On some hypersurfaces satisfying $\mathbf{R}(\mathbf{X}, \mathbf{Y}) \cdot \mathbf{R}_{\mathbf{1}}=\mathbf{0}$

Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Kouei Sekigawa

1. Introduction.

The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for all tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition (*) on the curvature tensor field R imply that $\nabla R=0$? K. Nomizu conjectured that the answer is positive in the case where (M, g) is complete, irreducible and $\operatorname{dim} M \geqq 3$. But, recently, H. Takagi [5] gave an example of 3-dimensional complete, irreducible Riemannian manifold (M, g) satisfying $\left.{ }^{*}\right)$ and $\nabla R \neq 0$. Moreover, the present author proved that, in an $(m+1)$ dimensional Euclidean space $E^{m+1}(m \geqq 3)$, there exist some complete, irreducible hypersurfaces which satisfy the condition $\left(^{*}\right)$ and $\nabla R \neq 0$. For example,

$$
\begin{array}{rlrl}
M ; & x_{m+1}= & \left(x_{1}-x_{2}\right)^{2} x_{2}+\left(x_{1}-x_{2}\right) x_{3} & \\
& +\sum_{a=1}^{m-3} x_{a+3} e^{a\left(x_{1}-x_{2}\right)} & & m \geqq 4, \\
& & & \\
M ; & x_{4}= & \left(x_{1}-x_{2}\right)^{2} x_{2}+\left(x_{1}-x_{2}\right) x_{3}, & \\
M ; & & (\text { See [3] }, \tag{1.3}\\
& x_{4}=\frac{x_{1}^{2} x_{3}-x_{2}^{2} x_{3}-2 x_{1} x_{2}}{2\left(1+x_{3}^{2}\right)}, & & \text { (See [5]), }
\end{array}
$$

where ($x_{1}, x_{2}, \cdots, x_{m+1}$) denotes a canonical coordinate system on E^{m+1}.
By these examples, we see that K. Nomizu's conjecture is negative. For theses examples, we see that the type number $k(x)$ is at most 2 for each point $x \in M$ and actually 2 at some point of M. In [2], K. Nomizu proved

Theorem A. Let (M, g) be an m-dimensional complete Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x) \geqq 3$ at least at one point $x \in M$. If (M, g) satisfies the condition (*), then it is of the form $S^{k} \times E^{m-k}$, where S^{k} is a hypersphere in a Euclidean subspace E^{k+1} of E^{m+1} and E^{m-k} is a Euclidean subspace orthogonal to E^{k+1}.

Now, let R_{1} be the Ricci tensor field of (M, g) and R^{1} be the symmetric endomorphism satisfying $R_{1}(X, Y)=g\left(R^{1} X, Y\right)$. Then, the condition (*) implies in particular

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \quad \text { for all tangent vectors } X \text { and } Y . \tag{**}
\end{equation*}
$$

In [4], the present author proved
Theorem B. Let (M, g) be an m-dimensional complete Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x) \geqq 3$ and odd at least at one point $x \in M$. If (M, g) satisfies the condition $(* *)$, then it is of the form $S^{k} \times E^{m-k}$.

In the present paper, we shall prove the followings:
Theorem C. Let (M, g) be an m-dimensional complete Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x) \geqq 3$ and odd, or $k(x)>2 m / 3$ at least at one point $x \in M$. If (M, g) satisfies the condition $\left({ }^{* *)}\right.$, then it is of the form $S^{k} \times E^{m-k}$,

Theorem D. Let (M, g) be an m-dimensional irreducible Riemannian manifold which is isometrically immersed in E^{m+1}. If (M, g) satisfies the condition (**) and

$$
\begin{equation*}
R(X, Y) \cdot \nabla_{2} R_{1}=0 \quad \text { for all tangent vectors } X, Y \text { and } Z, \tag{1.4}
\end{equation*}
$$

then it is a space of positive constant curvature.
Corollary D. Under the same hypothesis as theorem D, furthermore, if (M, g) is complete, then it is of the form S^{m}, that is, a hypersphere in E^{m+1}.

