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1. Introduction.

The Riemannian curvature tensor R of a locally symmetric Rieman-
nian manifold (M, g) satisfies
(^{*}) R(X, Y)\cdot R=0 for all tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the
tensor algebra at each point of M. Conversely, does this algebraic condi-
tion (^{*}) on the curvature tensor field R imply that \nabla R=0 ? K. Nomizu
conjectured that the answer is positive in the case where (M, g) is complete,
irreducible and dim M\geqq 3 . But, recently, H. Takagi [5] gave an example
of 3-dimensional complete, irreducible Riemannian manifold (M, g) satisfying
(^{*}) and \nabla R\neq 0 . Moreover, the present author proved that, in an (m+1)-

dimensional Euclidean space E^{m+1}(m\geqq 3), there exist some complete, irredu-
cible hypersurfaces which satisfy the condition (^{*}) and \nabla R\neq 0 . For example,

(1. 1) M ; x_{m+1}=(x_{1}-x_{2})^{2}x_{2}+(x_{1}-x_{2})x_{3}

+ \sum_{a=1}^{m-3}x_{a+3}e^{a(x_{1}-x_{2})} m\geqq 4 ,

(1. 2) M ; x_{4}=(x_{1}-x_{2})^{2}x_{2}+(x_{1}-x_{2})x_{3},\cdot (See [3]).

(1. 3) M ; x_{4}= \frac{x_{1}^{2}x_{3}-x_{2}^{2}x_{3}-2x_{1}x_{2}}{2(1+x_{3}^{2})} , (See [5]),

where (x_{1}, X_{2}^{ },\cdots, x_{m+1}) denotes a canonical coordinate system on E^{m+1} .
By these examples, we see that K. Nomizu’s conjecture is negative.

For theses examples, we see that the type number k(x) is at most 2 for
each point x\in M and actually 2 at some point of M. In [2], K. Nomizu
proved

THEOREM A. Let (M, g) be an m-dimmsional complete Riemannian
manifold which is isometrically immersed in E^{m+1} so that the type number
k(x)\geqq 3 at least at one point x\in M. If (M, g) satisfifies the condition (^{*}),
thm it is of the form S^{k}\cross E^{m-k} , where S^{k} is a hypersphere in a Euclidean
subspace E^{k+1} of E^{m+1} and E^{m- k} is a Euclidean subspace orthogonal to E^{k+1} .
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Now, let R_{1} be the Ricci tensor field of (M, g) and R^{1} be the symmetric
endomorphism satisfying R_{1}(X, Y)=g(R^{1}X, Y) . Then, the condition (^{*})

implies in particular

(^{**}) R(X, Y)\cdot R_{1}=0 for all tangent vectors X and Y.
In [4], the present author proved

THEOREM B. Let (M, g) be an m-dimensional complete Riemannian
manifold which is isometrically immersed in F_{\lrcorner}^{m+1} so that the type number
k(x)\geqq 3 and odd at least at one point x\in M. If (M, g) satisfifies the condi-
tion (^{**}) , thm it is of the form S^{k}\cross E^{m-k} .

In the present paper, we shall prove the followings:
THEOREM C. Let (M, g) be an m-dimensional complete Riemannian

manifold which is isometrically immersed in E^{m+1} so that the type number
k(x)\geqq 3 and odd, or k(x)>2m/3 at least at one point x\in M. If (M, g)

satisfifies the condition (^{**}), then it is of the form S^{k}\cross E^{m-k} ,

THEOREM D. Let (ll,I, g) be an m-dimmsional irreducible Riemannian
manifold which is isometrically immersed in E^{m+1} . If (M, g) satisfifies the
condition (^{**}) and

(1. 4) R(X, Y)\cdot\nabla_{z}R_{1}=0 for all tangent vectors X, Y and Z,

then it is a space of positive constant curvature.

COROLLARY D. Under the same hypothesis as theorem D, furthermore,
if (M, g) is complete, then it is of the form S^{m} , that is, a hypersphere in
E^{m+1} .

