place of (A+\lambda)^{-1} . Combining these formulae, we get

(2. 12) [A^{a}. b(f)^{\#}] \Psi=d_{a}\int_{0}^{\infty}d\lambda\lambda^{a-1}\{[(A+\lambda)^{-1}-b(f)^{\#}]A

+(A+\lambda)^{-1}[A, b(f)^{\#}]\}\Psi .

It is easy to see that
[(A+\lambda)^{-1}. b(f)^{*}]=-(A+\lambda)^{-1}b(hf)^{*}(A+\lambda)^{-1}

on D(d\Gamma(h)^{1/2}) . By Lemma 2. 3, we have

[A, b(f)^{*}]=b(hf)^{*}

on D(d\Gamma(h)^{3/2}) . Substituting these relations into (2.12), we get

[A^{a}. b(f)^{*}] \Psi=d_{a}\int_{0}^{\infty}d\lambda\lambda^{a}(A+\lambda)^{-1}b(hf)^{*}(A+\lambda)^{-1}\Psi .

Using (2.6), we have
||(A+\lambda)^{-1}b(hf)^{*}(A+\lambda)^{-1}\Psi||\leq(\lambda+\epsilon)^{-2}(||f||_{1}||d\Gamma(h)^{1/2}\Psi||+||f||_{2}||\Psi||) .

Thus, we get (2. 10) with b(f)^{\#}=b(f)^{*} and \Psi\in D(d\Gamma(h)^{3/2}) . The case
b(f)^{\#}=b(f) can be proved similarly. Next, let \Psi be in D(d\Gamma(h)^{(2a+1)/2}) .
Then, by a limiting argument using the fact that D(d\Gamma(h)^{3/2}) is a core for
d\Gamma(h)^{(2a+1)/2} (cf. Lemma 2.2) and (2. 10) proved for \Psi\in D(d\Gamma(h)^{3/2}) , we
see that b(f)^{\#}\Psi is in D((d\Gamma(h)+\epsilon)^{a})=D(d\Gamma(h)^{a}) and that (2.10) extends
to all \Psi in D(d\Gamma(h)^{(2a+1)/2}) . \square

LEMMA 2. 5. Let 0<\alpha<1 and n\geq 0 be an integer. Let f be in
\mathscr{H}_{-1}\cap \mathscr{H}_{2(n+1\rangle} . Then, b(f)^{\#} maps D(d\Gamma(h)^{(2n+2a+1)/2}) into D(d\Gamma(h)^{n+a}) .
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PROOF: Let \Psi be in D(d\Gamma(h)^{(2n+3)/2}) . Then, by Lemma 2. 3, b(f)^{\#}\Psi

(resp. d\Gamma(h)^{n+a}\Psi) is in D(d\Gamma(h)^{n+1})(resp. D(b(f)^{\#})) and we have, using
(2. 7), (2.8), (2.5) and (2.6)

(2. 13) [A^{n+a}-b(f)^{\#}]\leq const.||(A+1)^{n+(1/2)}\Psi|| ,
\leq const.||(A+1)^{n+a+(1/2)}\Psi|| ,

where A=d\Gamma(h)+\epsilon , \epsilon>0 . Then, by a limiting argument using the equa-
tion A^{n+a}b(f)^{\#}\Psi=b(f)^{\#}A^{n+a}\Psi+[A^{n+a}. b(f)^{\#}]\Psi and the estimate (2. 13),
we can get the desired result. \square

In what follows, we assume that there exists a conjugation J on \mathscr{H} .
which is an antilinear isometry on \mathscr{H} with J^{2}=I , and that J commutes
with h . For f in \mathscr{H} . we define \overline{f}\in \mathscr{H} by

(2. 14) \overline{f}=Jf .

We next define operators quadratic in b^{\#} Let K be a self-adjoint
Hilbert-Schmidt operator on \mathscr{H} . Then K has a canonical expansion [20,
pp. 203-204] :

(2. 15) K= \sum_{n}\lambda_{n}(\cdot, \phi_{n})\phi_{n} ,

where \{\phi_{n}\}_{n} is an orthonormal set in \mathscr{H} and \sum_{n}\lambda_{n}^{2}<\infty . We define

(2. 16) \langle b|K|b\rangle=\sum_{n}\lambda_{n}b(\overline{\phi}_{n})b(\phi_{n})

(2. 17) \langle b^{*}|K|b\rangle=\sum_{n}\lambda_{n}b(\phi_{n})^{*}b(\phi_{n}) .

It is easy to check that these operators are well-defined on \mathscr{I}_{0}^{-} and in-
dependent of the choice of representation of K such as (2.15). In the
case where K is Hilbert-Schmidt, but, nom-self-adjoint, we write as

K=K_{1}+iK_{2}

with K_{1} and K_{2} being self-adjoint and Hilbert-Schmidt and define the
operator \langle b^{\#}|K|b^{\#}\rangle by

(2. 18) \langle b^{\#}|K|b^{\#}\rangle=\langle b^{\#}|K_{1}|b^{\#}\rangle+i\langle b^{\#}|K_{2}|b^{\#}\rangle .

To generalize the definition of quadratic operators in b^{\#} , we introduce
a class of bounded linear operators on \mathscr{H} . We denote by B(\mathscr{H}) the space
of all bounded linear operators on \mathscr{H}. Let K\in B(\mathscr{H}) be of the form

(2. 19) Kf= \int_{R} dE(\mbox{\boldmath $\lambda$})(f, \phi_{\lambda} ) \psi_{\lambda} ,

where E(\lambda) is a signed Borel measure on R and \lambdaarrow\phi_{\lambda}(resp. \psi_{\lambda}) is an
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\mathscr{H},-valued measurable function on R.

DEFINITION 2. 6. Let K be given by (2.19). We say that K is in
the class\mathscr{K}(h) if and only if the following are satisfified :

(a) For all \lambda\in R, \phi_{\lambda} and \psi_{\lambda} are in \mathscr{H}_{-1}\cap \mathscr{H}_{2} .
(b) For \alpha, \beta=\pm 1,0,2 ,

\int_{R}d|E(\lambda)|||\phi_{\lambda}||_{a}||\psi_{\lambda}||_{\beta}<\infty .

For K in \mathscr{K}(h) , we define the operators \langle b|K|b\rangle and \langle b^{*}|K|b\rangle by

(2.20) \langle b|K|b\rangle=\int_{R}dE(\lambda)b(\overline{\phi}_{\lambda})b(\psi_{\lambda}) ,

(2.21) \langle b^{*}|K|b\rangle=\int_{R}dE(\lambda)b(\phi_{\lambda})^{*}b(\psi_{\lambda}) ,

which are a priori well-defined on \mathscr{F}_{0}^{\vee} and independent of the choice of
representation of K such as (2. 19). Similarly, we define the operators
\langle b^{*}|K|b^{*}\rangle and \langle b|K|b^{*}\rangle so that

(2.22) \langle b|K|b\rangle^{*}=\langle b^{*}|K^{*}|b^{*}\rangle ,
(2.23) \langle b^{*}|K|b\rangle^{*}=\langle b^{*}|K^{*}|b\rangle .

LEMMA 2. 7. Let K be in \mathscr{K}(h) . Then, \langle b^{\#}|K|b^{\#}\rangle is defifined on
D(d\Gamma(h)) and the following estimate holds :

(2.24) ||\langle b^{\#}|K|b^{\#}\rangle\Psi||\leq c||(d\Gamma(h)+1)\Psi|| , \Psi\in D(d\Gamma(h)) ,

with a constant c>0 . Further, for all \Psi in D(d\Gamma(h)^{2}) and \Phi in
D(d\Gamma(h)^{1/2}) , we have

(2.25) |(\Phi, [d\Gamma(h), \langle b^{\#}|K|b^{\#}\rangle]\Psi)|\leq d||(d\Gamma(h)+1)^{1/2}\Phi||||(d\Gamma(h)+1)^{1/2}\Psi||

with a constant d>0 .

PROOF: We prove the lemma only for the case b^{\#}=b . The other
cases can be treated similarly. By Lemmas 2.4 and 2.1, we see that
b(f)b(g) is defined on D(d\Gamma(h)) for all f and g\mathscr{H}_{-1}\cap \mathscr{H}_{2} and we have,
using (2.5) and (2. 10),

||b(f)b(g)\Psi||\leq c(||f||_{-1}||g||_{1}+||f||_{-1}||g||_{2}+||f||_{-1}||g||_{-1})

\cross||(d\Gamma(h)+I)\Psi|| , \Psi\in D(d\Gamma(h)) ,

with a constant c>0 . Therefore, for every K in \mathscr{K} ( h) , f d|E(\lambda)|

||b(\overline{\phi}_{\lambda})b(\psi_{\lambda})\Psi|| converges and (2.24) holds with b^{\#}=b^{*} .
To prove (2.25), we note that, for \Psi in D(d\Gamma(h)^{2}) ,
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[d \Gamma(h), \langle b|K|b\rangle]\Psi=-\int dE(\lambda)\{b(h\overline{\phi}_{\lambda})b(\psi_{\lambda})+b(\overline{\phi}_{\lambda})b(h\psi_{\lambda})\}\Psi .

Therefore, for \Phi in D(d\Gamma(h)^{1/2}) , we have

|( \Phi, [d\Gamma(h), \langle b|K|b\rangle]\Psi)|\leq\int d|E(\lambda)|(||b(h\overline{\phi}_{\lambda})^{*}\Phi||||b(\psi_{\lambda})\Psi||

+||b(\overline{\phi}_{\lambda})^{*}\Phi||||b(h\psi_{\lambda})\Psi||) .

