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Perturbation of embedded eigenvalues :
A general class of
exactly soluble models in Fock spaces*
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ABSTRACT: Perturbation problem of embedded eigenvalues is considered
for operators with infinite degrees of freedom acting in the tensor product
of L*(R) and the Boson Fock space over a Hilbert space #. A general
class of operators for which the problem is “exactly soluble” is construct-
ed. In the case #=L*R?%), the class contains the Hamiltonians of stan-
dard models of a one dimensional quantum harmonic oscillator coupled
quadratically to a quantum scalar field on the d+1 dimensional space-
time and gives a unification for those models.

I. Introduction

Perturbation problem of embedded eigenvalues for operators with
infinite degrees of freedom arises in quantum field theory (QF7T) in a nat-
ural way and to solve the problem is of great importance. For example,
the radiation theory including the theory of the Lamb shift and the shape
of spectral lines of an atom, which is usually formulated in terms of quan-
tum electrodynamics with a formal perturbation theory, may be regarded
as one of the most interesting examples for such perturbation problem
(see, e.g., [10,12,19] for the physical aspects and [1,4,18] for some
attempts to construct a mathematically rigorous theory). Besides applica-
tions to QFT, the problem has mathematical interests also in its own
right as an extension of perturbation theory of embedded eigenvalues in
the case of operators with finite degrees of freedom, typically finite dimen-
sional Schrodinger operators. In fact, Hamiltonians arising in QFT may
be considered as infinite dimensional Schrédinger operators.

Experiences in the case of finite dimensional Schridinger operators (e.
g., [24]) and in some quantum field models [2, 3, 4] show that embedded
eigenvalues have a tendency to be unstable in the sense that they dis-
appear under perturbation. On the other hand, we have a counter exam-
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ple in the case of infinite degrees of freedom, in which the instability
of embedded eigenvalues depends on the range of the parameters of the
relevant operator (In this example, we note also that, after a “renormal-
ization” of a parameter, the embedded eigenvalues become unstable in-
dependently of the range of the parameters. The same kind of
phonomenon occurs also in the quantum field models considered in [2, 4].
These facts suggest that, in the case of infinite degrees of freedom, any
relation between “renormalization” and instability of embedded
eigenvalues may exist). In this situation, it is interesting to ask of to
what extent the instability of embedded eigenvalues is general in the case
of infinite degrees of freedom.

In this paper we consider the problem with operators in the Hilbert
space

1.1) F=LYR)QF¥),

where #7s(#) is the Boson (or symmetric) Fock space over a Hilbert
space #(see (2.1)). We construct a general class of operators for which
the perturbation problem is exactly soluble and which is favorable to the
instability of embedded eigenvalues. The novelty of our work is in (1)
that the class of operators is so general that, in the special case #=
L*(R%), it contains the Hamiltonians of standard models of a one dimen-
sional quantum harmonic oscillator coupled quadratically to a quantum
scalar field on the d+1 dimensional space-time (e.g., [2-5]) and hence it
gives a mathematical unification for those models and, related to (1), in
(2) that we have found a class of exactly soluble models of a quantum
harmonic oscillator coupled quadratically to an “abstract quantum scalar
field” and clarified their intrinsic mathematical structures.
To describe the main idea of our work, let

2
(1.2) ho:%(—w+w%qz—wo), qe R,

with a constant wo>0 and dT'(%) be the second quantization of a non-
negative self-adjoint operator % in #([23], [21, §X.7],[25]). Then we take
the non-negative self-adjoint operator

1.3 Ho=ho®I+I1QdT(h)

as the unperturbed part of each operator in the class, where I denotes
identity. If the continuous spectrum of % is not empty, then H, has em-
bedded eigenvalues coming from the eigenvalues {nwo}n=o of ho. Thus, Ho
serves as an unperturbed operator for perturbation problem of embedded
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eigenvalues in .#. As for the perturbation part H;, we shall take a gen-
eral class of operators quadratic in /d/dg, g, and the boson creation and
annihilation operators in % (#)(see (3.4)). Then the main point (Theo-
rem 3.1) is to show that, under some conditions, the perturbed operator
H=Ho+ H; is unitarily equivalent to the operator d I'(h)+E, acting in
5 s(#) with a constant Eo€R. The result implies that, if the spectrum of
h is purely continuous, then H has no eigenvalues greater than E, and
hence all the non-zero eigenvalues of H, disappear under the perturbation,
that is, they are unstable. This result is in accordance with the above
mentioned “general” nature of embedded eigenvalues.

Our method in the present paper consists of abstract and elaborated
versions of the methods used in the previous papers [2-5] and clarifies
“intrinsic” mathematical structures lying in those models in [2-5].

This paper is organized as follows: Section II is devoted to prelimi-
naries, where some fundamental estimates and facts in % 5(#) are given.
In Section III we define the class of operators H and prove the main result
mentioned above. In Section IV we prove the existence of the ground
state of H, which is assumed to obtain the main result in Section IIL
This is done by extending Berezin’s method to the present case. In
Section V we give a general scheme to generate the class of operator H.
In Sections VI and VII, considering the case #=L*R?), we show that
there exists a variety of operators H which contains standard model
Hamiltonians with quadratic interactions as mentioned above. In the last
section we give briefly remarks on other aspects of the model H.

II. Preliminaries —some estimates and facts in an abstract Boson Fock
space

The Boson (or symmetric) Fock space .#s(:#) over a complex Hilbert
space # is defined by

@D )= S,

where S»#" is the symmetric #-fold tensor product of % with the conven-
tion So#°=C ([20, p.53]). We denote by 57 the subspace of “finite parti-
cle vectors” in #s(#), which is spanned by vectors ¥={¥)5_,& 5 (%)
such that ¥"=0 for all but finitely many » ([21, §X.7, p. 208]). The sub-
space % is dense in .7 s(#).

In what follows, we shall denote by D(A) the domain of operator A.

Let b(f), fE#, be the annihilation operator in .#s(#) [21, §X.7,p.
208], which is a closed linear operator with D(&(f))D.%% and leaves .9
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invariant satisfying the canonical commutation relations

2.2)  [6(F), b(g)*]=(f, 9)1,
2.3 [b(f), b(g)]=0=[b(N)* b(9)*], £, 9%,

on %, where [A, BJ=AB—BA and( , ), is the inner product of #(We
use the convention that #(f) and (f, ¢)s are complex linear in f respec-
tively).

Let % be a non-negative self-adjoint operator in # with Ker 2={0} so
that #~' is also non-negative self-adjoint. We denote by dT'(%) the sec-
ond quantization of A([23] [21,§X.7, p.208]), which is non-negative self-
adjoint in .7 s(#).

Let X=C=(h)NC=(h™') and #., a=R, be the completion of X in the
norm

2.0 If=lr"fs fEX.

Henceforth, we write simply as ||*[o=[+| and (-, -)o=(:, *).
A fundamental estimate is given by the following lemma.

LEMMA 2.1. For all fE# 1N and Y<ED(dT(h)'?), the following
estimates hold :

2.5 o) el<lAlarh) |
@2.6)  le(ryrel<iA-larmy el +Ifl vl

The estimates (2.5) and (2.6) are abstract versions of those known
for concrete models of massless boson quantum fields [15,1-5]. We omit
proof of (2.5) and (2.6), since it can be done in the same way as in the
case of concrete models.

We denote by @, the Fock vacuum in .5 s(#) : @ =1, &”=0, n=1.