2. Reduction of the condition (**).

Let (M, g) be an m-dimensional Riemannian manifold which is isomet-
rically immersed in an (m+1)-dimensional Euclidean space E^{m+1}(m\geqq 3), g
being the Riemannian metric induced from E^{m+1} . Let U be a neighborhood
of a point x\in M on which we can choose a unit vector field N normal to
M. For local vector fields X and Y on U tangent to M, we have the
formulas of Gauss and Weingarten :

(2. 1) D_{X}Y=\nabla_{X}Y+H(X, Y)N ,

(2. 2) D_{X}N=-AX ,

where D_{X} and \nabla_{X} denote the covariant differentiations for the Euclidean
connection on E^{m+1} and the Riemannian connection on M, respectively. H
is the second fundamental form and A is a symmetric endomorphism
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satisfying H(X, Y)=g(AX, Y). Then the equation of Gauss is

(2. 3) R(X, Y)=AX\Lambda AY

The type number k(x) at a point x\in M is, by definition, the rank of A at

X. From (2. 3), the Ricci tensor R_{1} of (M, g) is given by

(2. 4) R_{1}(X, Y)=(traceA)g(AX, Y)-g(A^{2}X, Y) .

For each point x\in M, we may take an orthonormal basis \{e_{i}\} of the
tangent space T_{x}(M) such that Ae_{i}=\lambda_{i}e_{i} 1\leqq i,j, h, k, \cdots\leqq m . Then the
equation (2. 3) implies

(2. 5) R(e_{i}, e_{f})=\lambda_{i}\lambda_{f}e_{i}\Lambda e_{f} ,

and (2. 4) implies

(2. 6) R_{1}(e_{i}, e_{i})= \lambda_{i}\sum_{h=1}^{m}\lambda_{h}-\lambda_{i}^{2} , and otherwise being zero.

From (2. 5) and (2. 6), we see that the condition (^{**}) is equivalent to

(2. 7) \lambda_{i}\lambda_{j}(\lambda_{i}-\lambda_{j}) ( \sum_{h=1}^{m}\lambda_{\iota},-\lambda_{i}-\lambda_{j})=0 for i\neq j\ell

From (2. 7), at each point x\in M, we see that essentially only the following
cases are possible :

(I) \lambda_{1}=\cdots=\lambda_{k}=\lambda , \lambda_{k+1}=\cdots=\lambda_{m}=0 ,

(II) \lambda_{1}=\cdots=\lambda_{t}=\lambda . \lambda_{t+1}=\cdots=\lambda_{t+t’}=\mu ,

\lambda_{t+t’+1}=\cdots=\lambda_{m}=0 .

where k=k(x), and for (II), \lambda\neq\mu , t=t(x)\geqq 1 ,

t’=t’(x)\geqq 1 , k=t+t’,\cdot(t-1)\lambda+(t’-1)\mu=0 .

If (M, g) satisfies the condition (^{*}) , then we see that (II) can not be valid
on M. From (II), if k(x)=3, then we see that (II) can not be valid at x.

3. Lemmas.

First, we assume that the type number k(z)>3 at some point z\in M

and (II) is valid at z. Then, by the continuity argument for the charac-
teristic polynomial of A, we see that (II) is also valid and, furthermore, t

and t’ are constant near z and hence, let W=\{x\in M;k(x)>3 and (II) is
valid at x}, which is an open set of M. For each point x_{0}\in M, let W_{0} be
the connected component of x_{0} in W. Then, non-zero eigenvalues of A, \lambda

and \mu are certain differentiate functions on W_{0} and we can take three
differentiable distributions, T_{\lambda} , T_{\mu} and T_{0} corresponding to \lambda, \mu and 0, re-
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spectively on W_{0} . Let T_{1}(x)=T_{\lambda}(x)+T_{f^{p}}(x) (direct sum), for each point
x\in W_{0} . Then, T_{1} is differentiable and, from (2. 6) and (II), we have

(3. 1) R^{1}X=KX , for X\in T_{1} and R^{1}X=0 , for X\in T_{0} ,

where K=\lambda\mu .
Then, by [4],

Lemma 3. 1. T_{\lambda} and T_{\mu} are involutive.
For each point x\in W_{0} , let M_{\lambda}(x) and M_{p},(x) be the maximal integral sub-
manifolds through x of T_{\lambda} and T_{p},, respectively. Then we have

Lemma 3. 2. \lambda and \mu are constant on each M_{\lambda}(x) (M_{\mu}(x), resp.)