Then, using (2.5) and (2. 10), we get (2.25) with b^{\#}=b . \square

LEMMA 2. 8. Let K be in\mathscr{K}(h) . Then, for all \Psi in D(d\Gamma(h)^{3/2}) ,
\langle b^{\#}|K|b^{\#}\rangle\Psi is in D(b(f)^{\#}) , f\in \mathscr{H} . and

(2.26) [\langle b|K|b\rangle, b(f)^{*}]\Psi=\{b(K\overline{f})+b(\overline{(K^{*}f)}\}\Psi ,
(2.27) [\langle b|K|b\rangle, b(f)]\Psi=0 .

PROOF: We first prove (2.26) and (2.27) on \mathscr{F}_{0,b}^{\infty} by using the
canonical commutation relations (2.2) and (2.3), and then extend them
to equations on d\Gamma(h)^{3/2} by estimates (2.25), (2.5) and (2.6). \square

Finally, as an application, we prove the essential self-adjointness of a
general quadratic operator in the Hilbert space \mathscr{F} given by (1.1).

Let p=-id/dq , q\in R , be the generalized derivative in L^{2}(R) and put

(2.28) a=(2\omega_{0})^{-1/2}(\omega_{0}q+ip)

with a constant \omega_{0}>0 . Then, the operator a leaves C_{0}^{\infty}(R) invariant sat-
isfying the canonical commutation relation
(2.29) [a, a^{*}]=I

on C_{0}^{\infty}(R) .
Let \lambda_{0}\in C be a constant, K and M be in \mathscr{K}(h) (Definition 2.6), and f

and g be in \mathscr{H}_{-1}\cap \mathscr{H}_{2} . Then, we consider the following quadratic opera-
tor L acting in \mathscr{P}^{-}:

(2.30) L=H_{0}+\lambda_{0}a^{2}\otimes I+\overline{\lambda}_{0}a^{*2}\otimes I

+I\otimes\langle b|K|b\rangle+I\otimes\langle b|K|b\rangle^{*}+I\otimes\langle b^{*}|M|b\rangle+I\otimes\langle b^{*}|M|b\rangle^{*}

+a\otimes(b(f)^{*}+b(g))+a^{*}\otimes(b(f)+b(g)^{*}) ,

where H_{0} is given by (1.3).

PROPOSITION 2. 9. The operator L is defifined on D(H_{0}) and essen-
tially self-adjoint on every core for H_{0} .

PROOF: The operator h_{0} is written as
h_{0}=\omega_{0}a^{*}a
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and non-negative self-adjoint on D(p^{2})\cap D(q^{2}) . For a^{\#} and h_{0} , we have
estimates similar to (2.5), (2.6) and (2.24). Combining these estimates
with (2.5), (2.6) and (2.24), we can show that D(H_{0})\subset D(L) and

||L\Psi||\leq c||(H_{0}+1)\Psi|| , \Psi\in D(H_{0})

with a constant c>0 . Further, using the commutation relations (2.7),
(2.8), (2.29) and the estimate (2.25), one can show that

|(L\Psi, H_{0}\Phi)-(H_{0}\Psi, L\Phi)|\leq d||(H_{0}+1)^{1/2}\Psi||||(H_{0}+1)^{1/2}\Phi|| ,
\Psi , \Phi\in D(H_{0}) ,

with a constant d>0 . It is obvious that L is symmetric on D(H_{0}) . Thus,
by the Glimm-Jaffe-Nelson commutator theorem ([16, \S 19.4], [21, \S X. 5,
Theorem X. 37]), we get the desired result. \square

REMARK: (1) Proposition 2.9 can be extended to quadratic opera-
tors in the more general Fock space L^{2}(R^{n})\otimes J_{S}^{}(\mathscr{H}_{1})\otimes\cdots\otimes \mathscr{F}_{S}(\mathscr{H}_{m}) .
(2) The operator\neg L is an abstract form of Hamiltonians of models of a
one dimensional quantum harmonic oscillator coupled quadratically to a
quantum scalar field (e. g., [2-5]) . See Section VII below.

III. The main theorem

In this section we consider a class of quadratic operators of the form
(2.30) and prove, under some conditions, that each operator in the class
is unitarily equivalent to d\Gamma(h)+E_{0} acting in \mathscr{F}_{S}(\mathscr{H}) with a constant E_{0}

\in R . The operator L given by (2.30) can be viewed as an operator
obtained by a perturbation of H_{0} . As we already mentioned in the IntrO-
duction, the operator L serves as an operator giving a perturbation prob-
lem of embedded eigenvalues in the case of infinite degrees of freedom.
Our main result (Theorem 3.1) gives a sufficient condition for the possible
embedded eigenvalues of H_{0} to disappear under the perturbation L-H_{0} .

Let J be a conjugation as in Section II . For a bounded linear opera-
tor A on \mathscr{H}, we define \overline{A} by

(3. 1) \overline{A}=JAJ .

Let h be as in Section II and a self-adjoint operator K\in \mathscr{K}(h)

(Definition 2.6) be given. Let V. W\in B(\mathscr{H}) and f_{0} , g_{0}\in D(h) such that
WhV^{*}\in K(h)

(3.2) u=Whf_{0}+\overline{V}h\overline{g}_{0}\in \mathscr{H}_{-1}\cap \mathscr{H}_{2}

and
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(3.3) v=Whg_{0}+\overline{V}h\overline{f}_{0}\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} .

Then we consider the quadratic operator

(3. 4) H=H_{0}+(f_{0}, hg_{0})a^{*2}+(g_{0}, hf_{0})a^{2}

+\langle b|WhV^{*}|b\rangle+\langle b|WhV^{*}|b\rangle^{*}+\langle b^{*}|K|b\rangle

+a(b(u)^{*}+b(v))+a^{*}(b(u)+b(v)^{*}) ,

where we take the constant \omega_{0} contained in H_{0} as
(3. 5) \omega_{0}=(f_{0}, hf_{0})+(g_{0}, hg_{0})

and we omitted the symbol \otimes for tensor products of operators. H is
essentially selfadjoint on every core for H_{0} (Proposition 2.9). It is not
obvious a priori whether or not H is bounded from below. It may depend
on parameters contained in H (see [5] for an example). In the present
paper, we assume the following:

(H) H is bounded from below and there exists a constant c>0 such
that, for all \Psi\in D(H_{0}) ,

||H_{0}\Psi||\leq c||(\hat{H}+I)\Psi|| ,

where

(3.6) \hat{H}=H-E_{0}

and E_{0} is the infifimum of the spectrum of H.

REMARK The assumption (H) and Proposition 2.9 imply that
D(H_{0})=D(H) . Hence D(\hat{H}^{1/2})=D(H_{0}^{1/2}) and

||H_{0}^{1/2}\Psi||\leq d||(\overline{H}+1)^{1/2}\Psi|| , \Psi\in D(\overline{H}^{1/2})

with a_{-} constant d>0 .
We shall further assume the following (AI) and (AH).

(AI)

(3. 7) W^{*}W-V^{*}V+(\cdot, f_{0})f_{0}-(\cdot, g_{0})g_{0}=I ,
(3.8) W^{*}\overline{V}-V^{*}\overline{W}+(\cdot,\overline{g}_{0})f_{0}-(\cdot,\overline{f}_{0})g_{0}=0 .

(A I) For \alpha=\pm\frac{1}{2}, \pm 1 , h^{a}Vh^{-a} and h^{a}Wh^{-a} can be extended to

bounded operators on \mathscr{H} and the equation

(3.8) WhW^{*}+\overline{V}h\overline{V}^{*}=h+K

holds on D(h) .
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We shall denote by D_{a,\beta} the subset of consisting of all vectors \Psi in
the domain of all polynomials of a^{\#} and b(f)^{\#}s , f\in \mathscr{H}_{a}\cap \mathscr{H}_{\beta} .

For f\in \mathscr{H} such that Vf, Wf\in \mathscr{H}_{-1} , we define

(3. 10) B(f)=b(\overline{Vf})^{*}+b(Wf)+(f, g_{0})a^{*}+(f, f_{0})a ,

which is well-defined on D(H_{0}^{1/2}) by estimates (2.5) and (2.6).

We note that (All) implies that, for all f\in \mathscr{H}_{-1}(resp. \mathscr{H}_{2}) , Vf , Wf\in

\mathscr{H}_{-1}(resp. \mathscr{H}_{2}) .
The main result in this section is the following.

THEOREM 3. 1. Assume (H), (AI) and (AH). Suppose that there
exists a non-zero vector \Omega in D_{-1,2}\cap D(H_{0}^{1/2}) such that

(i) For all f in \mathscr{H}_{-1}\cap \mathscr{H}_{2} ,

B(f)\Psi=0 .

(ii) The subspace F_{0,B} spanned by vectors B(f_{1})^{*}\cdots B(f_{n})^{*}\Omega , n\geq 0 ,

f_{j}\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , j=1 , \cdots , n, is dense in \mathscr{I}^{-}

Then, there exists a unitary map U : \mathscr{F}arrow \mathscr{F}_{S}(\mathscr{H}) such that
(i) U\Omega=\Phi_{0}\backslash \cdot

(ii) For all f in \mathscr{H}_{-1}\cap \mathscr{H}_{2} ,

UB(f)U^{-1}=b(f)

on UF_{0,B} .
(iii) UHU^{-1}=d\Gamma(h)+E_{0} .

In particular, we have

(3. 11) H\Omega=E_{0}\Omega

and
\sigma(H)=E_{0}+\sigma(d\Gamma(h)) , \sigma_{p}(H)=E_{0}+\sigma_{p}(d\Gamma(h)) ,

\sigma_{ac}(H)=E_{0}+\sigma_{ac}(d\Gamma(h)) , \sigma_{sing}(H)=E_{0}+\sigma_{sing}(d\Gamma(h)) ,

where \sigma (resp. \sigma_{p}, \sigma_{ac}, \sigma_{sing} ) denotes the (resp. point, absolutely continuous,

singular continuous) spectrum.