LEMMA 2.2. Let 55y be the subspace spanned by finite linear combi-
nation of vectors of the form b(f)*... b(fu)* @0, n=0, L,EC™(A)N
Cc(h™), j=1,...,n. Then, 555 is a core for dT(h)® for every a>0.

PROOF: It is obvious that .7, is dense in.#s(#) and d (%) maps
¥, into itself. Further, the one parameter unitary group V:=exp(itdT
(h)), tER, leaves 5 & invariant with Vid T(h)=d T(h)V: on F s, since
V. can be written as V:=T(e™) (see [23, 21, 25] for the definition of T(A)
with contraction operators A). It is obvious also that (dldt)V:¥ =id T
(W) Vi¥ for all ¥ in # 5. Therefore, by Chernoff’s lemma [14, Lemma 2.
1], we conclude that, for all integers n=1, dT(h)" is essentially self-
adjoint on #5s,. On the other hand, it is not so diflcult to see that, for
every non-negative self-adjoint operator A in a Hilbert space and a€
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(0, #), A* is essentially self-adjoint on each core for A" Applying this
fact to the present case, we get the desired result. 0J
We shall denote by &(f)* either 5(f) or b(f)*.

LEMMA 2.3. For all n=1 and fEF 1N F 20, b(f)* maps D(d T
(B)@**V2) into D(dT(h)") and the following commutation relations hold :

Q2.7 [dr(n), b(f)"‘]\lrzkzZ:1 Ceb(B*F)*dT(h)* ¥

2.8)  [dr(h)", b(F)]w=— 2 Cod T ()" *b(h*F )

for all ¥ in D(dT(h)172),

PROOF: We prove the lemma only for the case of b(f)*. We first
consider the case n=1. Let ¥, be given as in Lemma 2.2. Then, it is
easy to see that, for all ¥ in 575, b(f)*¥ is in D(dT(%)) and dT(A)¥ is
in D(b(f)*) with

(2.9 dT(h)b(F)*¥=b(f)*dT(h)¥ + b(hf)*¥.
Using this relation and the estimate (2.6), we have
ldT (1) b(f)* ¥ <const|(dT(h)+1)**¥|.

By a limiting argument using this estimate and Lemma 2.2, one can see
that (2.9) extends to all ¥ in D(dT(2)*?) with the result that 5(f)*¥ is
in D(dT(k)) for all ¥ in D(dT(k)*?). Thus the case n=1 is proved.
We next assume that the assertion holds up to n=m=>1. Let f be in #_,
N#am+n. Then, for all ¥ in F§,, b(f)*¥ is in D(dT'(k)™*). Using the
induction hypothesis, we see that (2.7) holds with z=m+1 and we have
the estimate

[dT(R)™ 6(F)* < cl(dT (k) + 1)+,

where ¢ is a positive constant. Then, by a limiting argument similar to

the case »=1, we conclude that, for all ¥ in D(dT'(%)?™*32) b(f)*¥ is in

D(dT(R)™*") and (2.7) holds with n=m+1. ]
We next consider fractional powers of dT'(%).

LEMMA 2.4. Let 0<a<l and f be in #-\N%. Then, b(f)* maps
D(dT(h)***V2) into D(dT(h)*) and, for all ¥ in D(dT(h)2*V?) gnd
e>0, we have

(2.100  [(dT(B)+ )%, b()*NIwl<e*'callAWldT(R) 2|+ | Fl:lw]),
where
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sin wa

Ca= / dA(/H-l)Z

PrROOF: Throughout the proof, we ses A=dI'(h)+e. Applying a

general formula for fractional powers of a positive self-adjoint operator to
Ale. g., [17, pp. 281-286], [20, p. 317]), we have

1D AT=d, ﬁ DA A+ )T AT

for all ¥ in D(dT(%)) with d,=sinza/r. Let ¥ be in D(dT(%k)*?). Then,
by Lemma 2.3, 6(f)*¥ is in D(dT(%)). Hence A*b(f)*¥ is given by the
right hand side of (2.11) with ¥ replaced by &(f)*¥. Further, by (2.5)
and (2.6), we see that |17 16(f)*(A+A)'A¥| is integrable on (0, c©) and
hence that 6(f)*A*¥ is given by the right hand side of (2.11) with
b(f)*(A+A)™" in place of (A+A)"'. Combining these formulae, we get

@12 [A% o) =d. [ dr 2 {[(A+D7, b())A
+(A+ DA, b(H)* ).
It is easy to see that
[((A+2)7, b()*]=—(A+ ) b(hf ) (A+A)™
on D(dT(h)'?). By [Lemma 2.3, we have
[A, b(/)*]=b(hf)*
on D(dT(%)*?). Substituting these relations into (2.12), we get

(A% b(f)* 1w =d, ﬁ " A A A+ Db HA+ ),

Using (2.6), we have
ICA+ ) b(hH)*(A+ )~ <A+ &) (I Al dT () 2wl + | £l wl).

Thus, we get (2.10) with 6(f)*=b(f)* and ¥ €D(d T'(k)**?). The case
b(f)*=b(f) can be proved similarly. Next, let ¥ be in D(dT(h)?**V?).
Then, by a limiting argument using the fact that D(dT'(%)*?) is a core for
dT(h)?** 172 (cf Lemma 2.2) and (2.10) proved for ¥&D(dT(4)*?), we
see that b(f)*¥ is in D((dT(h)+e)*)=D(dT(h)?) and that (2.10) extends
to all ¥ in D(dT(h)®*+V72), L]

LEMMA 2.5. Let 0<a<l and n=0 be an integer. Let [ be n
H ANF ynsy. Then, b()* maps D(AT(h)*"+2+02) into D(dT(h)"+*).
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PROOF: Let ¥ be in D(dT(#)?"*®2), Then, by Lemma 2.3, 6(f)*¥
(resp. dT'(h)"**¥) is in D(dT(h)"*")(resp. D(b(f)*)) and we have, using
(2.7), (2.8), (2.5) and (2.6)

(2.13)  [A™ b(f)*]<const.[(A+1)"T V2|,
<const.[|(A+1) et

where A=dT'(h)+e, €>0. Then, by a limiting argument using the equa-
tion A" b(f)* ¥ =0b(f)* A" *V+[A"* b(f)*]¥ and the estimate (2.13),
we can get the desired result. L]

In what follows, we assume that theve exists a conjugation | on #,
which is an antilinear isometry on &# with J?=I, and that J commutes
with h. For f in#, we define f E# by

2.1 =]t

We next define operators quadratic in 6*. Let K be a self-adjoint
Hilbert-Schmidt operator on #. Then K has a canonical expansion [20,
pp. 203-204] :

where {¢.}» is an orthonormal set in # and X},A2<co. We define
It is easy to check that these operators are well-defined on ¥, and in-

dependent of the choice of representation of K such as (2.15). In the
case where K is Hilbert-Schmidt, but, non-self-adjoint, we write as

K=K +1K;

with Ki and K; being self-adjoint and Hilbert-Schmidt and define the
operator <b*|K|b*)> by

(2.18)  <BP|K[b*>=<b*|Ki|b*>+i<b*|K:| b%).

To generalize the definition of quadratic operators in 6%, we introduce
a class of bounded linear operators on #. We denote by B(#) the space
of all bounded linear operators on #. Let K& B(%) be of the form

.19 Kf= [ dEGQ), d)9s

where E(A) is a signed Borel measure on R and A—¢i(resp. ¥1) is an



8 A. Arai

#-valued measurable function on R.