2. Reduction of the condition (**).

Let (M, g) be an m-dimensional Riemannian manifold which is isometrically immersed in an ($m+1$)-dimensional Euclidean space $E^{m+1}(m \geqq 3)$, g being the Riemannian metric induced from E^{m+1}. Let U be a neighborhood of a point $x \in M$ on which we can choose a unit vector field N normal to M. For local vector fields X and Y on U tangent to M, we have the formulas of Gauss and Weingarten:

$$
\begin{align*}
& D_{X} Y=\nabla_{X} Y+H(X, Y) N, \tag{2.1}\\
& D_{X} N=-A X, \tag{2.2}
\end{align*}
$$

where D_{X} and ∇_{X} denote the covariant differentiations for the Euclidean connection on E^{m+1} and the Riemannian connection on M, respectively. H is the second fundamental form and A is a symmetric endomorphism
satisfying $H(X, Y)=g(A X, Y)$. Then the equation of Gauss is

$$
\begin{equation*}
R(X, Y)=A X \wedge A Y \tag{2.3}
\end{equation*}
$$

The type number $k(x)$ at a point $x \in M$ is, by definition, the rank of A at X. From (2.3), the Ricci tensor R_{1} of (M, g) is given by

$$
\begin{equation*}
R_{1}(X, Y)=(\operatorname{trace} A) g(A X, Y)-g\left(A^{2} X, Y\right) \tag{2.4}
\end{equation*}
$$

For each point $x \in M$, we may take an orthonormal basis $\left\{e_{i}\right\}$ of the tangent space $T_{x}(M)$ such that $A e_{i}=\lambda_{i} e_{i} 1 \leqq i, j, h, k, \cdots \leqq m$. Then the equation (2.3) implies

$$
\begin{equation*}
R\left(e_{i}, e_{j}\right)=\lambda_{i} \lambda_{j} e_{i} \wedge e_{j}, \tag{2.5}
\end{equation*}
$$

and (2.4) implies

$$
\begin{equation*}
R_{1}\left(e_{i}, e_{i}\right)=\lambda_{i} \sum_{h=1}^{m} \lambda_{h}-\lambda_{i}^{2}, \quad \text { and otherwise being zero. } \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we see that the condition $\left(^{* *}\right)$ is equivalent to

$$
\begin{equation*}
\lambda_{i} \lambda_{j}\left(\lambda_{i}-\lambda_{j}\right)\left(\sum_{h=1}^{m} \lambda_{h}-\lambda_{i}-\lambda_{j}\right)=0 \quad \text { for } \quad i \neq j \tag{2.7}
\end{equation*}
$$

From (2.7), at each point $x \in M$, we see that essentially only the following cases are possible:
(I) $\lambda_{1}=\cdots=\lambda_{k}=\lambda, \quad \lambda_{k+1}=\cdots=\lambda_{m}=0$,
(II) $\lambda_{1}=\cdots=\lambda_{t}=\lambda, \quad \lambda_{t+1}=\cdots=\lambda_{t+t^{\prime}}=\mu$,

$$
\lambda_{t+t^{\prime}+1}=\cdots=\lambda_{m}=0
$$

where $k=k(x)$, and for (II), $\lambda \neq \mu, t=t(x) \geqq 1$,
$t^{\prime}=t^{\prime}(x) \geqq 1, \quad k=t+t^{\prime}, \quad(t-1) \lambda+\left(t^{\prime}-1\right) \mu=0$.
If (M, g) satisfies the condition $\left(^{*}\right)$, then we see that (II) can not be valid on M. From (II), if $k(x)=3$, then we see that (II) can not be valid at x.