REMARKS: (1) Let us consider, for example, the case that \sigma(h)=

\sigma_{ac}(h)=[m, \infty) with some m\geq 0 , \sigma_{p}(h)=\phi and \sigma_{sing}(h)=\phi . In this case,
H_{0} has infinitely many embedded eigenvalues. On the other hand, we
have \sigma(d\Gamma(h))=\{0\}\cup[m, \infty) , \sigma_{p}(d\Gamma(h))=\{0\} . Therefore, in this case, the
above theorem shows that, under the perturbation H-H_{0} , all the non-zero
embedded eigenvalues of H_{0} disappear if the assumption is satisfied.
Thus, the embedded eigenvalues of H_{0} are unstable under the perturba-

tion. On the other hand, as we shall see in Lemma 3.2, the transforma-
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tion \{b, b^{*}, a, a^{*}\}arrow\{B, B^{*}\} given by (3.10) is a Bogoliubov (or canonical)

transformation (e. g. [11]) and, under the assumption of Theorem 3.1, it is
improper in the sense that there exist no unitary operators U_{0:}\mathscr{I}^{-}arrow \mathscr{P}^{-}

such that

U_{0}b(f)U_{0}^{-1}=B(f) , f\in \mathscr{H}_{-1}\cap \mathscr{H} .

In fact, if such U_{0} exists, then the vector
\Omega_{\xi}=U_{0}\xi\otimes\Phi_{0}\in \mathscr{F}

satisfies the equation

B(f)\Omega_{\xi}=0 , f\in \mathscr{H}_{-1}\cap \mathscr{H}_{0} ,

for all \xi\in L^{2}(R) , since b(f)\Omega 0^{=}0 for all f\in \mathscr{H}. But, this contradicts
Lemma 3.5 below. Thus the instability of the embedded eigenvalues is
associated with an improper Bogoliubov transformation.
(2) Eq. (3.11) shows that \Omega is a ground state of H. As we shall see in
Lemma 3.5 below, it is unique up to constant multiples.

To prove Theorem 3.1, we prepare some lemmas.

LEMMA 3. 2. Assume (AI) and (AH). Then, for all f and g in
\mathscr{H}-1\cap \mathscr{H}_{2} , we have

(3. 12) [B(f), B(g)^{*}]=(f, g)I,
(3. 13) [B(f), B(g)]=0

on D(H_{0})\cup D_{-1,2} .

PROOF: By (AH), we have that, for all f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , Wf, Vf\in \mathscr{H}_{-1}

\cap \mathscr{H}_{2} . Therefore, by Lemma 2.5, B(f)^{\#}B(g)^{\#} can be expanded on D(H_{0})

\cup D_{-1,2} . Then, direct computations using the canonical commutation rela-
tion (2.2), (2.3), (2.29) as well as (3.7) and (3.8) give (3. 12) and
(3. 13).

LEMMA 3. 3. Assume (AI) and (AH). Then, for all f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2}

and \Psi\in D(H_{0}^{3/2}) , we have

(3. 14) [HB(f)]\Psi=-B(hf)\Psi .

PROOF : By Lemmas 2.3, 2.8, and (All), the left hand side of
(3.14) is well-defined and computed by using the canonical commutation
relations and the assumptions (AI) and (All). Since the computation is
straightforward (but somewhat lengthy), we omit the details. \square

LEMMA 3. 4. Assume (H), (AI) and (AII). Then, for all f in
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\mathscr{H}_{-1}\cap \mathscr{H} and t\in R, we have

(3.15) e^{itH}B(f)e^{-itH}\Psi=B(e^{-ith}f)\Psi , \Psi\in D(H_{0}^{1/2}) .

PROOF: We first prove (3.15) for f satisfying

\sum_{n=0}^{\infty}\frac{||h^{n}f|||t^{n}}{n\dagger}<\infty , t\in R ,

and in the sense of sesquilinear form on D(H_{0}^{1/2})\cross D(H_{0}^{3/2}) and then use a
limiting argument. \square

LEMMA 3. 5. Under the assumption of Theorem 3.1, every vector \Psi_{0}

in \mathscr{F} satisfying the equation B(f)\Psi_{0}=0 , f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , is a constant multi-
ple of \Omega .

PROOF: Suppose that \Psi_{0} and \Omega are linearly independent. Then
without loss of generality, we can assume (\Psi_{0}, \Omega)=0 , which, in turn,
implies that \Psi_{0} is orthogonal to all vectors in F_{0,B} . Since F_{0,B} is dense in
\mathscr{I}^{-} by assumpion, it follows that \Psi_{0}=0 , but this is a contradiction.

LEMMA 3. 6^{\backslash }. Under the assumption of Theorem 3.1, \Omega is an
eigenvector of H.

PROOF: Taking \Psi=\Omega in (3. 15) and using the condition B(g)\Omega=0 ,
g\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , we get

B(f)e^{-itH}\Omega=0 , f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} .

Therefore, by Lemma 3.5, we have

e^{-itH}\Omega=\lambda(t)\Omega

with a function \lambda(t) , t\in R . Since \{e^{-\iota tH}\}_{t\in R} is a strongly continuous one
parameter unitary group, \lambda(t) has to be of the form

\lambda(t)=e^{-itE}

with a real constant E. Then, it follows that \Omega is in D(H) and H\Omega=

E\Omega . \square

PROOF OF THEOREM 3. 1: Let F_{0,b} be the subspace spanned by
vectors b(f_{1})\cdots b(f_{n})^{*}\Phi_{0} , n\geq 0 , f_{j}\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , j=1 , \cdots , n , which is dense in

\mathscr{F}_{S}(\mathscr{H}) . We define the operator U:F_{0,B}arrow F_{0,b} by

UB(f_{1})^{*}\cdots B(fn)^{*}\Omega=b(f_{1})^{*}\cdots b(f_{n})^{*}\Phi_{0} , f_{1} , \cdots , f_{n}\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} ,

and extending by linearity to F_{0,B} . By virtue of Lemma 3.2 and the con-
dition B(f)\Omega=0 , f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} , U maps F_{0,B} onto F_{0,b} isometrically.
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Therefore, U extends to a unitary map from \mathscr{F} onto \mathscr{F}_{S}(\mathscr{H}) , since F_{0,B}

(resp. F_{0,b} ) is dense in \mathscr{F} (resp. \mathscr{F}_{S}(\mathscr{H}) ). Then, by Lemmas 3.4 and 3.6,
we have

Ue^{itH}\Psi=e^{\iota t(d\Gamma(h)+E)}U\Psi \Psi\in F_{0,B}

with a constant E\in R , which extends to all \Psi\in \mathscr{F} Hence part (iii) fol-
lows (Note that d\Gamma(h)\geq 0 and d\Gamma(h)\Phi_{0}=0 ). Parts ( i) and ( ii) follow
from the definition of U. \square

IV. Existence and uniqueness of the ground state

In this section we shall show that, under some additional conditions,
there exists a unique vector (ground state) \Omega which possesses all the prop-
erties described in the assumption of Theorem 3.1. The basic idea is to
solve the equation B(f)\Omega=0 , f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2} . In order to do that, we first
determine Ker W. In what follows, we assume f_{0}\neq 0 .

LEMMA 4. 1. Suppose that Eq. (3. 7) and
(4. 1) WW^{*}-\overline{V}\overline{V}^{*}=I,
(4.2) VW^{*}-\overline{W}\overline{V}^{*}=0 ,
(4.3) Wf_{0}=\overline{Vg}_{0} , Wg_{0}=\overline{Vf}_{0} ,

hold and that ||f_{0}||\neq||g_{0}|| . Then, dim Ker W=1 and Ker W is spanned by

(4.4) w_{0}=u_{0}- \frac{(u_{0},g_{0})}{1+(v_{0},g_{0})}v_{0} ,

with

(4.5) u_{0}=(1+V^{*}V)^{-1}f_{0} , v_{0}=(1+V^{*}V)^{-1}g_{0} .

Further, the relation

(4. 6) 1+ \frac{|(u_{0},g_{0})|^{2}}{1+(v_{0},g_{0})}=(u_{0}, f_{0})

holds.

We remark that, if Eq. (4.1) holds, then WW^{*}=(1+\overline{V}\overline{V}^{*}) is inverti-
ble, so that Ran W=\mathscr{H}.

PROOF OF LEMMA 4. 1: We first show by reductio ad absurdum that
Ker W\neq\{0\} . Suppose that Ker W=\{0\} . Then, by the above remark,
W^{-1} exists and bounded on \mathscr{H}. Hence we have from (4.3)

g_{0}=W^{-1}\overline{V}\overline{W}^{-1}Vg_{0} .

Using (4.2), we see that
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\overline{V}\overline{W}^{-1}V=W-(W^{*})^{-1} .

Therefore we get W^{-1}(W^{*})^{-1}g_{0}=0 and hence g_{0}=0 , which yields from
(4.3) Wf_{0}---0 and hence f_{0}=0 . But this contradicts the original assump-
tion f_{0}\neq 0 . Thus we conclude that Ker W\neq\{0\} .

We next prove that dim Ker W\leq 1 . Let f be in Ker W. Then, by
(3.7),

(4.7) f=\alpha u_{0}+\beta v_{0}

with some constants \alpha and \beta . It g_{0}=\lambda f_{0} , \lambda\in C , then f=(\alpha+\lambda\beta)u_{0} and
obviously dim Ker W=1 .

Suppose that f_{0} and g_{0} be linearly independent and f_{1} , f_{2}\in KerW be
such that

f_{1}=\alpha_{1}u_{0}+\beta_{1}v_{0} , f_{2}=\alpha_{2}u_{0}+\beta_{2}v_{0}

with \alpha_{1}\beta_{2}-\beta_{1}\alpha_{2}\neq 0 . These equations imply that Wu_{0}=0 and Wv_{0}=0 ,

which, combined with (3.7), give the relation

(v_{0}, f_{0})f_{0}-[1+(v_{0}, g_{0})]g_{0}=0,1+(v_{0}, g_{0})\neq 0 .

