Totally geodesic foliations with compact leaves

Dedicated to Professor Y. Katsurada on her 60th birthday

By Shûkichi TANNO

§1. Introduction

Concerning totally geodesic foliations, D. Ferus [5] obtained a very interesting theorem: Let $\rho(t)$ denote the largest integer such that the fibration $V'_{t,\rho(t)} \rightarrow V'_{t,1}$ of Stiefel manifolds has a global cross section. Define ν_m to be the largest integer such that $\rho(m-\nu_m) \ge \nu_m + 1$. ν_m has properties;

(i) $\nu_m = m - [\text{highest power of } 2 \le m]$ for $m \le 24$,

(ii) $\nu_m \leq (m-1)/2$,

etc. (for more details, see [5]). Then

THEOREM A (D. Ferus) Let (M^m, g) be an m-dimensional Riemannian manifold and let T_0 be a ν -dimensional integrable distribution on M^m with the following properties:

(1) the maximal integral manifolds of T_0 are totally geodesic and complete,

(2) the sectional curvature of (M^m, g) has the same positive value k on all planes spanned by tangent vectors $X \in T_0$ and $Y \in T_0^{\perp}$,

Then $v > v_m$ implies v = m.

By (ii), $\nu \ge m/2$ implies $\nu > \nu_m$.

A natural question is: If we replace "the same positive value k" in (2) by "positive", what can we say?

If we assume that maximal integral manifolds (= leaves) are compact, under the weaker condition "positive" we have the same conclusion for m=3, 6, 7, 14, 15, etc. Namely, we have

THEOREM B. Let (M^m, g) be an m-dimensional Riemannian manifold and let T_0 be a v-dimensional integrable distribution of M^m with the following properties:

(1)' the maximal integral manifolds are totally geodesic and compact,

(2)' the sectional curvature of (M^m, g) is positive on all planes spanned by tangent vectors $X \in T_0$ and $Y \in T_0^{\perp}$.

Then $v \ge m/2$ implies v = m.

" $\nu \ge m/2$ implies $\nu = m$ " is the best possible result for m = 3, 6 and 7.

In §2 we prove Theorem B by applying a technique of T. Frankel [6]. In §3 we give some remarks.

§2. Proof of Theorem B

A theorem of T. Frankel [6] is as follows: Let (M^m, g) be a complete Riemannian manifold with positive curvature and let V^v and W^w be compact totally geodesic submanifolds of (M^m, g) with dimension v and w respectively. If $v+w \ge m$, then V^v and W^w have a nonempty intersection.

A brief summary of the proof is as follows: If we assume that V^v and W^w do not intersect, then there is a shortest geodesic x(t), $0 \le t \le l = \text{length}$ of x(t), from V^v to W^w . x(t) strikes V^v and W^w orthogonally at p = x(0) and q = x(l). By the assumption $v + w \ge m$, we have a unit tangent vector X_0 to V^v at p such that parallel translate X_t of X_0 along x(t) has a property that X_t is tangent to W^w at q. Using X_t as a variation vector, we have the variation by curves joining V^v to W^w . Denote by Z_t the unit tangent vector to x(t) at x(t). He used

(2.1)
$$L_{x}''(0) = g(\nabla_{x}X, Z)_{q} - g(\nabla_{x}X, Z)_{p} - \int_{0}^{t} K(X, Z) dt$$
$$= -\int_{0}^{t} K(X, Z) dt,$$

where $K(X, Z) = K(X_t, Z_t)$ denotes the sectional curvature for the plane determined by X_t and Z_t . Then K(X, Z) > 0 gives a contradiction.

Theorem B follows from the following.

THEOREM B'. Let (M^m, g) be an m-dimensional Riemannian manifold and let T_0 be a v-dimensional integrable distribution of M^m with the following properties:

(1)' the maximal integral manifolds are totally geodesic and compact,

(2)" there is a maximal integral manifold L such that sectional curvature for planes spanned by $X \in T_0$ and $Y \in T_0^{\perp}$ is positive on L.

Then $v \ge m/2$ implies v = m.

PROOF. Suppose that $m/2 \le \nu < m$. Let L be a maximal integral manifold (=leaf) stated in (2)". Let p be an arbitrary point of L. Let Z_p be a unit normal vector to L in M^m at p. By $\exp tZ_p$ we define a geodesic $x(t), \ 0 \le t \le \varepsilon$. Since L is compact, such an ε can be chosen so that it is independent of the choice of p and Z_p . Let X_p be a unit tangent vector to L at p. Define parallel translate X_t of $X_0 = X_p$ along x(t). The unit tangent vector to x(t) at x(t) is denoted by Z_t and $Z_0 = Z_p$. Then $K(X_0, Z_0) > 0$ at p. Since $t \to K(X_t, Z_t)$ is continuous, we have either (a) $K(X_t, Z_t) > 0$ for all $t: 0 \le t \le \varepsilon$, or

(b) there is a real number $s=s(X_p, Z_p)$, $0 < s < \varepsilon$, such that $K(X_t, Z_t) > 0$ for t < s and $K(X_s, Z_s) = 0$.