DEFINITION 2.6. Let K be given by (2.19). We say that K is in
the class % (h) if and only if the following ave satisfied :

(a) For all AR, ¢, and ¥ are in F 1N\,

(b) For a, B==%1,0,2,

JAED gl palls< 0.
For K in ¥ (h), we define the operators <b6|K|b6> and <b*|K|b> by
2.200  <BIKIbY= [ dEQ)B(F)B(W),
2.2 <OKIbY= [ dEQ)b(#)*b(H),

which are a priori well-defined on ¥ and independent of the choice of

representation of K such as (2.19). Similarly, we define the operators
(¥ K|b*y and <b|K|b*> so that

(2.22)  <B|K|b>*=<b*|K*|b*>,
(2.23)  <b¥|K|b>*=<b*|K*|b>.

LEMMA 2.7. Let K be in % (h). Then, <b*|K|b*> is defined on
D(dT(h)) and the following estimate holds :

(2.24) |KB*|K|6*>¥| < (AT (R)+1)¥|, ¥ED(dT(h)),

with a constant ¢>0. Further, for all ¥ in D(dT(h)?) and @ in
D(dT(R)V?), we have

(2.25) (@, [dT(h), <b*IK|6*>1W)|<d|(dT(h)+1)"*@| I(dT(k)+1)"*¥|
with a constant d >0.

PROOF: We prove the lemma only for the case 6*=b. The other
cases can be treated similarly. By Lemmas and 2.1, we see that
b(f)b(g) is defined on D(dT(k)) for all f and g #_1NF. and we have,
using (2.5) and (2.10),

16(H) 6N < c(lA-illgl +171-sNglle+ 141 -1llgl-2)
X (dT(h)+D)¥|, ¥€D(dT(h)),

with a constant ¢>0. Therefore, for every K in % (h), [d|E(A)]
16($)b(¢:)¥| converges and (2.24) holds with 6" =5%*.
To prove (2.25), we note that, for ¥ in D(dT(%)?%),
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[dT(R), <BIE|bYN=— [dE)(b(hE)b()+ b(F)b(hg}L.
Therefore, for ® in D(dT(%)'?), we have

(@, [dT(h), <b|K|b>]‘I')|éfdlE(/i)|(||b(h$x)*<D|l lo(y)w
+6(gD)*@ | 6(hp) ).
Then, using (2.5) and (2.10), we get (2.25) with b*=5. []

LEMMA 2.8. Let K be in % (h). Then, for all ¥ in D(d T'(h)*?),
O KIO*H>W is in D(b(f)?), f€#, and

(2.26)  [<bIKI[6>, () 1w ={b(Kf)+b((K*/)}¥,
2.2 [KbIKIb>, b(f)¥=0.

PrROOF: We first prove (2.26) and (2.27) on ¥ s by using the
canonical commutation relations (2.2) and (2.3), and then extend them
to equations on dT'(%)*? by estimates (2.25), (2.5) and (2.6). J

Finally, as an application, we prove the essential self-adjointness of a
general quadratic operator in the Hilbert space . given by (1.1).

Let p=—1id/dq, =R, be the generalized derivative in L% R) and put

(2.28)  a=Q2wo) "*(woq +ip)

with a constant wo>0. Then, the operator a leaves Ciy(R) invariant sat-
isfying the canonical commutation relation

2.29) la, a*]=I

on C7(R).

Let A€ C be a constant, K and M be in % (4) (Definition 2.6), and f
and g be in #_1N#, Then, we consider the following quadratic opera-
tor L acting in #:

(2.30) L=Ho+Aa*QI+ Aea**R1I
+ IQLB|K |6+ TQRLBIK|bD* + IQRLb¥| M| by + IR b*| M |b)*
+a®(b(f)* + b(g)) + a*@(b(f) + b(g)*),

where H, is given by (1.3).

PROPOSITION 2.9. The operator L is defined on D(H,) and essen-
tially self -adjoint on every core for H,.

PROOF: The operator %o is written as

hoz woa*a
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and non-negative self-adjoint on D(p*) N D(q?). For a* and he, we have
estimates similar to (2.5), (2.6) and (2.24). Combining these estimates
with (2.5), (2.6) and (2.24), we can show that D(H,)CD(L) and

| LYl <cl(Ho+1)¥l, ¥<=D(H)

with a constant ¢>0. Further, using the commutation relations (2.7),
(2.8), (2.29) and the estimate (2.25), one can show that

(LY, H®)— (Ho¥, L®)|<d|(Ho+1)"*¥| |(Ho+1)""®],
v, (IDED(Ho),

with a constant & >0. It is obvious that L is symmetric on D(H,). Thus,
by the Glimm-Jaffe-Nelson commutator theorem ([16,§19.4], [21, §X.5,
Theorem X. 37]), we get the desired result. ]

REMARK: (1) [Proposition 2.9 can be extended to quadratic opera-
tors in the more general Fock space LA R")®R.%s(7#1)Q QF (#m).
(2) The operator L is an abstract form of Hamiltonians of models of a
one dimensional quantum harmonic oscillator coupled quadratically to a
quantum scalar field (e.g., [2-5]). See Section VII below.

III. The main theorem

In this section we consider a class of quadratic operators of the form
(2.30) and prove, under some conditions, that each operator in the class
is unitarily equivalent to dT'(%)+ Eos acting in % (%) with a constant E,
&R. The operator L given by (2.30) can be viewed as an operator
obtained by a perturbation of Ho. As we already mentioned in the Intro-
duction, the operator L serves as an operator giving a perturbation prob-
lem of embedded eigenvalues in the case of infinite degrees of freedom.
Our main result ((Theorem 3.1) gives a sufficient condition for the possible
embedded eigenvalues of Ho, to disappear under the perturbation L — H.

Let / be a conjugation as in Section II. For a bounded linear opera-
tor A on #, we define A by

B.L  A=JAJ.

Let # be as in Section II and a self-adjoint operator K€% (k)
(Definition 2.6) be given. Let V, WEB(#) and fo, o= D(h) such that
WhV*<e K(h)

3.2 u=Whto+ VhgeEXF_NF>2

and
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3.3 v=Whgo+ Vi foEHF 1N 5.
Then we consider the quadratic operator

(3.4) H:H0+(f0, hgo)a*2+(go, /’ZfO)aZ
+ B WhV* 0> +Lb| WhV*|bD* +<b*| K| b
+a(b(u)*+b6(v))+ a*(b(u)+ b(v)*),

where we take the constant wo contained in H, as
(3.5) (Uo:(fo, hfo)‘l"(go, ]’lgo)

and we omitted the symbol ® for tensor products of operators. H is
essentially selfadjoint on every core for Ho, (Proposition 2.9). It is not
obvious a priori whether or not H is bounded from below. It may depend
on parameters contained in H (see for an example). In the present
paper, we assume the following :

(H) H is bounded from below and there exists a constant ¢ >0 such
that, for all Y& D(H,),

| Howll < c|l(H + )%,
where

(3.6) H=H-E,
and Eo 1s the infimum of the spectrum of H.

REMARK ©  The assumption (H) and [Proposition 2.9 imply that
D(Hy)=D(H). Hence D(HY?)=D(H{"?) and

| H | < d|(H +1)"*¥|, = D(H")

with a constant d >0.
We shall further assume the following (AI) and (AID).
(AD

3.7 W*W—=V*V (-, fo)fo—(*, g0)90=1,
(3.8)  WXV—V*W+(-, go)fo—(, Fo)g=0.

(AIDD  For a———i%, 1, h*Vh™® and h*Wh™° can be extended to

bounded operators on # and the equation
3.9 WhWw*+ VhV*=h+ K
holds on D(h).
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We shall denote by D.,s the subset of consisting of all vectors ¥ in
the domain of all polynomials of &* and b(f)*s, fE#.NF5s.
For f€% such that Vf, WfE#_,, we define

(3.100  BU)=b(VI)*+b(Wf)+(f, go)a*+(, fo)a,

which is well-defined on D(H{'?) by estimates (2.5) and (2.6).