This equation implies that f_{0} and g_{0} are linearly dependent, which, how-
ever, is a contradiction. Thus, we get dim Ker W\leq 1 . Eq. (4.6) follows
from (4.7) and (3.7). \square

Henceforth, throughout this section, we take the assumption of
Lemma 4.1 for granted.

As already mentioned, (4.1) implies Ran W=\mathscr{H}. so that the operator

(4.3) W_{\perp}=W[(Ker W)^{\perp}

is invertible. We put

(4.9) X=W_{\perp}^{-1} .

By (4.4) and (4.6), we have

(4. 10) (w_{0}, f_{0})=1 .

We set

(4. 11) F=\overline{Vw}_{0} ,

and

(4. 12) \alpha=(w_{0}, g_{0}) .

Let
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(4. 13) C=VX-(\cdot, X^{*}f_{0})\overline{F}

and

(4. 14) A=C+ \frac{\overline{\alpha}}{1-|\alpha|^{2}}P_{F} ,

where

(4. 15) P_{F}=(\cdot, F)\overline{F} .

REMARK: By (3. 7) and (4. 10), we have
(4. 16) 1-|\alpha|^{2}=(w_{0}, (I+V^{*}V)w_{0})>0 .

LEMMA 4. 2. Suppose that (4. 1)-(4.3) , (3. 7) and (3. 8) hold. Then
we have

(4. 17) C^{*}=\overline{C}

(4. 18) A^{*}=\overline{A}.

Further, the estimate
(4. 19) ||A||<1

holds on the operator norm of A .
PROOF: The relation (4.17) is checked by direct computations

using (3.7). Eq. (4.18) follows from (4.14), (4.17) and the fact that P_{F}^{*}

=\overline{P}_{F} .
To prove (4.19), we first note that A is written as

A=VX- \frac{1}{1-|\alpha|^{2}}(\cdot, X^{*}(1+V^{*}V)w_{0})\overline{F} .

which follows from (3.7), (3.8) and (4. 10). Using (3. 7) again, we see
that A^{*}A can be written as

A^{*}A=I-X^{*}YX ,

where

Y=I-(\cdot, f_{0})f_{0}+(\cdot, g_{0})g_{0}

+\beta\{(\cdot, u_{0})V^{*}Vw_{0}+(\cdot, V^{*}Vw_{0})u_{0}\}

-\beta^{2}(\cdot, u_{0})||Vw_{0}||^{2}u_{0}

with \beta=(1-|\alpha|^{2})^{-1} . Then, it is not so difficult to show that, for all f in
\mathscr{H} . (f, X^{*}YXf)-||Xf||^{2}\geq 0 . Thus we get

||Af||^{2}+||Xf||^{2}\leq||f||^{2} .
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Since ||Xf||\geq C||f|| for all f\in \mathscr{H} with a constant C>0 , (4.19) follows. \square

We are now ready to prove the main result in this section:

THEOREM 4. 3. Assume that f_{0}\neq 0 and ||f_{0}||\neq||g_{0}|| . Suppose that (4. 1)

-(4.3) , (3.7) and (3.8) hold and that VX is Hilbert-Schmidt on \mathscr{H} .
Then, there exists a unique {up to constant multiples) vector \Omega in D_{0,0} such
that ( i) for all f\in \mathscr{H} . B(f)\Omega=0 ; ( ii) The subspace F_{0,B} is dense in\mathscr{F}

PROOF: For a vector \Omega in D_{0,0} , the equation B(f)\Omega=0 , f\in \mathscr{H}, is
equivalent to equations

(4.20) [b(F)^{*}+(w_{0}, g_{0})a^{*}+a]\Omega=0 ,
(4.21) [b(\overline{VXf}^{*})+b(f)+(Xf, g_{0})a^{*}+(Xf, f_{0})a]\Omega=0 , f\in \mathscr{H} .

Let \phi_{0} and \Phi_{0} be the Fock vacuum in L^{2}(R) and \mathscr{F}_{S}(\mathscr{H}) respectively:

(4. 22) a\phi_{0}=0 , b(f)\Phi_{0}=0 , f\in \mathscr{H} ,

and put

(4.23) \Omega_{0}=\phi_{0}\otimes\Phi_{0} .

Let \mathscr{F}f\ln denote the dense subspace (in \mathscr{F}) spanned by vectors
b(f_{1})^{*}\cdots b(f_{n})^{*}a^{*m}\Omega_{0} , f_{j}\in \mathscr{H}. n , m\geq 0 . We introduce the operator

(4.24) \Lambda=\frac{1}{2}\langle b^{*}|C|b^{*}\rangle+b(F)^{*}a^{*}+\frac{1}{2}\alpha a^{*2} .

which is well-defined on \mathscr{F}_{f\ln}^{-} , since C is Hilbert-Schmidt by assumption.
It is not so iifficult to see that, for all n\geq 1 , \langle b^{*}|C|b^{*}\rangle^{n} is defined on \mathscr{L}_{f\ln}^{-}

and hence we can define the vector

(4.25) \Omega_{N}=\sum_{n=0}^{N}\frac{(-\Lambda)^{n}\Omega_{0}}{n!} .

Then, by a generalization of Berenzin’s continual integral method [11], we
can show that \Omega_{N} converges strongly to a vector \Omega in \mathscr{F} as Narrow\infty with

|| \Omega||^{2}=\frac{(1-|\alpha|^{2})}{||w_{0}||^{2}}[det (1-A^{*}A)]^{-1/2}\neq 0 ,

where we have used (4.16)-(4.19) and \det(\cdot) denotes the determinant (e .
g. , [22, 26])(N0te that A^{*}A is trace class on \mathscr{H}_{-} since A is Hilbert-
Schmidt on \mathscr{H}). In the same way, one can show that \Omega is in D_{0,0} . Then,
using the commutation relations

[b(f), \Lambda]=b(\overline{Cf})^{*}+(f, F)a^{*} . [b(f)^{*}, \Lambda]=0 ,
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[a, \Lambda]=\alpha a^{*}+b(F)^{*} , [a^{*}, \Lambda]=0 ,

and (4.22), one can easily check that (4.20) and (4.21) are satisfied.
Thus, condition ( i) is proved.

To prove that condition ( ii) is satisfied, we note that b(f)^{\#} and a^{\#}

can be written in terms of B(f)^{\#} as

(4.26) b(f)=B(W^{*}f)-B(V^{*}\overline{f})^{*} ,
(4.27) a=(||f_{0}||^{2}-|g_{0}||^{2})^{-1}(B(f_{0})-B(g_{0})^{*}) ,

which follow from (3.10) and (4.1)-(4.3). Therefore, F_{0,B} is a subspace
left invariant by b(f)^{\#} ’s (f\in \mathscr{H}_{-1}\cap \mathscr{H}_{2}) and a^{\#} Hence the closure of F_{0,B}

is left invariant by the unitary operators exp [i(b(f)+b(f)^{*})t] , exp (b(f)^{*}

-b(f))t , exp (ii) and exp (ipt), t\in R . But such a non-trivial closed sub-
space have to be the whole space \mathscr{F} (cf. [11]). Thus, F_{0,B} is dense in \mathscr{F}^{-}

Since we have proved that F_{0,B} is dense in \mathscr{F} . the uniqueness of the
vector \Omega follows in the same way as in the proof of Lemma 3.5. \square

Finally we consider conditions under which the vector \Omega in Theorem
4.3 is in D(H_{0}^{1/2}) .

LEMMA 4. 4. In addition to the assumption of Theorem 4.3, suppose
that hVX defifines a Hilbert-Schmidt operator on \mathscr{H} and that hVh^{-1} is
bounded on D(h^{-1}) . Then, the vector \Omega in Theorem 4.3 is in D(H_{0}) .

PROOF: Let \Lambda and \Omega_{N} be given by (4.24) and (4.25) respectively.
Then, by the additional assumption and the fact H_{0}\Omega_{0}=0 , we see that \Omega_{N}

is in D(H_{0}) and

H_{0} \Omega_{N}=\sum_{n=1}^{N}\frac{(\langle b^{*}|hC|b^{*}\rangle+b(hF)^{*}a^{*}+\omega_{0}b(F)^{*}a^{*}+\alpha\omega_{0}a^{*2})\Lambda^{n-1}\Omega_{0}}{(n-1)!} .

(Note that, by the additional assumption, F is in D(h) and hC defines a
Hilbert-Schmidt operator on \mathscr{H} . See \backslash (4.11) and (4. 13) ) . Then, using
Berezin’s continual integral method [11], one can show that H_{0}\Omega_{N} con-
verges strongly as Narrow\infty . By the closedness of H_{0} , it follows that \Omega is in
D(H_{0}) and H_{0}\Omega_{N}arrow H_{0}\Omega(Narrow\infty) . \square

V. A general construction of the quadruple \{W, V, f_{0}, g_{0}\}

In this section, we give a general method to construct the quadruple
\{V_{j}W, f_{0}, g_{0}\} which possesses the properties assumed in Sections III and
IV .

Let \mathscr{H} and h be as in the preceding sections. Let T\in B(\mathscr{H}) and
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Q\neq 0\in \mathscr{H} be given with the following properties:

(T. 1) T^{*}T=I .

(T. 2) For some \alpha\geq 0 , T maps D(h^{\pm a}) into D(h^{\mp a}) and the operators

T_{a}\equiv h^{-a}Th^{a}[D(h^{a})

and T_{-a}r D(h^{-a}) can be extended to bounded operators on \mathscr{H} (We

denote the unique extension of T_{\pm a} on \mathscr{H} by the same symbol).