3. Lemmas.

First, we assume that the type number $k(z)>3$ at some point $z \in M$ and (II) is valid at z. Then, by the continuity argument for the characteristic polynomial of A, we see that (II) is also valid and, furthermore, t and t^{\prime} are constant near z and hence, let $W=\{x \in M ; k(x)>3$ and (II) is valid at $x\}$, which is an open set of M. For each point $x_{0} \in M$, let W_{0} be the connected component of x_{0} in W. Then, non-zero eigenvalues of A, λ and μ are certain differentiable functions on W_{0} and we can take three differentiable distributions, T_{λ}, T_{μ} and T_{0} corresponding to λ, μ and 0 , re-
spectively on W_{0}. Let $T_{1}(x)=T_{\lambda}(x)+T_{n}(x)$ (direct sum), for each point $x \in W_{0}$. Then, T_{1} is differentiable and, from (2.6) and (II), we have

$$
\begin{equation*}
R^{1} X=K X, \text { for } X \in T_{1} \text { and } R^{1} X=0, \text { for } X \in T_{0} \tag{3.1}
\end{equation*}
$$

where $K=\lambda \mu$.
Then, by [4],
Lemma 3.1. T_{λ} and T_{μ} are involutive.
For each point $x \in W_{0}$, let $M_{\lambda}(x)$ and $M_{r t}(x)$ be the maximal integral submanifolds through x of T_{λ} and T_{μ}, respectively. Then we have

Lemma 3.2. λ and μ are constant on each $M_{\lambda}(x)\left(M_{\mu}(x)\right.$, resp.)
Now, if $k(x)=m$ at some point $x \in M$, then
Proposition 3. 3. Let (M, g) be an m-dimensional Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x)$ $=m$ at some point $x \in M$. If (M, g) satisfies the condition $\left(^{* *}\right)$, then it is a space of positive constant curvature.

Corollary 3.3. Under the same hypothesis as proposition 3.3, furthermore, if (M, g) is complete, then it is a hypersphere S^{m}.

In the sequel, we assume that $3 \leqq k(z)<m$, that is, $\operatorname{dim} T_{0} \geqq 1$. In the future, we shall show that, under some additional conditions, (II) can not be valid. By [4],

Lemma 3. 4. T_{0} is involutive.
For each point $x \in W_{0}$, let $M_{0}(x)$ be the maximal integral submanifold through x of T_{0}, then

Lemma 3.5. Each $M_{0}(x)$ is totally geodesic and furthermore, a piece of an (m-k)-dimensional Euclidean space E^{m-k} in E^{m+1}.

4. Main results.

Since T_{λ}, T_{μ} and T_{0} are differentiable on W_{0}, for each point $x \in W_{0}$, we may choose a differentiable orthonormal frame field $\left\{E_{i}\right\}$ near x in such a way that $\left\{E_{a}\right\},\left\{E_{p}\right\}$ and $\left\{E_{u}\right\}$ are bases for T_{λ}, T_{μ} and T_{0}, respectively. Here $1 \leqq a, b, c, \cdots \leqq t, t+1 \leqq p, q, r, \cdots \leqq t+t=k, k+1 \leqq u, v, w, \cdots \leqq m$. From (2.5) and (II), with respect to the above basis $\left\{E_{i}\right\}$, we have

$$
\begin{align*}
& R\left(E_{a}, E_{b}\right)=\lambda^{2} E_{a} \wedge E_{b} \\
& R\left(E_{a}, E_{p}\right)=\lambda \mu E_{a} \wedge E_{p}, \tag{4.1}\\
& R\left(E_{p}, E_{q}\right)=\mu^{2} E_{p} \wedge E_{q}, \quad \text { and otherwise being zero. }
\end{align*}
$$

On the other hand, in general, for a local differentiable orthonormal
frame field $\left\{E_{i}\right\}$ in a Riemannian manifold (M, g), we may put

$$
\begin{equation*}
\nabla_{E_{i}} E_{j}=\sum_{k=1}^{m} B_{i j k} E_{k}, \tag{4.2}
\end{equation*}
$$

where ∇_{x} denotes the covariant differentiation with respect to the Riemannian connection given by g and $B_{i j k}=-B_{i k j}, m=\operatorname{dim} M$.
Then, by [4], we have the followings:

$$
\begin{align*}
& B_{u v a}=B_{u v p}=0, \tag{4.3}\\
& B_{a u b}=0 \text { for } a \neq b, \text { and } B_{a p b}=0, \tag{4.4}\\
& B_{p u q}=0 \text { for } p \neq q, \text { and } B_{p a q}=0, \tag{4.5}\\
& (\lambda-\mu) B_{u a_{p}}+\mu B_{a u p}=0, \tag{4.6}\\
& (\mu-\lambda) B_{u p a}+\lambda B_{p u a}=0, \tag{4.7}
\end{align*}
$$

and from (4.6) and (4.7)

$$
\begin{equation*}
\lambda B_{p u a}-\mu B_{a u p}=0 . \tag{4.8}
\end{equation*}
$$