Now, if k(x)=m at some point x\in M, then
PROPOSITION 3. 3. Let (M, g) be an m-dimensional Riemannian mani-

fold which is isometrically immersed in E^{m+1} so that the type number k(x)
=m at some point x\in lVI. If (M, g) satisfifies the condition (^{**}) , then it is
a space of positive constant curvature.

COROLLARY 3. 3. Under the same hypothesis as proposition 3. 3, fur-
thermore, if (M, g) is complete, then it is a hypersphere S^{m} .

Lemma 3. 4. T_{0} is involutive.

In the sequel, we assume that 3\leqq k(z)<m , that is, dim T_{0}\geqq 1 . In the
future, we shall show that, under some additional conditions, (II) can not
be valid. By [4],

For each point x\in W_{0} , let M_{0}(x) be the maximal integral submanifold
through x of T_{0} , then

Lemma 3. 5. Each M_{0}(x) is totally geodesic and furthermore, a piece
of an (m-k)-dimensional Euclidean space E^{m-k} in E^{m+1} .

4. Main results.

Since T_{\lambda} , T_{l}, and T_{0} are differentiable on W_{0} , for each point x\in W_{0} ,
we may choose a differentiable orthonormal frame field \{E_{i}\} near x in such
a way that \{E_{a}\} , \{E_{p}\} and \{E_{u}\} are bases for T_{\lambda} , T_{\mu} and T_{0} , respectively.
Here 1\leqq a , b, c, \cdots\leqq t, t+1\leqq p, q, r, \cdots\leqq t+t=k , k+1\leqq u , v, w, \cdots\leqq m . From
(2. 5) and (II), with respect to the above basis \{E_{i}\} , we have

R(E_{a}, E_{b})=\lambda^{2}E_{a}\Lambda E_{b} .
(4. 1) R(E_{a}, E_{p})=\lambda\mu E_{a}\Lambda E_{p} ,

R(E_{p}, E_{q})=\mu^{2}E_{p}\Lambda E_{q} , and otherwise being zero.

On the other hand, in general, for a local differentiable orthonormal
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frame field \{E_{i}\} in a Riemannian manifold (M, g), we may put

(4. 2) \nabla_{E_{i}}E_{j}=\sum_{k=1}^{m}B_{ijk}E_{k\prime}.

where \nabla_{X} denotes the covariant differentiation with respect to the Rieman-
nian connection given by g and B_{ifk}=-B_{ikj} , m=\dim M.
Then, by [4], we have the followings :

(4. 3) B_{uva}=B_{uvp}=0 ,

(4. 4) B_{aub}=0 for a\neq b , and B_{apb}=0 ,

(4. 5) B_{puq}=0 for p\neq q , and B_{paq}=0 ,

(4. 6) (\lambda-\mu)B_{uap}+\mu B_{aup}=0 ,

(4. 7) (\mu-\lambda)B_{upa}+\lambda B_{pua}=0’.

and from (4. 6) and (4. 7)

(4. 8) \lambda B_{pua}-\mu B_{aup}=0 .

By considering R(E_{a’ u}F_{d})E_{v}=0 and R(E_{p}, E_{u})E_{v}=0 , we have

(4. 9) (t-t’) (t+t’-1) \sum_{a=1p}^{t}\sum_{=t+1}^{k}(B_{aup})^{2}=0 .

Now, for each a(1\leqq a\leqq t), we have
R(E_{a}, E_{p})E_{a}=\nabla_{E},,\nabla_{E_{)}},E_{a}-\nabla_{E_{p}}\nabla_{E_{a}}E_{a}-\nabla_{[E_{(},E_{f/}]}‘ E_{\iota},

= \sum_{i=1}^{m}(E_{a}B_{pai}-E_{p}B_{aai}+\sum_{j=1}^{m}B_{paf}B_{aji}

- \sum_{j=1}^{m}B_{aaf}B_{pji}-\sum_{j=1}^{m}(B_{apj}-B_{paf})B_{fai})E_{l}\iota

Thus, by using (4. 1), (4. 4), (4. 5), (4. 6), (4. 7) and (4. 8), we have

(4. 10) \sum_{u=k+1}^{m}B_{aup}B_{auq}=0 , for p\neq q .