(T. 3) For \beta=\frac{1}{2},1 , h^{-\beta}T_{\pm a}^{\#}h^{\beta}[D(h^{\beta}) defines a bounded linear operator

on \mathscr{H} .
(T. 4) T_{-a}^{*}hT_{-a}+T_{a}^{*}hT_{a}=2(h+K)

with a self-adjoint operator K\in ff_{b}’(h) .
(T. 5) The operator T_{-a}^{*}hT_{-a}-T_{a}^{*}hT_{a}+T_{a}^{*}hT_{-a}-T_{-a}^{*}hT_{a} defines

bounded linear operator in \mathscr{K}(h) .
(T. 6) T^{*}h^{1\pm 2a}T=\overline{T}^{*}h^{1\pm 2a}\overline{T} .

T^{*}hT=\overline{T}^{*}h\overline{T}

(Q. 1) For \beta=0,2 , h^{\mathcal{B}\pm a}Q\in \mathscr{H}-

(TQ. 1) TT^{*}+M(\cdot, Q)Q=I

with a constant M>0 .
(TQ. 2) T\overline{T}^{*}+M(\cdot , \overline{Q})Q=I+S ,

with S\in B(\mathscr{H}) satisfying

h^{a}Sh^{-a}=h^{-a}Sh^{a}

on \mathscr{H}_{-a}\cap \mathscr{H}_{a} .
(TQ. 3) For \beta=\pm 2\alpha

T^{*}h^{\beta}Q=\overline{T}h^{\beta}\overline{Q}

as a vector equation in \mathscr{H} .
We note that (T. 1) and (TQ. 1) imply

(TQ. 4) T^{*}Q=0 .

PROPOSITION 5. 1. Let T and Q be as above and let

(5. 1) V= \frac{1}{2}(T_{-a}^{*}-T_{a}^{*}) ,

(5.2) W= \frac{1}{2}(T_{-a}^{*}+T_{a}^{*}) ,

(5.3) f_{0}= \frac{1}{2}e^{i\theta}M^{1/2}(\tilde{h}^{a}+\tilde{h}^{-a})Q

(5.4) g_{0}= \frac{1}{2}e^{-i\theta}M^{1/2}(\tilde{h}^{a}-\tilde{h}^{-a})Q
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where \tilde{h}=h/x with a constant \chi>0 and \theta\in R is a constant. Then, the
quadruple \{ V, W, f_{0}, g_{0}\} possesses the following properties ( a)-(f) :

(a) WhV^{*}\in \mathscr{K}_{-}(h) .
(b) f_{0} , g_{0}\in D(h) .
(c) Condition (All) in Section III holds.
(d) The vectors u and v defifined by (3.2) and (3.3) are in

\mathscr{H}_{-1}\cap \mathscr{H}_{2} .
(e) Eqs. (3. 7)-(3.8) and (4. 1)-(4.3) hold.
(f) f_{0}\neq 0 and ||f_{0}||\neq||g_{0}|| .

PROOF: ( a) It is a simple computation to see that

(5.5) WhV^{*}= \frac{1}{4}(T_{-a}^{*}hT_{-a}-T_{a}^{*}hT_{a}+T_{a}^{*}hT_{-a}-T_{-a}^{*}hT_{a})

which, by (T. 5), is in \mathscr{K}(h) .
(b) This follows from the definition of f_{0} and g_{0} and (Q. 1).
(c) This follows from (T. 2), (T. 3), (T. 4) and (T. 6).
(d) This follows from Part ( c) and (Q. 1).
(e) By direct computations: Roughly speaking, we have

(TQ. 1) , (TQ. 2)\Rightarrow(3.7) , (3.8). (T. 1), (T. 6) \Rightarrow(4.1) , (4.2).
(TQ. 3)\Rightarrow(4.3) .

(f) By direct computations, we have
||f_{0}||^{2}-||g_{0}||^{2}=M||Q||^{2} .

which implies the desired result. \square

As for Eq. (3.5), we need only to take \omega_{0} as

(5.6) \omega_{0}=\frac{1}{2}Mx\{(Q,\overline{h}^{1+2a}Q)+(Q,\tilde{h}^{1-2a}Q)\} .

It is easy to check that the right hand side of (5.6) is equal to (f_{0}, hf_{0})

+(g_{0}, hg_{0}) and hence that Eq. (3.5) holds.

VI. Existence of \{T, Q\}

In this section, considering the case \mathscr{H}=L^{2}(R^{d}) , we show that there
exists a class of { T. Q} possessing the properties (T. 1 ) -(T. 6) , (Q. 1) and
(TQ. 1)-(TQ. 3) in the last section.

Throughout this section, we take \mathscr{H}=L^{2}(R^{d}) , d\in N .
Let \omega_{1} be a non-negative, strictly monotone increasing, continuously

differentiate function on (0, \infty) such that \omega_{1}(t)- \infty as tarrow\infty . We put

(6. 1) \lim_{t\downarrow 0}\omega_{1}(t)=m\geq 0 .
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The function \omega_{1} gives a rotation invariant function \omega on R^{d} by

(6.2) \omega(k)=\omega_{1}(|k|) , k\in R^{d}\wedge

We take the operator h in \mathscr{H} to be the multiplication operator by the func-
tion \omega^{r} with some constant r>0 :

(6. 3) (hf)(k)=\omega(k)^{r}f(k) ,

and define the conjugation J on \mathscr{H} by

(6.4) (Jf)(k)=\overline{f(k)}, f\in \mathscr{H}

where \overline{f} denotes the complex conjugate of f. Obviously, J commutes
with h .

For a real-valued function \rho in \mathscr{H} . we define a function \Phi_{\rho}(z) of the
complex variable z by

(6.5) \Phi_{\rho}(z)=\int dk\frac{\rho(k)^{2}}{z-\omega(k)} ,

which is well-defined in the cut plane

(6. 6) C_{m}=C\backslash [m, \infty)

and analytic there. Then we introduce the functions D^{(\mu)}(z) , \mu=0,1 , by

(6.7) D^{(\mu)}(z)=-a1^{\mu)}z+ab^{\mu)}+z^{\mu}\Phi_{\rho}(z) ,

where a_{\nu}^{(\mu)} , \mu , \nu=0,1 , are real constants such that a1^{\mu)}>0 , \mu=0,1 , and ab^{1)}

\neq 0 . For simplicity, we assume
(CI) D^{(\mu)}(z)\neq 0 , z\in C_{m} .

REMARK: It is easy to see that zeros of D^{(\mu)}(z) in C_{m} are in (-\infty ,

m) and that D^{(\mu)}(t) is monotone decreasing in t\in(-\infty, m) . Thus (CI)

is equivalent to the condition d_{m}^{(\mu)} \equiv\lim_{t\uparrow m}D^{(\mu\rangle}(t)\geq 0 . Hence (CI) implies

ab^{\mu)}>0 , \mu=0,1 .
Let

(6.3) u_{1}(t)=\omega_{1}’(t)^{1/2}t^{-(d-1)/2} . t>0 ,

and put

(6.9) u(k)=u_{1}(|k|) , k\in R^{d} .

In addition to (CD , we further assume the following (CII)-(CIV) :

(CII)
t\in 1m,\infty)su\epsilon>P|\Phi_{\rho}(t\pm i\epsilon)|<\infty

.
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(CIII)
t \in\inf_{\epsilon\{\begin{array}{l}>0m,\infty\end{array})}|D^{(\mu\rangle}(t\pm i\epsilon)|>0

, \mu=0,1 .

(CIV) The functions u^{-1}\rho and u^{-1}\omega\rho are in L^{\infty}(R^{d}) .

Conditions (CII)-(CIV) are not empty. For example, functions
\omega_{1}(t)=(t^{2}+m^{2})^{1/2} .

\rho(k)=\frac{\lambda}{1+|k|^{a}} , \lambda>0

with \alpha\geq(d/2)+1 , d\geq 2 , satisfy (CII)-(CIV) . General sufficient condi-
tions for (CII) and (CIII) to hold have been given in the Appendices in
[9].

For each \epsilon>0 , we define a linear operator G_{\epsilon} by

(6. 10) (G_{\epsilon}f)(k)= \int dk’\frac{u(k)u(k’)f(k’)}{\omega(k)-\omega(k’)+i\epsilon} .

In [5], it was proved that G_{\epsilon} is a skew-symmetric bounded linear operator
on \mathscr{H} and that the strong limit

(6. 11) G=s- \lim_{\epsilon\downarrow 0}G_{\epsilon}

exists on \mathscr{H}

One can show also that the limits

(6. 12) D \underline{1}^{\mu)}(t)=\lim_{\epsilon\downarrow 0}D^{(\mu)}(t\pm i\epsilon) , \mu=0,1 ,

exist for a . e . t\in R , which, by assumption (CIII), cannot be zero. Then
we define the function

(6. 13) Q^{(\mu)}(k)= \frac{\rho(k)}{D_{+}^{(\mu)}(\omega(k))} , \mu=0,1 .

Let T^{(\mu)} be the operator given by

(6. 14) T^{(\mu)}f=f-\omega^{\mu}Q^{(\mu)}u^{-1}Gu^{-1}\rho f ,

which is bounded and linear on \mathscr{H} by (CIII) and (CIV).

Our aim is to show that \{ T^{(\mu)}, Q^{(\mu)}\} given by (6.14) and (6.13) pos-
sesses the properties of { T . Q) in the last section.

LEMMA 6. 1. Let f^{(\mu)}(z)(\mu=0,1) be a meromorphic function in C
with poles a_{1} , \cdots , a_{N} in C_{m} and with no poles in [m, \infty) . Suppose that

A^{(\mu)} \equiv\lim_{zarrow\infty}\frac{z^{1-\mu}f^{(\mu)}(z)}{D^{(\mu)}(z)}

exists. Then
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(6. 15) \int dk|Q^{(\mu)}(k)|^{2}f^{(\mu)}(\omega(k))

= \delta_{m,0}\delta_{\mu,1}\frac{f^{(\mu)}(0)}{ab^{1)}}-A^{(\mu)}+\sum_{n=1}^{N}{\rm Res} ( \frac{f^{(\mu\rangle}}{z^{\mu}D^{(\mu)}} , a_{n}),
where {\rm Res}(f^{(\mu)}/z^{\mu}D^{(\mu)}, a_{n}) denotes the residue of f^{(\mu)}/z^{\mu}D^{(\mu)} at z=a_{n} .

