Totally geodesic foliations with compact leaves

Dedicated to Professor Y. Katsurada on her 60th birthday

By Shûkichi Tanno

§ 1. Introduction

Concerning totally geodesic foliations, D. Ferus [5] obtained a very interesting theorem: Let $\rho(t)$ denote the largest integer such that the fibration $V_{t, \rho(t)}^{\prime} \rightarrow V_{t, 1}^{\prime}$ of Stiefel manifolds has a global cross section. Define ν_{m} to be the largest integer such that $\rho\left(m-\nu_{m}\right) \geq \nu_{m}+1 . \quad \nu_{m}$ has properties;

$$
\begin{equation*}
\nu_{m}=m-[\text { highest power of } 2 \leq m] \quad \text { for } m \leq 24 \tag{i}
\end{equation*}
$$

(ii) $\quad \nu_{m} \leq(m-1) / 2$,
etc. (for more details, see [5]). Then
Theorem A (D. Ferus) Let $\left(M^{m}, g\right)$ be an m-dimensional Riemannian manifold and let T_{0} be a v-dimensional integrable distribution on M^{m} with the following properties:
(1) the maximal integral manifolds of T_{0} are totally geodesic and complete,
(2) the sectional curvature of $\left(M^{m}, g\right)$ has the same positive value k on all planes spanned by tangent vectors $X \in T_{0}$ and $Y \in T_{0}^{\perp}$,

Then $\nu>\nu_{m}$ implies $\nu=m$.
By (ii), $\nu \geq m / 2$ implies $\nu>\nu_{m}$.
A natural question is: If we replace "the same positive value k " in (2) by "positive", what can we say?

If we assume that maximal integral manifolds (= leaves) are compact, under the weaker condition "positive" we have the same conclusion for $m=3,6,7,14,15$, etc. Namely, we have

Theorem B. Let $\left(M^{m}, g\right)$ be an m-dimensional Riemannian manifold and let T_{0} be a v-dimensional integrable distribution of M^{m} with the following properties:
(1)' the maximal integral manifolds are totally geodesic and compact,
$(2)^{\prime}$ the sectional curvature of $\left(M^{m}, g\right)$ is positive on all planes spanned by tangent vectors $X \in T_{0}$ and $Y \in T_{0}^{\perp}$.

Then $\nu \geq m / 2$ implies $\nu=m$.
" $\nu \geq m / 2$ implies $\nu=m$ " is the best possible result for $m=3,6$ and 7 .

In $\S 2$ we prove Theorem B by applying a technique of T. Frankel [6]. In §3 we give some remarks.

§ 2. Proof of Theorem B

A theorem of T. Frankel [6] is as follows: Let $\left(M^{m} ; g\right)$ be a complete Riemannian manifold with positive curvature and let V^{v} and W^{v} be compact totally geodesic submanifolds of $\left(M^{m}, g\right)$ with dimension v and w respectively. If $v+w \geq m$, then V^{v} and W^{w} have a nonempty intersection.

A brief summary of the proof is as follows: If we assume that V^{v} and W^{w} do not intersect, then there is a shortest geodesic $x(t), 0 \leq t \leq l=$ length of $x(t)$, from V^{v} to $W^{w} . x(t)$ strikes V^{v} and W^{v} orthogonally at $p=x(0)$ and $q=x(l)$. By the assumption $v+w \geq m$, we have a unit tangent vector X_{0} to V^{v} at p such that parallel translate X_{t} of X_{0} along $x(t)$ has a property that X_{l} is tangent to W^{w} at q. Using X_{t} as a variation vector, we have the variation by curves joining V^{v} to W^{v}. Denote by Z_{t} the unit tangent vector to $x(t)$ at $x(t)$. He used

$$
\begin{align*}
L_{X}^{\prime \prime}(0) & =g\left(\nabla_{X} X, Z\right)_{q}-g\left(\nabla_{X} X, Z\right)_{p}-\int_{0}^{l} K(X, Z) d t \tag{2.1}\\
& =-\int_{0}^{l} K(X, Z) d t
\end{align*}
$$

where $K(X, Z)=K\left(X_{t}, Z_{t}\right)$ denotes the sectional curvature for the plane determined by X_{t} and Z_{t}. Then $K(X, Z)>0$ gives a contradiction.