We note that (AID) implies that, for all f€# _i(resp. #2), Vf, WfE
# _\(resp. #2).

The main result in this section is the following.

THEOREM 3.1. Assume (H), (AD) and (AID). Suppose that there
exists a non-zero vector Q in D_12ND(H'*) such that
(i) For all f in # -1NH,,

B(f)¥=0.

(ii) The subspace Fos spanmed by vectors B(f)*:+B(f,)*Q, n=0,
fEF\NNF2, j=1, -, n, is dense in ¥ .
Then, there exists a unitary map U : F —F (F) such that
( 1 ) UQ:SDO.
(ii) For all f in #_1NH#>,

UB(f)U™'=b(f)

on UFy,s.
(iii) UHU'=dT(h)+ E,.
In particular, we have

(3.11) HQ:EOQ

and
o(H)=Eo+a(dT(h), ox(H)=Es+0,(dT(h)),
O'ac(H):Eo‘l' aac(a’l"(h)), Gsing(H):Eo+ Osing(dr(h)),

where ¢ (vesp. Ob, Oac, Osing) denotes the (vesp. point, absolutely continuous,
singular continuous) spectrum.

REMARKS: (1) Let us consider, for example, the case that a(k)=
Gac(h)=[m, ) with some m=0, op(h)=¢ and 0sig(h)=¢. In this case,
H, has infinitely many embedded eigenvalues. On the other hand, we
have o(dT(h)={0}U[m, ), 0,(dT(h))={0}. Therefore, in this case, the
above theorem shows that, under the perturbation H — Ho, all the non-zero

embedded eigenvalues of Hy disappear if the assumption is satisfied.
Thus, the embedded eigenvalues of Ho are unstable under the perturba-

tion. On the other hand, as we shall see in Lemma 3.2, the transforma-
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tion {b, b*, a, a*}—{B, B*} given by (3.10) is a Bogoliubov (or canonical)
transformation (e.g. [11]) and, under the assumption of [Theorem 3.1 it is
improper in the sense that there exist no unitary operators U, : ¥ —%
such that

Usb(H)Us'=B(f), fex_N¥7.

In fact, if such U, exists, then the vector
Qe= UsE QD= 5

satisfies the equation
B(f)Q:=0, fEX#-1NH,,

for all £E€L%R), since b(f)Qo=0 for all f&€.#. But, this contradicts
below. Thus the instability of the embedded eigenvalues is
associated with an improper Bogoliubov transformation.
(2) Eq. (3.11) shows that Q is a ground state of H. As we shall see in
below, it is unique up to constant multiples.

To prove [l'heorem 3.1, we prepare some lemmas.

LEMMA 3.2. Assume (AD) and (AIL). Then, for all f and g in
H -1N\5 2, we have

.12 [B(f), B(9)*]=(f 9)L
(3.13)  [B(f), B(g)]=0

on D(Ho) U D—1,2.

ProoF: By (AID), we have that, for all fE€#_.1NF>, Wf, VIEF -,
N& .. Therefore, by Lemma 2.5, B(f)*B(g)* can be expanded on D(H,)
UD-12. Then, direct computations using the canonical commutation rela-
tions (2.2), (2.3), (2.29) as well as (3.7) and (3.8) give (3.12) and
(3.13).

LEMMA 3.3.  Assume (Al) and (AIL). Then, for all fEF _1NF .
and Y D(HE?), we have

(3.14) [H, B(f)|w=—B(hf)¥.

PrROOF: By Lemmas 2.3, 2.8, and (AII), the left hand side of
(3.14) is well-defined and computed by using the canonical commutation
relations and the assumptions (AI) and (AII). Since the computation is
straightforward (but somewhat lengthy), we omit the details. []

LEMMA 3.4.  Assume (H), (AD and (AID). Then, for all f in
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H _NF and t€ER, we have
(3.15) e"™B(f)e " v=B(e " f)¥, Y& D(H"?).
ProOOF: We first prove (3.15) for f satisfying

> "hg,“t <oo, tER,

n=0

and in the sense of sesquilinear form on D(H{'?) X D(H3"*) and then use a
limiting argument. ]

LEMMA 3.5.  Under the assumption of Theovem 3.1, every vector ¥y
in F satisfying the equation B(f)¥o=0, fEF _1NH 2, is a constant multi-
ple of Q.

PROOF: Suppose that ¥, and Q are linearly independent. Then
without loss of generality, we can assume (¥, Q)=0, which, in turn,
implies that W, is orthogonal to all vectors in Fys. Since Fys is dense in
% by assumpion, it follows that ¥,=0, but this is a contradiction.

LEMMA 3.6 Under the assumption of Theorem 3.1, Q is an
eigenvector of H.

ProOF: Taking ¥=Q in (3.15) and using the condition B(g)Q =0,
gEH _1\F 2, we get

B(f)e ™ Q=0, fEX 1NF.
Therefore, by [Lemma 3.5, we have
e HO=A(¢)Q

with a function A(¢), t€R. Since {e *#},er is a strongly continuous one
parameter unitary group, A(¢) has to be of the form

A(t)=e "

with a real constant E. Then, it follows that Q is in D(H) and HQ=
EQ. ]

PROOF OF THEOREM 3.1: Let Fi» be the subspace spanned by
vectors b(f)--b(fn)*®@o, n=0, EF 1NF 5, j=1,-, n, which is dense in
F (#). We define the operator U : Fo,s— Fo,» by

UB(f1)*- B(fa)*Q=b(f)*:+- b(£a)*@o, 1, -+, [rEH 1N,

and extending by linearity to Fos. By virtue of and the con-
dition B(f)Q =0, f€# 1N & ,, U maps Fos onto Fy,, isometrically.
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Therefore, U extends to a unitary map from . onto . s(#), since Fus
(resp. Fos) is dense in .# (resp. #s(#)). Then, by Lemmas 3.4 and 3.6,
we have

Ue!iyp =gt dW+E [y W E Fy

with a constant EES R, which extends to all ¥&€.%. Hence part (iii) fol-
lows (Note that dT'(%)>0 and dT'(4)®y=0). Parts (i) and (ii) follow
from the definition of U. ]

IV. Existence and uniqueness of the ground state

In this section we shall show that, under some additional conditions,
there exists a unique vector (ground state) Q which possesses all the prop-
erties described in the assumption of [Theorem 3.1. The basic idea is to
solve the equation B(f)Q=0, f€#_1N#,. In order to do that, we first
determine Ker W. In what follows, we assume f,#0.

LEMMA 4.1.  Suppose that Eq. (3.7) and

@D WWr-TV*=]
@.2)  VWE=WV*=0,
4.3 Wh=Vas, Wa="VFo,

hold and that ||foll#|lgoll. Then, dim Ker W=1 and Ker W is spanned by

. (u0, )
(4.4) Wo=— Uo 1_}_(1}0’ 90) Vo,
with
(45) u0:(1+ V* V)_lfo, 00:(1+ V* V)_lgo.
Further, the relation

|(et0, g0)I> _
(4.6) 1+ 1+ (oo, o) =(uo, fo)
holds.

We remark that, if Eq. (4.1) holds, then WW*=(1+ VV*) is inverti-
ble, so that Ran W=%.