PROOF: We give a proof of (6.15) only for the case m=0 (The
case m>0 is similarly proved). Let 0<\epsilon<\delta<\infty be sufficiently small and
L>0 be large enough so that the points a_{n} , n=1 , \cdots , N, are in the interior
of the curve

\Gamma=\{\delta e^{i\theta}|-2\pi+\alpha_{\epsilon}\leq\theta\leq-\alpha_{\epsilon}\}\cup { x+i\epsilon|\delta cos \alpha_{\epsilon}\leq x\leq L cos \beta_{\epsilon} }
\cup\{Le^{i\theta}|\beta_{\epsilon}\leq\theta\leq 2\pi-\beta_{\epsilon}\}\cup { x-i\epsilon|\delta cos \alpha_{\epsilon}\leq x\leq L cos \beta_{\epsilon} }

with the anti-clockwise orientation, where \alpha_{\epsilon}=\sin^{-1}(\epsilon/\delta) , \beta_{\epsilon}=\sin^{-1}(\epsilon/L)\in

(0, \pi/2) . Then, by Cauchy’s theorem, we have

I_{\mu}= \int_{\Gamma}\frac{f^{(\mu)}(z)}{z^{\mu}D^{(\mu)}(z)}dz=2\pi i\sum_{n=1}^{N}{\rm Res} ( \frac{f^{(\mu)}(z)}{z^{\mu}D^{(\mu)}(z)} , a_{n} ).
On the other hand, I_{\mu} is written as

I_{\mu}= \sum_{j=1}^{3}I_{\mu}^{(j)}

with
I_{\mu}^{(1)}= \int_{-a_{\epsilon}}^{-2\pi+a_{\epsilon}}d\theta\frac{i(\delta e^{i\theta})^{1-\mu}f^{(\mu)}(\delta e^{i\theta})}{D^{(\mu)}(\delta e^{i\theta})} ,

I_{\mu}^{(2)}= \int_{8\cos a_{\epsilon}}^{L\cos\rho_{\epsilon}}dx\{\frac{f^{(\mu)}(x+i\epsilon)}{(x+i\epsilon)^{\mu}D^{(\mu)}(x+i\epsilon)}-\frac{f^{(\mu)}(x-i\epsilon)}{(x-i\epsilon)^{\mu}D^{(\mu)}(x-i\epsilon)}\} ,

I_{\mu}^{(3)}=i \int_{\beta\epsilon}^{2\pi-\beta\epsilon}d\theta\frac{(Le^{i\theta})^{1-\mu}f^{(\mu)}(Le^{i\theta})}{D^{(\mu)}(Le^{i\theta})} .

By (CII), (CIH) and the regularity of f^{(\mu)}(z) in C\backslash \{a_{1}, \cdots, a_{N}\} , we see
that

\lim_{8\downarrow 0}\lim_{\epsilon\downarrow 0}I_{\mu}^{(1)}=\delta_{\mu,1}(-2\pi i)\frac{f^{(1)}(0)}{ab^{1)}} ,

\lim_{\delta\downarrow 0}\lim_{\epsilon\downarrow 0}I_{\mu}^{(2)}=\int_{0}^{L}dx\frac{f^{(\mu)}(x)}{x}\{\frac{1}{D_{+}^{(\mu)}(x)}-\frac{1}{D_{-}^{(\mu)}(x)}\} .

By using the deminated convergence theorem, one can show that

\lim_{Larrow\infty}\lim_{\epsilon\downarrow 0}I_{\mu}^{(3)}=2\pi iA^{(\mu)} .

Thus, we get
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\frac{1}{2\pi i}\int_{0}^{\infty}dx\frac{f^{(\mu)}(x)}{x}\{\frac{1}{D_{+}^{(\mu\rangle}(x)}-\frac{1}{D_{-}^{(\mu)}(x)}\}

= \delta_{\mu,1}\frac{f^{(1)}(0)}{a_{0}^{(1)}}-A^{(\mu\rangle}+\sum_{n=1}^{N}{\rm Res} ( \frac{f^{(\mu)}(z)}{z^{\mu}D^{(\mu)}(z)} , a_{n} ).
It is easy to see that the LHS is in fact equal to that of (6.15). \square

LEMMA 6. 2. For each \mu=0,1 , the following hold :

(a) T^{(\mu\rangle*}T^{(\mu)}=I.
(b) T^{(\mu)}T^{(\mu)*}+M^{(\mu)}(\cdot\prime Q^{(\mu)})Q^{(\mu)}=I,

where

(6. 16) M^{(\mu)}=af_{-\mu}^{\mu)} .

PROOF: Part ( a) is proved by applying Lemma 6.1. Part ( b) is
derived by direct computations. Cf. the proof of [2, Lemma 4.9]. \square

Let

(6. 17) (S^{(\mu)}f)(k)=2 \pi i\omega(k)^{\mu}\rho(k)u(k)^{-2}Q^{(\mu)}(k)\int_{S^{d-1}}dS(\theta)f(|k|\theta) ,

where S^{d-1} is the d-1 sphere and dS(\theta) is the surface integral element
on it.

LEMMA 6. 3. For each \mu=0,1 , S^{(\mu)}\in B(\mathscr{H}) .

PROOF: By using the Schwartz inequality, we see that
||S^{(\mu\rangle}f||^{2}\leq C||\omega^{\mu}u^{-2}\rho Q^{(\mu)}f||^{2}

with a constant C>0 . It follows from the conditions (CIII) and (CIV)
that \omega^{\mu}u^{-2}\rho Q is in L^{\infty}(R^{d}) . Therefore, S^{(\mu)} is bounded on \mathscr{H}

LEMMA 6. 4. Let

(6. 18) F^{(\mu)}(k)= \frac{D_{+}^{(\mu)}(\omega(k))}{D_{-}^{(\mu\rangle}(\omega(k))} , \mu=0,1 .

Then, for each \mu=0,1 , we have

(6. 19) \overline{T}^{(\mu)}f=F^{(\mu)}T^{(\mu)}f+(I-F^{(\mu)}+\overline{S}^{(\mu)})f

for all f in \mathscr{H}_{r}

PROOF: Direct computation using the distributional equations

\frac{1}{\omega(k)-\omega(k’)\pm i0}=P\frac{1}{\omega(k)-\omega(k’)}\mp i\pi\delta(\omega(k)-\omega(k’)) ,
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where P denotes the principal value. \square

LEMMA 6. 5. For every rotaion invariant measurable function f on
R^{d} and for each \mu=0,1 , we have

(6.20) \overline{T}^{(\mu)*}f\overline{T}^{(\mu)}g=T^{(\mu)*}fT^{(\mu)}g

for all g in \mathscr{H} such that fT^{(\mu)}g is in \mathscr{H} and

(6.21} \overline{T}^{(\mu)*}f\overline{Q}^{(\mu)}=T^{(\mu)*}fQ^{(\mu)}

provided that fQ^{(\mu)} is in \mathscr{H} .

PROOF : We first note that, if f is real, then T^{(\mu)*}fT^{(\mu)} and
T^{\overline{(}\mu)*}fT^{\overline{(}\mu)} are reality preserving, which follows by direct computation as
in Lemma 6.4. Therefore, it is sufficient to prove (6.20) for the case that

f and g are real. In that case, using (6.19), we can prove

(g,\overline{T}^{(\mu)*}f\overline{T}^{(\mu)}g)=(g, T^{(\mu)*}fT^{(\mu)}g) .

Then, the polarization identity gives (6.20).

Eq. (6.21) \cdot follows from (6.19) and the following identities:

F^{(\mu)}Q^{(\mu)}=\overline{Q}^{(\mu)} , Q^{(\mu)}-\overline{Q}^{(\mu)}=S^{(\mu)}\overline{Q}^{(\mu)} .
\square

LEMMA 6. 6. For each \mu=0,1 , Eq. ( TQ. 2) in Section V holds with
\{T, Q\}=\{T^{(\mu)}. Q^{(\mu)}\} and S=S^{(\mu)} given by (6. 17).

PROOF: Direct computations using (6. 19). \square

In what follows we fix a constant \alpha\geq 0 and assume the following:

(CV) For \beta=-\frac{1}{2},2 , \omega^{\gamma(\beta\pm a)}\rho\in \mathscr{H}

(CVI) For \beta=0 , \frac{1}{2},1 , \omega^{\pm r(\beta-a)+\mu}u^{-1}\rho and \omega^{\pm r(\beta+a)+\mu}u^{-1}\rho\in L^{\infty}(R^{d}) .

PROPOSITION 6. 7. For each \mu=0,1 , \{ T, Q\}=\{T^{(\mu)}, Q^{(\mu)}\} possesses
the properties ( T. 1 ) -(T. 3) , ( T. 6), (Q. 1) and ( TQ. l)-(TQ. 3) in Sec-
tion V, where the constant M in ( TQ. 1) is taken as M=M^{(\mu)} given by
(6. 16).

PROOF: Roughly speaking, we have
Lemma 6. 2 (a) (resp. (b)) \Rightarrow(T2) (resp. (TQ. 1) ), (6. 19)\Rightarrow (TQ. 2),

(6.20)\Rightarrow (T. 6), (6.21)\Rightarrow (TQ. 3), (CV)\Rightarrow(Q. 1) , (CVI)\Rightarrow(T. 2) , (T. 3). \square

It still remains to prove (T. 4) and (T. 5). In order to do that, we
have to compute explicitly the relevant operators.
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For each \mu^{=}0,1 , and \beta\in[-\mu, 2-\mu] , we introduce the operator Rb^{\mu)}

by

(6. 22) R b^{\mu)}f=\frac{\sin\pi\beta}{\pi}\int_{0}^{\infty}d\lambda\frac{\lambda^{\beta+\mu}}{D^{(\mu)}(-\lambda)}(f, e_{\lambda})e_{\lambda}

with

(6.23) e_{\lambda}(k)= \frac{\rho(k)}{\lambda+\omega(k)} .