By [4], we have

(4. 11) B_{aua}=B_{pup}=-E_{u}\lambda/\lambda=-E_{u}\mu/\mu 1

Thus, again, by using (4. 1), (4. 4), (4. 5), (4. 6), (4. 7), (4. 8), and (4. 11), we
have

(4. 12) \sum_{u=k+1}^{m}(B_{aup})^{2}=\lambda^{2}/2+(1/2\lambda\mu)\sum_{u=k+1}^{m}(E_{u}\lambda)^{2} , p=t+1, \cdots , k .

First, from (4. 9), if t\neq t’ . then we see that B_{aup}=0 . Next, we assume that
t=t’. Then we see that \lambda=-\mu . Thus, from (4. 10) and (4. 12), if m-k
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<k/2 , that is, k>2m/3 , then, for some p_{0}(t+1\leqq p_{0}\leqq k) , B_{aup_{0}}=0 , u=k+1,
\ldots , m. Thus, form (4. 12), we see that B_{aup}=0 . Therefore, by [4] we have
theorem C.

Next, we shall prove theorem D. From (3. 1), (4. 2) and lemma 3. 2,
we have

(4. 13) ( \nabla_{E_{1}},R^{1})E_{b}=K\sum_{u=k+1}^{m}B_{abu}E_{u} ,

( \nabla_{E_{a}}R^{1})E_{p}=K\sum_{u=k+1}^{m}B_{apu}E_{u} .

Thus, from (4. 1) and (4. 13), we have
(4. 14) (R(E_{a}, E_{p})\cdot\nabla_{E},.R^{1})E_{a}=-(\nabla_{E_{a}}R^{1})(R(E_{a}, E_{p})E_{a})

=K^{2} \sum_{u=k+1}^{m}B_{apu}E_{u} ,

(R(E_{a}, E_{b})\cdot\nabla_{E_{a}}R^{1})E_{b}=-(\nabla_{E_{a}}R^{1})(R(E_{a}, E_{b})E_{b})

=-K^{2} \sum_{u=k+1}^{m}B_{aau}E_{u} .
Thus, from (1. 3) and (4. 14), we have

(4. 15) B_{apu}=0 and hence B_{pau}=0 ,

(4. 16) B_{aua}=0 and hence B_{pup}=0 .
Therefore, from (4. 3), (4. 4), (4. 5), (4. 6), (4. 7), (4. 15) and (4. 16), we see
that T_{\lambda} , T,, and T_{0} are parallel on W_{0} . But, this contradicts to (4. 1).
Thus, if (M, g) satisfies (^{**}) and (1. 3), and furthermore, k(z)\geqq 3 at z\in M,
then (II) can not be valid at z. Thus, (I) is valid at z. Then, let W=
{x\in M;k(x)\geqq 3 at x}, which is an open set of M. For each point x_{0}\in W,
let W_{0} be the connected component of x_{0} in W. Then, from (2. 5) and
(2. 6), at each point x\in W_{0} , we have

(4. 17) R(e_{a}, e_{b})=\lambda^{2}e_{a}\Lambda e_{b} , and otherwise being zero,

(4. 18) R_{1}(e_{a}, e_{a})=(k-1)\lambda^{2} and otherwise being zero,

where 1\leqq a , b, c\cdots\leqq k , k+1\leqq u , v, w, \cdots\leqq m

Then, non-zero eigenvalue \lambda of A is a differentiable function on W_{0} and
we may take two differentiable distributions T_{1} and T_{0} corresponding to \lambda

and 0, respectively on W_{0} . For each point x\in W_{0} , we may choose a dif-
ferentiable orthonormal frame field \{E_{i}\} near x in such a way that \{E_{a}\}

and \{E_{u}\} are bases for T_{1} and T_{0} , respectively. Then, by the equation of
Codazzi, we have
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(4. 19) F_{\lrcorner}\lambda a=0 ,

(4. 20) B_{aub}=0 for a\neq b , and B_{uva}=0 ,

(4. 21) B_{aua}=-E_{u}\lambda/\lambda

Furthermore, from (1. 3), by the similar ones as the previous arguments, we
see that T_{1} and T_{0} are parallel on W_{0} . Thus, \lambda is constant on W_{0} . Since
M is connected, we see that W_{0}=M. Thus we have