By considering $R\left(E_{u}, E_{u}\right) E_{v}=0$ and $R\left(E_{p}, E_{u}\right) E_{v}=0$, we have

$$
\begin{equation*}
\left(t-t^{\prime}\right)\left(t+t^{\prime}-1\right) \sum_{a=1}^{t} \sum_{p=t+1}^{k}\left(B_{a u_{p}}\right)^{2}=0 . \tag{4.9}
\end{equation*}
$$

Now, for each $a(1 \leqq a \leqq t)$, we have

$$
\begin{aligned}
& R\left(E_{a}, E_{p}\right) E_{a}=\nabla_{E_{a}} \nabla_{E_{i}} E_{a}-\nabla_{E_{p}} \nabla_{F_{E_{2}}} E_{a}-\nabla_{\left[E_{a}, E_{p j}\right]} E_{a} \\
& =\sum_{i=1}^{m}\left(E_{a} B_{p a i}-E_{p} B_{a a i}+\sum_{j=1}^{m} B_{p a j} B_{a j i}\right. \\
& \left.\quad-\sum_{j=1}^{m} B_{a a j} B_{p j i}-\sum_{j=1}^{m}\left(B_{a p j}-B_{p a j}\right) B_{j a i}\right) E_{i} .
\end{aligned}
$$

Thus, by using (4.1), (4.4), (4.5), (4.6), (4.7) and (4.8), we have

$$
\begin{equation*}
\sum_{u=k+1}^{m} B_{a u p} B_{a u q}=0, \quad \text { for } \quad p \neq q \tag{4.10}
\end{equation*}
$$

By [4], we have

$$
\begin{equation*}
B_{a u a}=B_{p u p}=-E_{u} \lambda / \lambda=-E_{u} \mu / \mu . \tag{4.11}
\end{equation*}
$$

Thus, again, by using (4.1), (4.4), (4.5), (4.6), (4.7), (4.8), and (4.11), we have

$$
\begin{equation*}
\sum_{u=k+1}^{m}\left(B_{a u p}\right)^{2}=\lambda^{2} / 2+(1 / 2 \lambda \mu) \sum_{u=k+1}^{m}\left(E_{u} \lambda\right)^{2}, \quad p=t+1, \cdots, k . \tag{4.12}
\end{equation*}
$$

First, from (4. 9), if $t \neq t^{\prime}$, then we see that $B_{a u p}=0$. Next, we assume that $t=t^{\prime}$. Then we see that $\lambda=-\mu$. Thus, from (4.10) and (4.12), if $m-k$
$<k / 2$, that is, $k>2 m / 3$, then, for some $p_{0}\left(t+1 \leqq p_{0} \leqq k\right), B_{u u p_{0}}=0, u=k+1$, \cdots, m. Thus, form (4.12), we see that $B_{a u p}=0$. Therefore, by [4] we have theorem C.

Next, we shall prove theorem D. From (3.1), (4.2) and lemma 3.2, we have

$$
\begin{align*}
& \left(\nabla_{E_{n}} R^{1}\right) E_{b}=K \sum_{u=k+1}^{m} B_{a b u} E_{u}, \tag{4.13}\\
& \left(\nabla_{E_{a}} R^{1}\right) E_{p}=K \sum_{u=k+1}^{m} B_{a p u} E_{u} .
\end{align*}
$$