LEMMA 6. 8. Let \delta_{1} and \delta_{2} be real constants. Suppose that, for s=
0,1 , t=-r/2,0, r, and j=1,2, the functions \omega^{r8_{J}+t-s}\rho are in \mathscr{H} . Then,
the operator h^{8_{1}}Rb^{\mu)}h^{8_{2}} is in \mathscr{K}(h) {Definition 2. 6).

PROOF: By the assumption, h^{8_{j}}e_{\lambda} is in \mathscr{H}_{-1}\cap \mathscr{H}_{2} for all \lambda\geq 0 and we
have

h^{8_{1}}R b^{\mu)}h^{8_{2}}f=\frac{\sin\pi\beta}{\pi}\int_{0}^{\infty}d\lambda\frac{\lambda^{\beta+\mu}}{D^{(\mu)}(-\lambda)}(f, h^{8_{2}}e_{\lambda})h^{8_{1}}e_{\lambda} .

By the assumption (CI) for D^{(\mu)}(z) , we have for all \lambda\geq 0

|D^{(\mu)}(-\lambda)|\geq c>0

with a constant c and D^{(\mu)}(-\lambda)=O(\lambda) as \lambdaarrow\infty . Hence we have

||h^{8_{1}}R b^{\mu)}h^{8_{2}}f||\leq\frac{1}{\pi}\int_{0}^{\infty}d\lambda\frac{\lambda^{\beta+\mu}}{|D^{(\mu)}(-\lambda)|}||h^{8_{2}}e_{\lambda}||||h^{8_{1}}e_{\lambda}||||f||

\leq\frac{c}{\pi}\int_{0}^{1}d\lambda\lambda^{\beta+\mu}||\omega^{r8_{2}-1}\rho||||\omega^{r8_{1}-1}\rho||||f||

+ \frac{1}{\pi}\int_{1}^{\infty}d\lambda\frac{\lambda^{\beta+\mu-2}}{|D^{(\mu)}(-\lambda)|}||h^{8_{2}}\rho||||h^{8_{1}}\rho||||f||

<\infty .

Hence h^{8_{1}}Rb^{\mu)}h^{8_{2}} is bounded on \mathscr{H}. In the same way, we can show that

\int_{0}^{\infty}d\lambda\frac{\lambda^{\beta+\mu}}{|D^{(\mu)}(-\lambda)|}||h^{8_{1}}e_{\lambda}||_{p}||h^{8_{2}}e_{\lambda}||_{q}<\infty

for p, q=\pm 1,2 . Thus, h^{8_{1}}Rb^{\mu)}h^{8_{2}} is in \mathscr{K}(h) . \square

LEMMA 6. 9. Let -\mu\leq r\beta\leq 2-\mu . Then, for all f\in D(h^{\beta}) such that
T^{(\mu)}f\in D(h^{\beta}) , we have

(6.24) T^{(\mu)*}h^{\beta}T^{(\mu)}f=h^{\beta}f+d_{r\rho}^{(\mu)}(f, \rho)\rho+(-1)^{\mu-1}R_{r\beta}^{(\mu\rangle}f,

where
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(6.25) d_{\gamma\beta}^{(\mu)}= \frac{\delta_{\mu,0}\delta_{r\beta,2}}{a1^{0)}}+\frac{\delta_{\mu,1}\delta_{r\beta,1}}{af^{1)}} .

PROOF: Let f be as above and g be in \mathscr{H} Then, we have

(T^{(\mu)}g, h^{\beta}T^{(\mu\rangle}f)=(g, h^{\beta}f)-(g, h^{\beta}\omega^{\mu}Q^{(\mu)}u^{-1}Gu_{1}^{-1}\circ f)

-(\omega^{\mu}Q^{(\mu)}u^{-1}Gu^{-1}\rho g, h^{\beta}f)

+ \lim_{\epsilon\downarrow 0}I_{\epsilon}^{(\mu)} ,

where
I_{\epsilon}^{(\mu)}= \int dk’dk’\rho(k’)\rho(k’)g(k’)\overline{f(k^{rr})}K_{\beta}^{(\mu)}(k’, k’)

with
K \beta^{\mu)}(k’k^{rr})=\int dk\frac{|Q^{(\mu)}(k)|^{2}\omega(k)^{r\beta+2\mu}}{(\omega(k)-\omega(k’)+i\epsilon)(\omega(k)-\omega(k’)-i\epsilon)} .

We compute K\beta^{\mu)}(k’. k’) by using Lemma 6.1. Let 0<\delta\equiv r\beta<1 first.
Then we can write as

\omega(k)^{8}=\frac{\sin\pi\delta}{\pi}\int_{0}^{\infty}d\lambda\frac{\lambda^{8-1}\omega(k)}{(\lambda+\omega(k))} .

Using Fubini’s theorem, we have

K \beta^{\mu)}(k’. k^{rr})=\frac{\sin\pi\delta}{\pi}\int_{0}^{\infty}d\lambda\lambda^{8-1}J^{(\mu)}(\lambda, k’, k’)

with
J^{(\mu)}( \lambda, k’, k’)=\int dk\frac{|Q^{(\mu)}(k)|^{2}\omega(k)^{2\mu+1}}{(\omega(k)-\omega(k’)+i\epsilon)(\omega(k)-\omega(k’)-i\epsilon)(\lambda+\omega(k))},

The function J^{(\mu)}(\lambda, k’, k’) can be computed via Lemma 6.1 and we get
(6.24). The other cases can be proved similarly. \square

Lemma 6. 9 immediately gives

PROPOSITION 6. 10. Let -\mu\leq r(1\pm 2\alpha)\leq 2-\mu . Then the following
operator equations hold :

(6.26) T_{-a}^{(\mu)*}hT_{-a}^{(\mu)}+T_{a}^{(\mu)*}hT_{a}^{(\mu)}

=2h+d_{r(}^{(\mu}1_{+2a)}(\cdot, h^{-a}\rho)h^{-a}\rho+d_{r(}^{(\mu}f-2a)(\cdot, h^{a}\rho)h^{a}\rho

+(-1)^{\mu-1}(h^{-a}R_{rt}^{(\mu}1_{+2a)}h^{-a}+h^{a}R_{r(}^{(\mu}1_{-2a)}h^{a}) .
(6.27) T_{-a}^{(\mu)*}hT_{-a}^{(\mu)}-T_{a}^{(\mu)*}hT_{a}^{(\mu)}+T_{a}^{(\mu)*}hT_{-a}^{(\mu)}-T_{-a}^{(\mu)*}hT_{a}^{(\mu)}

=d_{r(}^{(\mu}1-2a)(\cdot\prime h^{-a}\rho)h^{-a}\rho-d_{\gamma(}^{(\mu}1-2a)(\cdot, h^{a}\rho)h^{a}\rho+d_{r}^{(\mu)}(\cdot, h^{-a}\rho)h^{a}\rho

-d_{r}^{(\mu)}(\cdot, h^{a}\rho)h^{-a}\rho+(-1)^{\mu-1}(h^{-a}R_{r(}^{(\mu}i_{+2a)}h^{-a}

-h^{a}R_{r(}^{(\mu}1_{-2a\rangle}h^{a}+h^{a}R_{r}^{(\mu)}h^{-a}-h^{-a}R_{r}^{(\mu)}h^{a}) .

In particular, ( T4) and ( T. 5) in Section V hold with { T. Q } =
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\{T^{(\mu)}. Q^{(\mu)}\} , \mu=0,1 .

Thus we have proved that \{ T^{(\mu)}, Q^{(\mu)}\} defined by (6.14) and (6.13)
possesses the properties (T1) -(T. 6), (Q. 1), and (TQ. 1)-(TQ. 3) in Sec-
tion V.

In Section IV , we needed for the proof of the existence of the ground
state that VW_{\perp}^{-1} and hVW_{\perp}^{-1} are Hilbert-Schmidt on \mathscr{H}- Obviously, this
condition is satisfied if V and hV is Hilbert-Schmidt. A criterion for the
latter condition can be derived by expressing V explicitly as follows. We
first define the kernel A_{8}(k, k’)(\delta>0) by

(6.28) \omega(k)^{28}-\omega(k’)^{28}=(\omega(k)-\omega(k’))A_{8}(k, k’) .

Let V^{(\mu)} denote the operator V given by (5.1) with T=T^{(\mu)} . Then, by
direct computation, we have

(6. 29) (V^{(\mu)}f)(k)= \int V^{(\mu)}(k, k’)f(k’)dk’

with

(6.30) V^{(\mu)}(k, k’)=- \frac{\rho(k)A_{ra}(k,k’)\omega(k)^{\mu}\overline{Q^{(\mu)}(k’)}}{2[\omega(k)\omega(k’)]^{ra}}

Thus, we get the following criterion for V^{(\mu)} and hV^{(\mu)} to be Hilbert-
Schmidt on \mathscr{H} :

LEMMA 6. 11. The operator V^{(\mu)} (resp. hV^{(\mu)} ) is Hilbert-Schmidt on
\mathscr{H} if and only if V^{(\mu)}(k, k’)(resp. \omega(k)^{r}V^{(\mu)}(k, k’)) is a function in
L^{2}(R^{d}\cross R^{d}) .

VII. Examples

In this section we show by explicit computations that the class of the
quadratic operators H defined via \{ T^{(\mu)}, Q^{(\mu\rangle}\} given in Section VI contains
the Hamiltonians of standard models of a one dimensional quantum har-
monic oscillator coupled quadratically to a quantum scalar field.
Throughout this section, the same notation is used as that in Section VI .