PROOF OF LEMMA 4.1: We first show by reductio ad absurdum that
Ker W=+{0}. Suppose that Ker W={0}. Then, by the above remark,
W' exists and bounded on #. Hence we have from (4.3)

Go= WiVw! Vao.
Using (4.2), we see that
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VW V=Ww—(W*™

Therefore we get W (W*)'g=0 and hence go=0, which yields from
(4.3) Wf=0 and hence fo=0. But this contradicts the original assump-
tion fo#0. Thus we conclude that Ker W=+{0}.

We next prove that dim Ker W<1. Let f be in Ker W. Then, by
(3.7,

4.7 f=auo+ Buvo

with some constants @ and B. It @=Af, ASC, then f=(a+4B)us and
obviously dim Ker W=1.

Suppose that fo and ¢ be linearly independent and fi, f2&Ker W be
such that

1=a/1uo+ Bwo, f2:a’2u0+3200

with @18:— Biee*0. These equations imply that Wue=0 and Wuo=0,
which, combined with (3.7), give the relation

(UO; fo)fo—[1+(vo, gO)]QOZO, 1+(Z}o, go)io.

This equation implies that fo and go are linearly dependent, which, how-
ever, is a contradiction. Thus, we get dim Ker W<1. Eq. (4.6) follows
from (4.7) and (3.7). ]
Henceforth, throughout this section, we take the assumption of
for granted.
As already mentioned, (4.1) implies Ran W=2, so that the operator

(4.8 W.=W' (Ker W)*
is invertible. We put
4.9 X=Wwi.
By (4.4) and (4.6), we have
4.10) (w0, fo)=1.
We set
(4.11)  F=Vw,
and
(4.12)  a=(wy, go).
Let
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(4.13) C=VX—(-, X*/)F

and
. a
4.149) A= c+——_1—|a/12 Pr,

where
(4.15)  Pe=(+, F)F.

REMARK: By (3.7) and (4.10), we have
(4.16)  1—lal*=(wo, (I+ V*V)uwo) >0.

LEMMA 4.2.  Suppose that (4.1)-(4.3), (3.7) and (3.8) hold. Then
we have

4.1  C*=C

(4.18) A*=A.

Further, the estimate

4.19 |Al<1

holds on the operator norm of A.

PROOF: The relation (4.17) is checked by direct computations
using (3.7). Eq. (4.18) follows from (4.14), (4.17) and the fact that P¥
:pp.

To prove (4.19), we first note that A is written as

A= VX—l_—l|a/|z—(-, X1+ V*V)wo) F,

which follows from (3.7), (3.8) and (4.10). Using (3.7) again, we see
that A*A can be written as

A¥*A=I-X*YX,
where

Y=I—(+, fo)fo+(+, 90)o
+ B{(+, o) V¥ Vwo+(+, V* Vo) uo}
- B(-, %0)” Vwo||2uo

with =(1—|a|®)™". Then, it is not so difficult to show that, for all 7 in
x, (f, X*YXF)—|XfI?=0. Thus we get

| AP+ 1 XA <IA12.
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Since | Xf||=C|f| for all f€# with a constant C>0, (4.19) follows. [
We are now ready to prove the main result in this section:

THEOREM 4.3. Assume that fo+0 and ||foll#|gl. Suppose that (4.1)

-(4.3), (3.7) and (3.8) hold and that VX is Hilbert-Schmidt on #.
Then, there exists a unique (up to comstant multiples) vector Q in Doo such
that (i) for all few, B(f)Q=0; (ii) The subspace Fo s is dense in .

PROOF: For a vector Q in Do, the equation B(f)Q=0, fEZ#, is
equivalent to equations

4.20)  [6(F)*+(wo, go)a*+ alQ=0,
4.2  [6(VXF*)+b(F)+(XS, go)a*+(XF, /)alQ=0, fEF.

Let ¢o and @, be the Fock vacuum in L*R) and . s(¥#) respectively :
(4.22)  ade=0, b(/)@e=0, fEH,

and put

(4.23) Qo= po@dD.

Let # un denote the dense subspace (in %) spanned by vectors
b(f)*--b(fn)*a*"Qo, /,EF, n, m=>0. We introduce the operator

(4.20)  A=3<b¥ICl6*+b(F)*a* +1-aa®,

which is well-defined on # s, since C is Hilbert-Schmidt by assumption.
It is not so iifficult to see that, for all n=>1, <b*|C|b*>" is defined on .#
and hence we can define the vector

4.25)  Qn nz:o( A)"Q".

Then, by a generalization of Berenzin’s continual integral method , we
can show that Qn converges strongly to a vector Q in . as N—o© with

lalE= (1” 'jfz' A=1af) e (1- A% A)] 20,

where we have used (4.16)-(4.19) and det(:) denotes the determinant (e.
g., [22,26])(Note that A*A is trace class on #, since A is Hilbert-
Schmidt on #). In the same way, one can show that Q is in Doo. Then,
using the commutation relations

[6(£), Al=b(CF )*+(f, F)a*, [6(F)* A]=0,
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[a, Al=aa*+ b(F)*, [a*, A]=0,

and (4.22), one can easily check that (4.20) and (4.21) are satisfied.
Thus, condition (i) is proved.

To prove that condition (ii) is satisfied, we note that 5(f)* and «*
can be written in terms of B(f)* as

(4.26)  b(f)=B(W*f)—B(V*f)*,
4.2D  a=(/l*—1gl*)(B(f) — B(9)*),

which follow from (3.10) and (4.1)-(4.3). Therefore, Fo,s is a subspace
left invariant by b(f)*'s(f€# .1N#:) and a*. Hence the closure of Fu s
is left invariant by the unitary operators exp [(6(f)+ b(F)*)¢t], exp (b(f)*
—b()t, exp (igt) and exp (ipt), t<R. But such a non-trivial closed sub-
space have to be the whole space . (cf.[11]). Thus, Fys is dense in.#".

Since we have proved that Fous is dense in %, the uniqueness of the
vector Q follows in the same way as in the proof of Lemma 3.5. O

Finally we consider conditions under which the vector Q in
4.3 is in D(H$"?).

LEMMA 4.4. In addition to the assumption of Theovem 4.3, suppose
that hVX defines a Hilbert-Schmidt operator on # and that hVh™' is
bounded on D(h™Y). Then, the vector Q in Theovem 4.3 is in D(H,).

PrROOF: Let A and Qv be given by (4.24) and (4.25) respectively.
Then, by the additional assumption and the fact HoQo=0, we see that Qw
is in D(H,) and

b¥|hC|b*> + b(hF)*a* + wob(F)*a* + awea™) A" ' Qo
(n—1)! :

(Note that, by the additional assumption, F is in D(%) and %C defines a
Hilbert-Schmidt operator on %#. See (4.11) and (4.13)). Then, using
Berezin’s continual integral method [11], one can show that HoQw~ con-

verges strongly as N—oo. By the closedness of H,, it follows that Q is in
D(Ho) and HOQN_’HOQ(N—’OO). ]

N
HoQn= nz?l (<

V. A general construction of the quadruple {W, V, £, go}

In this section, we give a general method to construct the quadruple
{V, W, f, g} which possesses the properties assumed in Sections III and
IV.

Let # and % be as in the preceding sections. Let T€B(#) and



20 A. Arai

Q+0=# be given with the following properties :

(T.D T*T=I.