Thus, from (4.1) and (4.13), we have

$$
\begin{align*}
\left(R\left(E_{a}, E_{p}\right) \cdot \nabla_{E_{u}} R^{1}\right) E_{a} & =-\left(\nabla_{E_{a}} R^{1}\right)\left(R\left(E_{a}, E_{p}\right) E_{a}\right) \tag{4.14}\\
& =K^{2} \sum_{u=k+1}^{m} B_{a p u} E_{u}, \\
\left(R\left(E_{a}, E_{b}\right) \cdot \nabla_{E_{a}} R^{1}\right) E_{b} & =-\left(\nabla_{E_{a}} R^{1}\right)\left(R\left(E_{a}, E_{b}\right) E_{b}\right) \\
& =-K_{u=k+1}^{2} \sum_{u a u u}^{m} B_{u} .
\end{align*}
$$

Thus, from (1.3) and (4.14), we have

$$
\begin{align*}
& B_{a p u}=0 \text { and hence } B_{p a u}=0, \tag{4.15}\\
& B_{a u a}=0 \text { and hence } B_{p u p}=0 . \tag{4.16}
\end{align*}
$$

Therefore, from (4.3), (4.4), (4.5), (4.6), (4.7), (4.15) and (4.16), we see that T_{λ}, T_{μ} and T_{0} are parallel on W_{0}. But, this contradicts to (4.1). Thus, if (M, g) satisfies (**) and (1.3), and furthermore, $k(z) \geqq 3$ at $z \in M$, then (II) can not be valid at z. Thus, (I) is valid at z. Then, let $W=$ $\{x \in M ; k(x) \geqq 3$ at $x\}$, which is an open set of M. For each point $x_{0} \in W$, let W_{0} be the connected component of x_{0} in W. Then, from (2.5) and (2. 6), at each point $x \in W_{0}$, we have

$$
\begin{array}{ll}
R\left(e_{a}, e_{b}\right)=\lambda^{2} e_{a} \wedge e_{b}, & \text { and otherwise being zero, } \\
R_{1}\left(e_{a}, e_{a}\right)=(k-1) \lambda^{2}, & \text { and otherwise being zero, } \tag{4.18}
\end{array}
$$

where $1 \leqq a, b, c \cdots \leqq k, \quad k+1 \leqq u, v, w, \cdots \leqq m$.
Then, non-zero eigenvalue λ of A is a differentiable function on W_{0} and we may take two differentiable distributions T_{1} and T_{0} corresponding to λ and 0 , respectively on W_{0}. For each point $x \in W_{0}$, we may choose a differentiable orthonormal frame field $\left\{E_{i}\right\}$ near x in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{u}\right\}$ are bases for T_{1} and T_{0}, respectively. Then, by the equation of Codazzi, we have

$$
\begin{equation*}
E_{a} \lambda=0, \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
B_{a u b}=0 \text { for } a \neq b, \text { and } B_{u v a}=0 \tag{4.20}
\end{equation*}
$$

Furthermore, from (1.3), by the similar ones as the previous arguments, we see that T_{1} and T_{0} are parallel on W_{0}. Thus, λ is constant on W_{0}. Since M is connected, we see that $W_{0}=M$. Thus we have

Proposition 4. 1. Let (M, g) be an m-dimensional Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number $k(x) \geqq 3$ at least at one point $x \in M$. If (M, g) satisfies $\left(^{* *}\right)$ and (1.3), then (M, g) is locally of the form $M_{1} \times M_{2}$, where M_{1} is a k-dimensional space of constant curvature λ^{2} and M_{2} is an (m - k)-dimensional locally flat space (more precisely, a piece of an (m-k)-dimensional Euclidean space E^{m-k}).

Next, we shall assume that the type number $k(x) \leqq 2$ on M. If the type number $k(x) \leqq 1$ on M, then, from (2.5), we see that $R=0$ on M, that is, (M, g) is locally flat and hence reducible. Thus, it is sufficient to deal with the case where the type number $k(x) \leqq 2$ on M and actually 2 at some point of M. Then, let $W=\{x \in M ; k(x)=2$ at $x\}$, which is an open set of M. For each point $x_{0} \in W$, let W_{0} be the connected component of x_{0} in W. Then, from (2.5) and (2.6), at each point $x \in W_{0}$, we may assume that