Theorem B follows from the following.
Theorem B'. Let $\left(M^{m}, g\right)$ be an m-dimensional Riemannian manifold and let T_{0} be a v-dimensional integrable distribution of M^{m} with the following properties:
(1)' the maximal integral manifolds are totally geodesic and compact,
$(2)^{\prime \prime}$ there is a máximal integral manifold L such that sectional curvature for planes spanned by $X \in T_{0}$ and $Y \in T_{0}^{\perp}$ is positive on L.

Then $\nu \geq m / 2$ implies $\nu=m$.
Proof. Suppose that $m / 2 \leq \nu<m$. Let L be a maximal integral manifold (= leaf) stated in (2) ${ }^{\prime \prime}$. Let p be an arbitrary point of L. Let Z_{p} be a unit normal vector to L in M^{m} at p. By $\exp t Z_{p}$ we define a geodesic $x(t), 0 \leq t \leq \varepsilon$. Since L is compact, such an ε can be chosen so that it is independent of the choice of p and Z_{p}. Let X_{p} be a unit tangent vector to L at p. Define parallel translate X_{t} of $X_{0}=X_{p}$ along $x(t)$. The unit tangent vector to $x(t)$ at $x(t)$ is denoted by Z_{t} and $Z_{0}=Z_{p}$. Then $K\left(X_{0}, Z_{0}\right)>0$ at p. Since $t \rightarrow K\left(X_{t}, Z_{t}\right)$ is continuous, we have either
(a) $K\left(X_{t}, Z_{t}\right)>0$ for all $t: 0 \leq t \leq \varepsilon$, or
(b) there is a real number $s=s\left(X_{p}, Z_{p}\right), 0<s<\varepsilon$, such that $K\left(X_{t}, Z_{t}\right)>0$ for $t<s$ and $K\left(X_{s}, Z_{s}\right)=0$.

Denote by $T^{1} L$ and $N^{1} L$ the unit tangent bundle of L and the unit normal bundle of L in M^{m}, respectively. We define a subspace $\Delta\left(T^{1} L, N^{1} L\right)$ of the product $T^{1} L \times N^{1} L$ as a set of elements of the form $\left(X_{p}, Z_{p}\right)$. Since L is compact $\Delta\left(T^{1} L, N^{1} L\right)$ is compact. We define a function f on $\Delta\left(T^{1} L\right.$, $N^{1} L$) by

$$
f\left(X_{p}, Z_{p}\right)=\min \left\{s\left(X_{p}, Z_{p}\right), \varepsilon\right\} .
$$

Then f is continuous and positive-valued on $\Delta\left(T^{1} L, N^{1} L\right)$, and hence f attains the mimimum $\delta<0$. Let U be the δ-neighborhood, i. e., $U=\left\{x \in M^{m}\right.$; distance $(x, L)<\delta\}$. Since leaves are compact, U contains a leaf L^{\prime} different from L. L and L^{\prime} are disjoint. Let $x(t), 0 \leq t \leq l$, be a shortest geodesic from L to L^{\prime}. Here we have $l<\delta$. Now, our construction of U leads a conradiction just as in the proof of T. Frankel's theorem. Hence, we have $\nu=m$.

§ 3. Remarks

[A] For nullity, K-nullity, relative nullity, and their indeces, see K. Abe [1], S. S. Chern and N. H. Kuiper [2], Y. H. Clifton and R. Maltz [3], etc. The set G where the index of K-nullity is the mimimum value is open in M^{m}. If (M^{m}, g) is complete, then leaves of the K-nullity foliation on G are complete (Y. H. Clifton and R. Maltz [3], K. Abe [1]). Combinig this with Theorem A we have