(T.2) For some =0, T maps D(%*?) into D(A¥*) and the operators
T.=h"*Th* | D(k*)

and T-. | D(h™%) can be extended to bounded operators on # (We
denote the unique extension of Ti. on &# by the same symbol).

(T.3) For BZ%, 1, 2T k" 1 D(K*) defines a bounded linear operator

on #.
(T.4) T*hT-o+ TEhTe=2(h+K)
with a self-adjoint operator KE€77(h).
(T.5) The operator T X hT-o— TihTat+TEhT-o— T X hT. defines a
bounded linear operator in % (k).
(T 6) T*hlﬂaTI T*hlizaT,
T*WT=T*hT.
(Q.1) For B=0,2, h*Qex.
(TQ.1) TT*+M(-, Q)Q=I
with a constant M >0.
(TQ.2) TT*+M(-,Q)Q=I+S,
with S€E B(#) satisfying

heSh™=h~Sh*

on #—-a ﬂ%a
(TQ.3) For B==*2a
T**Q=Th'Q

as a vector equation in #.
We note that (T.1) and (TQ.1) imply
(TQ.4) T*Q=0.

PROPOSITION 5.1. Let T and Q be as above and let
1

(5.1) V=7(T_*a— T4),
(5.2) W=%( T* 4+ T,
5.3 fr=re M+ )Q

6.8 o=y MR~ Q
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where h =hix with a constant x>0 and O=R is a constant. Then, the
quadruple {V, W, fo, go} possesses the following properties (a)-(f) :

(a) Whv*ex(h).

(b)  fo, o€ D(h).

(¢)  Condition (AID) in Section III holds.

(d) The vectors u and v defined by (3.2) and (3.3) are in
H 1 NH 2.

(e) Egs. (3.7-(3.8) and (4.1)-(4.3) hold.

C£) fo#F0 and |fll#]gl.

ProOOF: (a) It is a simple computation to see that
(5.5  WRV*=-(T%hT-o— TEhTut TEhT-u T2 AT)

which, by (T.5), is in % (h).

(b) This follows from the definition of £ and ¢ and (Q.1).

(c¢) This follows from (T.2), (T.3), (T.4) and (T.6).

(d) This follows from Part (¢) and (Q.1).

(e) By direct computations: Roughly speaking, we have
(TQ. D, (TQ.2)=@3.7), (3.8). (T.D, (T.6)=04.1), (4.2).
(TQ.3)=>(4.3).

(f) By direct computations, we have

16l =l goll*= M1 QI
which implies the desired result. L]

As for Eq. (3.5), we need only to take wo as
5.6 wo=y Mrl(Q, Q) +(Q, FQ)).

It is easy to check that the right hand side of (5.6) is equal to (fo, /)
+(go, hgo) and hence that Eq. (3.5) holds.

VI. Existence of {7, Q}

In this section, considering the case #=L* R%), we show that there
exists a class of {7, @} possessing the properties (T.1)-(T.6), (Q.1) and
(TQ.1)-(TQ. 3) in the last section.

Throughout this section, we take #=L*R?), dEN.

Let w: be a non-negative, strictly monotone increasing, continuously
differentiable function on (0, ©) such that wi(¢)—o as t—oo. We put

6.1) ltilrglwl(t)=m20.
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The function w; gives a rotation invariant function @ on R? by
(6.2) w(B)=w(|k]), kER".

We take the operator % in # to be the multiplication operator by the func-
tion w” with some constant » >0:

6.3) (W) (k)=w(k)f(k),
and define the conjugation J on # by
6.0  UNk)=f(k), fEZ,

where f denotes the complex conjugate of f. Obviously, / commutes
with 4.

For a real-valued function p in #, we define a function ®.,(z) of the
complex variable z by

6.5) ®u(z)= fdkzp ﬁzk)

which is well-defined in the cut plane

(6.6)  Cn=C\[m, )

and analytic there. Then we introduce the functions D*(z), ¢=0,1, by
6.7  D®(2)=—al"z+al"+2"®,(2),

where @, p, v=0, 1, are real constants such that a{* >0, £=0, 1, and af’

#+0. For simplicity, we assume
(CD D" (2)+0, z&€ Ch.

REMARK : It is easy to see that zeros of D*(z) in Cn are in (—oo,
m) and that D*(¢) is monotone decreasing in t&(—o0, m). Thus (CD
is equivalent to the condition di’= hm D"(t)>0. Hence (CI) implies

af >0, =0, 1.
Let

(6.8)  w(t)=wi(t)"2t~ 47D >0,

and put

6.9  u(k)=wul|k]), kER"

In addition to (CI), we further assume the following (CID-(CIV):
(CID sup |@,(ttie)| <.

te[m,»)
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(CIID inf |D¥(t £ )| >0, =0, 1.

te[m,o0)

(CIV) The functions # ‘o and «'wp are in L*(R%).
Conditions (CIID-(CIV) are not empty. For example, functions
w1(8)=(t2+m?)'?,
A

with @=(d/2)+1, d =2, satisfy (CID-(CIV). General sufficient condi-
tions for (CII) and (CIID) to hold have been given in the Appendices in

For each €>0, we define a linear operator G. by

6.10) (G )k)= [dk’ cﬁ(kﬁ)—u%'f)(f;e'

In [5], it was proved that G. is a skew-symmetric bounded linear operator
on # and that the strong limit

6.11) G=s—1imG:

ell

exists on & .
One can show also that the limits

(6.12) D‘i"’(t)ZIilrng""(tiie), ©=0, 1,

exist for a.e. tER, which, by assumption (CIII), cannot be zero. Then
we define the function

¢ — o(k) _
(6.13) Q( )(k)—DS—#)(w(k)) y ll—O, 1.

Let T be the operator given by
6.14) TYf=f—o"Q"u'Guof,

which is bounded and linear on # by (CIII) and (CIV).
Our aim is to show that {7, Q*} given by (6.14) and (6.13) pos-
sesses the properties of {7, @} in the last section.

LEMMA 6.1. Let f“(2)(u=0,1) be a meromorphic function in C
with poles a1, -, an m Cn and with no poles in [m, ). Suppose that

() —1; w
AP=lm= 56

exists. Then
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6.15)  [dkIQ™(BF(w(R))
_8m08#1f(#6$)0) — AW+ Z‘,Res( ,];(;()m , an>,

where Res(f*/zD™, an) denotes the residue of f*’/z"D"™ at z=an.

PrROOF: We give a proof of (6.15) only for the case m=0 (The
case m>0 is similarly proved). Let 0<e<d§<co be sufficiently small and
L >0 be large enough so that the points a», =1, ---, N, are in the interior
of the curve

r={8e?®| 27+ a.<0<—a.JU{x+ic|d cos a:<x <L cos B}
U{Le®|B.<8<2r— B} U{x—ie|d cos ae<x<L cos B}

with the anti-clockwise orientation, where a.=sin"(¢/d), B.=sin"(e/L)E
(0, 7/2). Then, by Cauchy’s theorem, we have

— (SN2 oS Res(Lol2)
I.= T‘Z#D(#)(Z) dZ—Zﬂ'ZEIReS< #D(ﬂ)(z) )

On the other hand, I. is written as

3 .
— gll"(‘”
with
—2n+ae N 10\1—-p¢ £(1) 6
I’(ll):.[ae do Z(SQD)(;L)('Q ie()ae ),
(Z)Z/Lcosﬂed { f(x +de) F(x—1e) }
K scosae (x+e)* DO (x+ie) (x—ie)" D™ (x—1ie) )’

. [2m-8 L z&l#(#)L i
=i *apt el))(#)(ée,.(o)e ).