PROPOSITION 4. 1. Let (M, g) be an m-dimensional Riemannian mani-
fold which is isometrically immersed in E^{m+1} so that the type number
k(x)\geqq 3 at least at one point x\in M. If (M, g) satisfifies (^{**}) and (1. 3), then
(M, g) is locally of the form M_{1}\cross M_{2} , where M_{1} is a k-dimensional space
of constant curvature \lambda^{2} and M_{2} is an (m-k)-dimensional locally flat space
(more precisely, a piece of an (m-k)-dimensional Euclidean spaceE^{m-k}).

Next, we shall assume that the type number k(x)\leqq 2 on M. If the
type number k(x)\leqq 1 on M, then, from (2. 5), we see that R=0 on M, that
is, (M, g) is locally flat and hence reducible. Thus, it is sufficient to deal
with the case where the type number k(x)\leqq 2 on M and actually 2 at some
point of M. Then, let W= {x\in M;k(x)=2 at x}, which is an open set of
M. For each point x_{0}\in W, let W_{0} be the connected component of x_{0} in W.
Then, from (2. 5) and (2. 6), at each point x\in W_{0} , we may assume that

(4. 22) R(e_{1}, e_{2})=Ke_{1}\Lambda e_{2} . and otherwise being zero,

(4. 23) R_{1}(e_{1}, e_{1})=R_{1}(e_{2}, e_{2})=K . and otherwise being zero,

where K=\lambda_{1}\lambda_{2} .
Since R=0 on the complement of W in M, from (4. 22) and (4. 23), we see
that (M, g) satisfies (^{*}) and hence (^{**}) . Then, K is a differentiable function
on W_{0} , since trace Rlj2, and we may take two differentiable distribu-
tions T_{1} and T_{0} corresponding to K and 0, respectively on W_{0} . For each
point x\in W_{0} , we may choose a differentiable orthonormal frame field \{E_{i}\}

near x in such a way that \{F_{z}\}a and \{E_{u}\} are bases for T_{1} and T_{0} , respec-
tively. Then, from (4. 22) and (4. 23), with respect to the basis \{E_{i}\} , we have

(4. 24) R(E_{1}, E_{2})=KE_{1}\Lambda E_{2} , and otherwise being zero,

(4. 25) R^{1}E_{1}=KE_{1} . R^{1}E_{2}=KE_{2} , and otherwise being zero.

First, by the equation of Codazzi, we have

(4. 26) B_{uva}=0

From (4. 2) and (4. 25), we have
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(4. 27) ( \nabla_{E_{1}}R^{1})E_{1}=(E_{1}K)E_{1}+K\sum_{u=3}^{m}B_{11u}E_{u} ,

( \nabla_{E_{1}}R^{1})E_{2}=(E_{1}K)E_{2}+K\sum_{u=3}^{m}B_{12u}E_{u}\iota

From (1. 3) and (4. 27), we have

(R(E_{1}, E_{2}) \cdot\nabla_{E_{1}}R^{1})E_{1}=K^{2}\sum_{u=3}^{m}B_{12u}E_{u}=0 ,

that is, B_{12u}=0 . Similarly, by considering (R(E_{1}, E_{2})\cdot\nabla_{E_{1}}R^{1})E_{2}=0 , (R(E_{1} ,
E_{2})\cdot\nabla_{E_{2}}R^{1})E_{1}=0 and (R(E_{1}, E_{2})\cdot\nabla_{E_{2}}R^{1})E_{2}=0 , we have

(4. 28) B_{abu}=0 .

Thus, from (4. 26) and (4. 28), we see that T_{1} and T_{0} are parallel on W_{0}

and hence, since R=0 on the complement of W in M, (M, g) is reducible.
Therefore, we have theorem D.

REMARK. Another examples of complete, irreducible Riemannian mani-
folds satisfying the condition (^{*}) and \nabla R\neq 0 :

M ; x_{m+1}=(x_{1}-x_{2})^{2}x_{2}+(x_{1}-x_{2})x_{3}

+ \sum_{a=1}^{m-3}x_{a+3}(x_{1}-x_{2})^{a+3} in E^{m+1} , m\geqq 4 .
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