Let $\left(M^{m}, g\right)$ be a complete Riemannian manifold. If the index of K nullity $>\nu_{m}$ and $K>0$, then $\left(M^{m}, g\right)$ is of constant curvature K.
[B] The results on K-nullity are applied to the relative nullity of submanifolds $\left(M^{m}, g\right)$ of a space $\left({ }^{*} M^{m+p},{ }^{*} g\right)$ of constant curvature K. See Theorems 2 and 3 in D. Ferus [5].
[C] The complex versions are also obtained: As for holomorphic K nullity, see K. Abe [1], Theorem 2.2.1. See also D. Ferus [5], Theorem 2.
[D] Let $\left(\boldsymbol{M}^{m}, J, G\right)$ be a complex m-dimensional complex hypersurface of a complex projective space $C P^{m+1}(K)$ with constant holomorphic sectional curvature K. For a unit normal $\xi_{1}, J \xi_{1}=\xi_{2}$ is also a unit normal. The rank of the 2 nd fundamental form A_{1} with respect to ξ_{1} is intrinsic (K . Nomizu and B. Smyth [11]) and is called the rank of (M^{m}, J, G) at each point. The rank of $\left(M^{m}, J, G\right)$ is $=2 m-2 \nu$, where ν is the index of relative nullity (=complex dimension of the relative nullity). By. Theorem B (or more generally by Theorem A) we have

Assume that a complete Kählerian manifold $\left(M^{m}, J, G\right)$ is isometrically and holomorphically immersed in a $C P^{m+1}(K)$. If the rank of $\left(M^{m}, J, G\right)$ is $\leq m$ (more generally $<2 m-\nu_{2 m}$) at every point, then $\left(M^{m}, J, G\right)$ is imbedded as a projective hyperplane in $C P^{m+1}(K)$.

This is a generalization of a theorem of K. Nomizu ([10], Theorem 1). See also K. Abe [1]. A result of K. Nomizu and B. Smyth ([11], Theorem 6) is generalized to

Assume that a complete Kählerian manifold $\left(M^{m}, J, G\right)$ is immersed isometrically and holomorphically in a $C P^{m+1}(K), m \geq 2$. Then the rank of $\left(M^{m}, J, G\right)$ can not be identically equal to 2.

For $m=1$, the quadrics are the only closed complex curves in $C P^{2}(K)$ of rank identically equal to 2 , see [11].

As a natural consequence of the above proposition we have a generalization of a result of K. Nomizu ([10], Theorem 2).

Let $m \geq 2$. Assume that a complete Kählerian manifold $\left(M^{m}, J, G\right)$ is immersed isometrically and holomorphically in a $C P^{m+1}(K)$. If the sectional curvature of $\left(M^{m}, J, G\right)$ is $\geq 1 / 4$ for every tangent plane, then $\left(M^{m}, J, G\right)$ is imbedded as a projective hyperplane.

Mathematical Institute Tôhoku University

References

[1] K. ABE: A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tôhoku Math. Journ., 23 (1971), 219-244.
[2] S. S. CHERN and N. H. KUIPER: Some theorems on the isometric imbedding of compact Riemannian manifolds in Euclidean space, Ann. of Math., 56 (1953), 422-430.
[3] Y. H. Clifton and R. MALTZ: The K-nullity spaces of the curvature operator, Michigan Math. Journ., 17 (1970), 85-89.
[4] D. FERUS: On the type number of hypersurfaces in spaces of constant curvature, Math. Ann., 187 (1970), 310-316.
[5] D. Ferus: Totally geodesic foliations, Math. Ann., 188 (1970), 313-316.
[6] T. Frankel: Manifolds with positive curvature, Pacific Journ. of Math., 11 (1961), 165-174.
[7] A. Gray: Spaces of constancy of curvature operators, Proc. of Amer. Math. Soc., 17 (1966), 897-902.
[8] A. Gray: Integral distributions determined by an immersion, Global Analysis, Proc. of Symposia in Pure Math., 15 (1970), 239-249.
[9] R. Maltz: The nullity spaces of the curvature operator, Cahiers de Topologie et Géom. Diff., 8 (1966), 1-20.
[10] K. Nomizu: On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, Journ. of Math. Soc. Japan, 21 (1969), 266269.
[11] K. Nomizu and B. Smyth: Differential geometry of complex hypersurfaces II, Journ. of Math. Soc. Japan, 20 (1968), 498-521).
[12] T. OTSUKI: Isometric imbedding of Riemann manifolds in a Riemann manifold, Journ. of Math. Soc. Japan, 6 (1954), 221-234.
(Received July 2, 1971)