By (CID), (CIID) and the regularity of f*“(z) in C\{a, -, an}, we see
that

w
lim im P =8u1(— 27rz)f (0)

310 €10 a&” ’
L (#)
lim lim 7= | ds x PG DO

By using the deminated convergence theorem, one can show that

lim im ¥ =2m A",
Lo gl0

Thus, we get
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1 =, fx) 11
o Py {Di“)(x) D(_")(x)}

(1) 0 N (#)
—Op,1 fa () ) —A(#)+ 21R65<%%, an).

It is easy to see that the LHS is in fact equal to that of (6.15). l
LEMMA 6.2. For each 1=0,1, the following hold :

( a ) T(#)* T(ﬂ):[
(b) T(l‘) T(#)*_I_M(#)(. Q(#))Q(#):[’

where
(6.16) M“W=qg,.

PrOOF: Part (a) is proved by applying Lemma 6.1. Part (b) is
derived by direct computations. Cf. the proof of [2, Lemma 4.9]. (]
Let

6.17)  (SWN)(k)=2mia(k)o(R)u(R) Q™ (k) [ dS(6)/(KI6)

where S is the d—1 sphere and dS(6) is the surface integral element
on it.

LEMMA 6.3. For each 1=0,1, S“e&B(%).
PROOF: By using the Schwartz inequality, we see that
IS“ 1P < Clo*u?0Q™ £I?

with a constant C>0. It follows from the conditions (CIII) and (CIV)
that w“u?pQ is in L*(R%). Therefore, S* is bounded on #.

LEMMA 6.4. Let

6.18)  Fon =Dt 1

Then, for each p=0,1, we have
(6.19) TWf=F®TWf L (]—F6 4 )7
for all f in .

PROOF: Direct computation using the distributional equations

1 1 iy ,
B =0T Y o) —atm) T mowlk)—w(k),
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where P denotes the principal value. L]

LEMMA 6.5. For every rvotaion invariant measurable function f on
R® and for each p=0,1, we have

(6.20) T(“)*fT(")g_—_ T(#)*fT(#)g

for all g in & such that fT"g is in # and
(6.21) TW* fO = T % f

provided that fQY is in #.

PROOF: We first note that, if f is real, then T'*fT* and
Tw* T gre reality preserving, which follows by direct computation as
in Cemma 6.4. Therefore, it is sufficient to prove (6.20) for the case that
f and ¢ are real. In that case, using (6.19), we can prove

(g, T(#)*fT(#)g) :(g, T“"*fT‘”’g).

Then, the polarization identity gives (6.20).
Eq. (6.21) follows from (6.19) and the following identities :

F(#)Q(#): @(#)y Q(#) _ ()(#):S(#)Q(#)_
H

LEMMA 6.6. For each ¢=0,1, Eq. (TQ. 2) in Section V holds with
(T, Q}={T"™, Q*} and S=S" given by (6.17).

PrROOF: Direct computations using (6.19). (]
In what follows we fix a constant ¢=0 and assume the following :

(CV) For 3=——12—, 2 @ D pEF,

(CVD FOI‘ 520, %, 1, wir(ﬁ—a)+#u—lp and a)i"’“‘”“‘u'lpEL“(Rd).

PROPOSITION 6.7. For each p=0,1, {T, Q}={T", Q™} possesses
the properties (T. D-(T. 3), (T.6), (Q 1) and (TQ. D-(TQ. 3) in Sec-
tion V, where the constant M in (TQ. 1) is taken as M=M"* given by
(6.16).

PrOOF: Roughly speaking, we have
(a) (resp. (b))=(T.2)(resp. (TQ. 1)), (6.19=>(TQ.2),
(6.200=(T.6), (6.21)=>(TQ.3), (CV)=Q. 1D, (CVD=(T.2), (T.3). U

It still remains to prove (T.4) and (T.5). In order to do that, we
have to compute explicitly the relevant operators.
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For each x=0,1, and fSE€[—x, 2—u], we introduce the operator R’
by

: o B+
6.22)  RPS=S0 [Tl e
with

__olk)
LEMMA 6.8. Let 61 and 02 be real comstants. Suppose that, for s=
0,1, t=—7/2,0, 7, and j=1, 2, the functions 0™ " %0 are in #. Then,
the operator h®*RYh°* is in % (h) (Definition 2.6).

PROOF: By the assumption, %%e; is in #-1N#. for all A=0 and we
have

+

1O RO e f = 51“”5 f gy, h e e

By the assumption (CI) for D*(z), we have for all A>0
|ID¥(—=)|=c>0

with a constant ¢ and D"(—2)=0(A) as A—oo. Hence we have
81 (4 1,82 l_ * —/V_I_Hl— 82 81
122 RE R f|| < ﬂ_/o- dA D= )| 1722 |1 7° el I/
__g_ 1 B+u r82—1 ré1—1
<< ['a ool lo™ ol 11

i o /13+#—2 52 8
o | iy el 1ol 11
<o,

Hence h°'R{’%% is bounded on #. In the same way, we can show that

© /15+/-‘ s s
I el edlg <o

for p,q==1,2. Thus, KR 1% is in % (k). ]

LEMMA 6.9. Let —u<vrB<2—u. Then, for all fED(h*) such that
TYWfeD(h?), we have

(6.24) T *RPTYf=nf+d¥(f, p)o+(=1)*"'RBf,

where
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Ou107s,1

af

(6.25) diF=

Snoba

PROOF: Let f be as above and ¢ be in%#. Then, we have

(T“g, BT f)=(g, h*f)—(g, FPo"Q"u"Gu ™" of)
_ (w”Q(”)u‘lGu“pg, hﬁf)

+1lim &,
el
where
199= [ak i’ oK) ok YRV FTV KR (K, K)
with

WL ) |QW(k) (k)"
KK, B)= [ah o= ie) b= ol )

We compute K{(F, k") by using Lemma 6.1 Let 0<o=78<1 first.
Then we can write as

s sinad (= ,, A’ w(k)
Wk =S1% A Doy

Using Fubini’s theorem, we have

Klgy)(k/, k//)___ sinzd -/’wd/l Aa_lj(#)(A, k,, k//)
T 0
with

D03 b )= |Q“ (R w (k)™
JOW R, R)= f dk(w(k)—a)(k’)—i-ie)(w(k)a—)- w(R)—ie)(A+ w(k))

The function J*(A, £, k") can be computed via and we get
(6.24). The other cases can be proved similarly. L]
immediately gives

PROPOSITION 6.10. Let —u<r(1+2a)<2—p. Then the following
operator equations hold :

(6.26) TW*RTW+ TE*pTH
=2+ d%2a(+, W20 %0+ d¥ 20+, h*0)h%p0
H(—=1D)* Y I R s2ayh ™+ h°RY) sy h”).
(6.27) TW*RTW — T*pT + TE* TR — TS*h T
=d¥ 20+, )0 — d¥-2a(+, R°0) R0+ di (-, K™ %0) k%
—d¥ (-, h*o)h o+ (=1 (h*R¥s2ah™°
— WORY) sy h® + R R W™ — B~ R h*).

In particular, (T. 4) and (T.5) in Section V hold with {T, Q}=
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{T(#), Q(M)}’ #:0, 1.

Thus we have proved that {7, @Q*} defined by (6.14) and (6.13)
possesses the properties (T.1)-(T.6), (Q.1), and (TQ.1)-(TQ.3) in Sec-
tion V.