$$
\begin{align*}
& R\left(e_{1}, e_{2}\right)=K e_{1} \wedge e_{2} \tag{4.22}\\
& R_{1}\left(e_{1}, e_{1}\right)=R_{1}\left(e_{2}, e_{2}\right)=K \tag{4.23}
\end{align*}
$$

and otherwise being zero, and otherwise being zero,
where $K=\lambda_{1} \lambda_{2}$.
Since $R=0$ on the complement of W in M, from (4.22) and (4.23), we see that (M, g) satisfies $\left({ }^{*}\right)$ and hence $\left({ }^{* *}\right)$. Then, K is a differentiable function on W_{0}, since $K=$ trace $R^{1} / 2$, and we may take two differentiable distributions T_{1} and T_{0} corresponding to K and 0 , respectively on W_{0}. For each point $x \in W_{0}$, we may choose a differentiable orthonormal frame field $\left\{E_{i}\right\}$ near x in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{u}\right\}$ are bases for T_{1} and T_{0}, respectively. Then, from (4.22) and (4.23), with respect to the basis $\left\{E_{i}\right\}$, we have

$$
\begin{equation*}
R\left(E_{1}, E_{2}\right)=K E_{1} \wedge E_{2} \tag{4.24}
\end{equation*}
$$

$$
\begin{equation*}
R^{1} E_{1}=K E_{1}, \quad R^{1} E_{2}=K E_{2} \tag{4.25}
\end{equation*}
$$

and otherwise being zero,
and otherwise being zero.
First, by the equation of Codazzi, we have

$$
\begin{equation*}
B_{u v a}=0 \tag{4.26}
\end{equation*}
$$

From (4.2) and (4.25), we have

$$
\begin{align*}
& \left(\nabla_{E_{1}} R^{1}\right) E_{1}=\left(E_{1} K\right) E_{1}+K \sum_{u=3}^{m} B_{11 u} E_{u} \tag{4.27}\\
& \left(\nabla_{E_{1}} R^{1}\right) E_{2}=\left(E_{1} K\right) E_{2}+K \sum_{u=3}^{m} B_{12 u} E_{u}
\end{align*}
$$

From (1.3) and (4.27), we have

$$
\left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{1}} R^{1}\right) E_{1}=K^{2} \sum_{u=3}^{m} B_{12 u} E_{u}=0
$$

that is, $B_{12 u}=0$. Similarly, by considering $\left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{1}} R^{1}\right) E_{2}=0,\left(R\left(E_{1}\right.\right.$, $\left.\left.E_{2}\right) \cdot \nabla_{E_{2}} R^{1}\right) E_{1}=0$ and $\left(R\left(E_{1}, E_{2}\right) \cdot \nabla_{E_{2}} R^{1}\right) E_{2}=0$, we have

$$
\begin{equation*}
B_{a b u}=0 \tag{4.28}
\end{equation*}
$$

Thus, from (4.26) and (4.28), we see that T_{1} and T_{0} are parallel on W_{0} and hence, since $R=0$ on the complement of W in $M,(M, g)$ is reducible. Therefore, we have theorem D.

Remark. Another examples of complete, irreducible Riemannian manifolds satisfying the condition $(*)$ and $\nabla R \neq 0$:

$$
\begin{aligned}
M ; \quad x_{m+1}= & \left(x_{1}-x_{2}\right)^{2} x_{2}+\left(x_{1}-x_{2}\right) x_{3} \\
& +\sum_{a=1}^{m-3} x_{a+3}\left(x_{1}-x_{2}\right)^{a+3} \quad \text { in } \quad E^{m+1}, \quad m \geqq 4 .
\end{aligned}
$$

Niigata University

References

[1] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vol. I, Interscience Publisher, New York, 1963.
[2] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tōhoku Math. J., 20 (1968), 41-59.
[3] K. Sekigawa: On some hypersurfaces satisfying $R(X, Y) \cdot R=0$, to appear.
[4] K. Sekigawa: Some hypersurfaces in a Euclidean space, Science Reports of Niigata Univ. Series A, 8 (1971), 19-25.
[5] H. Takagi: An example of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$ but not $\nabla R=0$, to appear.
(Received on November 29, 1971)