We first enumerate some lemmas need for the computation of H.
LEMMA 7. 1. Suppose that, for a non-negative integer n, \omega^{n}\rho is in

\mathscr{H}_{-} Then, we have

(7. 1) T^{(\mu)} \omega^{n}\rho=(ab^{\mu)}-a1^{\mu)}\omega)\omega^{n}Q^{(\mu)}+\sum_{j=1}^{n}(\rho, \omega^{n-j}\rho)\omega^{\mu+j-1}Q^{(\mu)}

and

(7.2) (Q^{(\mu)}. \omega^{n+1}Q^{(\mu)})=\frac{1}{ai^{\mu)}}\{ab^{\mu)}(Q^{(\mu)}. \omega^{n}Q^{(\mu)})
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+ \sum_{j=1}^{n}(\rho, \omega^{n-j}\rho)(Q^{(\mu)}, \omega^{n+j-1}Q^{(\mu)})\} .

PROOF: Eq. (7. 1) follows from direct computations. Taking the
quantity (Q, T^{(\mu)}\omega^{n}\rho) and using the fact T^{(\mu)*}Q^{(\mu)}=0[TQ. 4] , we get
(7.2). \square

LEMMA 7. 2. Suppose that \omega\rho is in \mathscr{H} Then, we have

(7.3) T^{(\mu)*} \omega Q^{(\mu)}=-\frac{\rho}{a1^{\mu)}} , \mu=0,1 .

PROOF: Similar to the proof of Lemma 6.9. \square

Let W^{(\mu)} (resp. V^{(\mu)} , f_{0}^{(\mu)} , g6^{\mu)} ) be given by (5. 1) (resp. (5. 2), (5. 3),
(5.4) ) with T=T^{(\mu\rangle} , Q=Q^{(\mu)} . h=\omega^{r} . M=M^{(\mu)} , \chi =x^{(\mu)} , and \theta=\theta^{(\mu)} .

We put

u^{(\mu)}=w^{(\mu)}hf_{0}^{(\mu)}+\overline{V}^{(\mu)}h\overline{g}d^{\mu)} ,
v^{(\mu)}=w^{(\mu)}hgb^{\mu)}+\overline{V}^{(\mu)}h\overline{f_{0}}^{(\mu)} .

(see (3.2) and\wedge(3.3) ).

LEMMA 7. 3.
(a) (r, \alpha)=(\frac{1}{2}, \pm\frac{1}{2}) , we have

u^{(\mu)}=- \frac{e^{i\theta^{(}\mu)}M^{(\mu\rangle}h^{-1/2}\rho}{bx^{(\mu)1/2}af^{\mu)}} , u^{(\mu)}= \mp\frac{e^{-i\theta^{(}\mu)}M^{(\mu)}h^{-1/2}\rho}{2x^{(\mu)12}af^{\mu)}},

(b) For (r, \alpha)=(1,0) , we have

u^{(\mu)}=- \frac{e^{i\theta^{(}\mu)}M^{(\mu)}\rho}{a1^{\mu)}} , v^{(\mu)}=0 .

PROOF: By direct computations, we have

(\begin{array}{l}e^{-i\theta^{(}\mu)}u^{(\mu)}e^{i\theta^{(}\mu)}v^{(\mu)}\end{array})=\frac{M^{(\mu)}x^{(\mu)}}{2}\{\tilde{h}^{-a}T^{(\mu)*}\overline{h}^{1+2a}Q^{(\mu)}+\overline{h}^{a}T^{(\mu)*}\tilde{h}^{1-2a}Q^{(\mu)}\} .

Then, Lemma 7.2 gives the desired result. \square

LEMMA 7. 4.

(a) Let (r, \alpha)=(\frac{1}{2}, \pm\frac{1}{2}) .

Then, for each \mu=0,1 , we have

(7.4) (f_{0}^{(\mu)}, hg \oint^{\mu)})=0 ,
(7.5) (f_{0}^{(\mu)}, hf_{0}^{(\mu)})+(gA^{\mu)}, hg6^{\mu)})=x^{(\mu\rangle}
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with
x^{(\mu)}=( \frac{ab^{\mu)}}{af^{\mu)}})^{1/2}

(b) Let (r, \alpha)=(1,0) . Then, for each \mu=0,1 , we have (7.4) and

(f_{0}^{(\mu\rangle}, hf_{0}^{(\mu)})+(g \oint^{\mu)}, hg\oint^{\mu)})=\frac{ab^{\mu\rangle}}{af^{\mu)}}

independently of \chi^{(\mu)} .

PROOF: Direct computations using (7.2). \square

We are now ready to present examples of the quadratic operator H
given by (3.4). We give only three examples.

EXAMPLE 1: We take \mu=0 , \theta^{(0)}=\pi , (r, \alpha)=(1,0) , af^{0)}=1 , and a8^{0)}=

\omega_{0} . Then, using the preceding lemmas, we see that H is written as
H=H_{0}+ab(\rho)^{*}+a^{*}b(\rho) .

This is the Hamiltonian of the s0-called RWA oscillator [5].

EXAMPLE 2: We take \mu=0 , \theta^{(0)}=\pi , (r, \alpha)=(\frac{1}{2}, \frac{1}{2}) , x^{(0)}=\omega_{0} . Then
we have

H=H_{0}+q\cdot\phi(\rho) ,
where

q= \frac{1}{\sqrt{2\omega_{0}}}(a^{*}+a)

is the position operator in L^{2}(R)(see(2.28)) and

\phi(f)=\frac{1}{\sqrt{2}}(b(h^{-1/2}f)^{*}+b(h^{-1/2}f)) , h^{-1/2}f\in \mathscr{H}

is the “time zero scalar field” in \mathscr{F}_{s}(\mathscr{H}) . In particular, if we take \omega(k)=

|k|^{2} and d=3, then the operator H is the Hamiltonian of the model con-
sidered in [2, 3] .

EXAMPLE 3: We take \mu=1 , (r, a)=( \frac{1}{2}, \frac{1}{2}) , x^{(1)}=\omega_{0} , ab^{1)}=\omega_{0}^{2}af^{1\rangle} ,

M^{(1)}=1 , and \theta^{(1)}=0 . Then, we have

H=H_{0}+ \frac{\omega_{0}^{2}}{2}(q-\phi(\rho))^{2}-\frac{\omega_{0}^{2}}{2}q^{2} .

This operator may be regarded as a scalar field version of the
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Hamiltonian of a harmonically bound electron minimally coupled to a
quantized radiation field [4].

In all the examples above, one can easily see that, under suitable reg-
ularity conditions for \rho and a choice of the space dimension d , the opera-
tors V^{(\mu)} and hV^{(\mu)} are Hilbert-Schmidt (see Lemma 6.11). One can also
prove that, under suitable conditions for the parameters or by “renormal-
izations”- each Hamiltonian satisfies the condition (H) in Section III.

In the same way as in the above examples, we can generate a variety

of quadratic Hamiltonians for a system of a one dimensional quantum

harmonic oscillator coupled to a quantum scalar field. These
Hamiltonians are isospectral to d\Gamma(\omega^{r}) up to constant addition.

VIII. Other aspects

In this section we follow the notation in Sections III and IV .

8. 1. The n-point functions of the oscillator.

From a point of view of QFT , it is interesting to investigate prop-
erties of the n-point functions of the oscillator

W_{n}(t_{1}, \cdots, t_{n})=(q(t_{1})\cdots q(t_{n})\Omega, \Omega)

where q(t) is the time evolution of q by H :

q(t)=e^{itH}qe^{-itH}-t\in R .

It is easy to see that W_{2n-1}\equiv 0 , n\in N , and W_{2n} is written as a sum of n

products of W_{2} , which is computed as
W_{2}(t, s)=c(F, e^{i(t-s)h}F) , t , s\in R ,

with
c= \frac{1}{2\omega_{0}(||f_{0}||^{2}-||g_{0}||^{2})^{2}} , F=f_{0}-g_{0} .

(Use (3.15) and (4.27).)

In view of quantum statistical mechanics (e. g., [13]) , by a standard
method, we can construct a quasi free equilibrium state \omega_{\beta} at any finite
temperature 1/\beta of the quantum system governed by the Hamiltonian H
such that the’two-point correlation function

W_{2}^{\beta}(t, s)\equiv\omega_{\beta}(q(t)q(s))

is given as
W_{2}^{\beta}(t, s)=c(F, (e^{\beta h}-1)^{-1}(e^{[\beta+i(t-s)]h}+e^{-i(t-s)h})F) .
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Note that W_{2}^{\beta}(t, s)arrow W_{2}(t, s) as \betaarrow\infty (the zero temperature limit).
Concerning the examples in Section VI , the long-time behavior of

W_{2}(t, s) and W_{2}^{\beta}(t, s) has been analyzed in detail in [9].

8. 2. Supersymmetric embedding.

Recently rigorous analysis has been undertaken on supersymmetric
embedding of “ordinary” quantum field models [7] (For a formal theory,
see [6] and for quantum mechanical (finite degrees of freedom) cases, see
references in [7] ) . A non-negative self-adjoint operator A is said to be
supersymmetrically embeddable if it is unitarily equivalent to a reduced
part of a supersymmetric Hamiltonian [7]. Under the assumption of The-
orem 3.1, \overline{H} is supersymmetrically embeddable. This follows from the
fact that \overline{H} is unitarily equivalent to d\Gamma(h) acting in \mathscr{F}_{s}(\mathscr{H}) and that
d\Gamma(h) is a reduced part of a supersymmetric Hamiltonian [8]. The
explicit construction of a supersymmetric quantum theory in which \hat{H} is
embedded can be done in the same way as in [7] (See [8] for a more gen-
eral construction).
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