In Section IV, we needed for the proof of the existence of the ground
state that VW' and AVWI' are Hilbert-Schmidt on %#. Obviously, this
condition is satisfied if V' and %2V is Hilbert-Schmidt. A criterion for the
latter condition can be derived by expressing V explicitly as follows. We
first define the kernel As(k, £)(8>0) by

(6.28)  w(k)?—w(k)’=(w(k)—w(k))As(k, k).

Let V™ denote the operator V given by (5.1) with 7=T®. Then, by
direct computation, we have

6.29)  (VOR(R)= [Vl k)F(K)dk

with

6.30)  V®(k B)=— 0(R)Ar(k, B (k) Q"(F)

2lw(k)ow(k)]™

Thus, we get the following criterion for V* and AV to be Hilbert-
Schmidt on #;

LEMMA 6.11.  The operator V* (vesp. hV'®) is Hilbert-Schmidt on
X f and only if V(k k) (resp. w(R) VP (k E)) is a function in
L*(R*X R%).
VII. Examples

In this section we show by explicit computations that the class of the
quadratic operators H defined via {7, Q*} given in Section VI contains
the Hamiltonians of standard models of a one dimensional quantum har-
monic oscillator coupled quadratically to a quantum scalar field.
Throughout this section, the same notation is used as that in Section VI

We first enumerate some lemmas need for the computation of H.

LEMMA 7.1.  Suppose that, for a non-negative integer n, w"p is in
Z . Then, we have

1D TWee=(ah ~al"0)w" Q@+ 2(p, " 00" QW

and

(72) (Q(,u), CUn+1Q(/1)): 1

Y‘) {aéﬂ)(Q(#)’ an(#))

a
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+ 2o, ") Q, @I,

Proor: Eq. (7.1) follows from direct computations. Taking the
quantity (Q, T*"w"0) and using the fact TW*Q"=0 [TQ.4], we get
(7.2). [

LEMMA 7.2. Suppose that wp is in % . Then, we have
(7.3) T""*wQ“"z—?ﬁ;, ©=0, 1.
1

PROOF: Similar to the proof of Lemma 6.9. O

Let W™ (resp. V¥, £*, g§¥) be given by (5.1) (resp. (5.2), (5.3),
(5.4)) with T=T", Q=Q", h=w", M=M", x=x", and §=0".
We put

u(#): w(#)hfo(#) + V(#)hgéﬂ),
U(#): w(#)hg(()#)_|_ V(#)hfo(#).

(see (3.2) and-(3.3)).
LEMMA 7. 3.
(a) (7, a)=<%, i%) we have

eia‘#)M(#)h—l/Zp u(#): - e—iew)M(#)h—l/zp
b)((ﬂ)llzaﬁ”) s Zx(ﬂ)llzagﬂ)

u(#): —

(b) For (r, 2)=(1, 0), we have

0() na(#)
(#) — _u_ﬁ

agf‘) , U(ﬂ):().

U

ProOOF: By direct computations, we have

e—iafﬂ)u(#) M(#)x(#) ~ ()% 7142 (1) ~ ()% 7,1-2 (#)
MK (g (e a)(# a s —ea
( . w)_ g (R T@* QW + R T Q™).

ey
Then, gives the desired result. ]
LEMMA 7. 4.
1 1
(L +1
() Let (r,d)=(4. +5).

Then, for each p=0, 1, we have

7.0 (", hgt)=0,
(7.5 (8", hfi)+(g8”, hgs”)=x"
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with

#)\1/2
([ _ab
X ‘( ) ) .

ai

(b) Let (r,2)=(1,0). Then, for each u=0,1, we have (7.4) and

)
(59, 1)+, hgb) =25
independently of x*,
PROOF: Direct computations using (7.2). ]

We are now ready to present examples of the quadratic operator H
given by (3.4). We give only three examples.

EXAMPLE 1:  We take ¢=0, §9=nr, (r, 2)=(1,0), a®=1, and o=
wo. Then, using the preceding lemmas, we see that H is written as

H=Hy+ ab(0)*+ a*b(p).
This is the Hamiltonian of the so-called RWA oscillator [5].

EXAMPLE 2: We take ¢=0, §9=r, (7, a/)=<%, %), xP=@,. Then

we have
H=Ho+q-¢(p),
where

=1 (.
e

is the position operator in L*(R)(see (2.28)) and

__1 ~1/2 £)% -1/2 -1/2
$(f) ﬁ(b(h *+b(h™'2f)), h'ifesr
is the “time zero scalar field” in .7 «(%#). In particular, if we take w(k)=
|k[* and d=3, then the operator H is the Hamiltonian of the model con-
sidered in [2, 3].

EXAMPLE 3: We take p=1, (7, a)Z(%, %), xP=qwy, a’=wial®,
M®P=1, and 6”=0. Then, we have

2 2
H=H, +%(q— ¢(p))2—%qz-

This operator may be regarded as a scalar field version of the
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Hamiltonian of a harmonically bound electron minimally coupled to a
quantized radiation field [4]

In all the examples above, one can easily see that, under suitable reg-
ularity conditions for p and a choice of the space dimension d, the opera-
tors V™ and AV™® are Hilbert-Schmidt (see Lemma 6.11). One can also
prove that, under suitable conditions for the parameters or by “renormal-
izations”, each Hamiltonian satisfies the condition (H) in Section IIL

In the same way as in the above examples, we can generate a variety
of quadratic Hamiltonians for a system of a one dimensional quantum
harmonic oscillator coupled to a quantum scalar field. These
Hamiltonians are isospectral to dT'(w”) up to constant addition.

VIII. Other aspects

In this section we follow the notation in Sections III and IV.
8.1. The n-point functions of the oscillator.

From a point of view of QFT, it is interesting to investigate prop-
erties of the #n-point functions of the oscillator

Wﬂ(tla Yy tn):(Q(tl)”'Q(tn)Q, Q)
where ¢(t) is the time evolution of ¢ by H :
q(t)y=ege ™ tER.

It is easy to see that Wi,-1=0, nEN, and W, is written as a sum of n
products of W, which is computed as

Wi(t, s)=c(F, e"*"9"F), t, sER,

with
_ 1 o
P (73 P o S

(Use (3.15) and (4.27).)

In view of quantum statistical mechanics (e.g., [13]), by a standard
method, we can construct a quasi free equilibrium state ws at any finite
temperature 1/8 of the quantum system governed by the Hamiltonian H
such that the'two-point correlation function

WE(t, s)=ws(q(t)q(s))
is given as

VVzﬂ(t, S)-_—' C(F, (eﬁh_l)—l(e[ﬁ+i(t—s)]h + e_i(t—s)h)F).
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Note that W#(¢, s)— Wa(t, s) as f—co (the zero temperature limit).
Concerning the examples in Section VI, the long-time behavior of
Wa(t, s) and W¥(t, s) has been analyzed in detail in [9].

8.2. Supersymmetric embedding.

Recently rigorous analysis has been undertaken on supersymmetric
embedding of “ordinary” quantum field models (For a formal theory,
see [6] and for quantum mechanical (finite degrees of freedom) cases, see
references in [7]). A non-negative self-adjoint operator A is said to be
supersymmetrically embeddable if it is unitarily equivalent to a reduced
part of a supersymmetric Hamiltonian [7]. Under the assumption of The-
orem 3.1, H is supersymmetrically embeddable. This follows from the
fact that H is unitarily equivalent to d T'(%) acting in % (%) and that
dT(h) is a reduced part of a supersymmetric Hamiltonian [8]. The
explicit construction of a supersymmetric quantum theory in which H is
embedded can be done in the same way as in (See for a more gen-
eral construction).
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