Denote by T^1L and N^1L the unit tangent bundle of L and the unit normal bundle of L in M^m , respectively. We define a subspace $\Delta(T^1L, N^1L)$ of the product $T^1L \times N^1L$ as a set of elements of the form (X_p, Z_p) . Since L is compact $\Delta(T^1L, N^1L)$ is compact. We define a function f on $\Delta(T^1L, N^1L)$ N^1L) by

$$f(X_p, Z_p) = \min \left\{ s(X_p, Z_p), \varepsilon \right\}.$$

Then f is continuous and positive-valued on $\Delta(T^1L, N^1L)$, and hence f attains the mimimum $\delta < 0$. Let U be the δ -neighborhood, i. e., $U = \{x \in M^m ; \text{ distance} (x, L) < \delta\}$. Since leaves are compact, U contains a leaf L' different from L. L and L' are disjoint. Let x(t), $0 \le t \le l$, be a shortest geodesic from L to L'. Here we have $l < \delta$. Now, our construction of U leads a conradiction just as in the proof of T. Frankel's theorem. Hence, we have $\nu = m$.

§ 3. Remarks

[A] For nullity, K-nullity, relative nullity, and their indeces, see K. Abe [1], S. S. Chern and N. H. Kuiper [2], Y. H. Clifton and R. Maltz [3], etc.

The set G where the index of K-nullity is the mimimum value is open in M^m . If (M^m, g) is complete, then leaves of the K-nullity foliation on G are complete (Y. H. Clifton and R. Maltz [3], K. Abe [1]). Combining this with Theorem A we have

Let (M^m, g) be a complete Riemannian manifold. If the index of Knullity $> \nu_m$ and K > 0, then (M^m, g) is of constant curvature K.

[B] The results on K-nullity are applied to the relative nullity of submanifolds (M^m, g) of a space $(*M^{m+p}, *g)$ of constant curvature K. See Theorems 2 and 3 in D. Ferus [5].

[C] The complex versions are also obtained: As for holomorphic K-nullity, see K. Abe [1], Theorem 2. 2. 1. See also D. Ferus [5], Theorem 2.

[D] Let (M^m, J, G) be a complex *m*-dimensional complex hypersurface of a complex projective space $CP^{m+1}(K)$ with constant holomorphic sectional curvature K. For a unit normal ξ_1 , $J\xi_1 = \xi_2$ is also a unit normal. The rank of the 2nd fundamental form A_1 with respect to ξ_1 is intrinsic (K. Nomizu and B. Smyth [11]) and is called the rank of (M^m, J, G) at each point. The rank of (M^m, J, G) is $= 2m - 2\nu$, where ν is the index of relative nullity (=complex dimension of the relative nullity). By Theorem B (or more generally by Theorem A) we have

S. Tanno

Assume that a complete Kählerian manifold (M^m, J, G) is isometrically and holomorphically immersed in a $CP^{m+1}(K)$. If the rank of (M^m, J, G) is $\leq m$ (more generally $\leq 2m - \nu_{2m}$) at every point, then (M^m, J, G) is imbedded as a projective hyperplane in $CP^{m+1}(K)$.

This is a generalization of a theorem of K. Nomizu ([10], Theorem 1). See also K. Abe [1]. A result of K. Nomizu and B. Smyth ([11], Theorem 6) is generalized to

Assume that a complete Kählerian manifold (M^m, J, G) is immersed isometrically and holomorphically in a $CP^{m+1}(K)$, $m \ge 2$. Then the rank of (M^m, J, G) can not be identically equal to 2.

For m=1, the quadrics are the only closed complex curves in $CP^{2}(K)$ of rank identically equal to 2, see [11].

As a natural consequence of the above proposition we have a generalization of a result of K. Nomizu ([10], Theorem 2).

Let $m \ge 2$. Assume that a complete Kählerian manifold (M^m, J, G) is immersed isometrically and holomorphically in a $CP^{m+1}(K)$. If the sectional curvature of (M^m, J, G) is $\ge 1/4$ for every tangent plane, then (M^m, J, G) is imbedded as a projective hyperplane.

> Mathematical Institute Tôhoku University

References

- K. ABE: A characterization of totally geodesic submanifolds in S^N and CP^N by an inequality, Tôhoku Math. Journ., 23 (1971), 219-244.
- [2] S. S. CHERN and N. H. KUIPER: Some theorems on the isometric imbedding of compact Riemannian manifolds in Euclidean space, Ann. of Math., 56 (1953), 422-430.
- [3] Y. H. CLIFTON and R. MALTZ: The K-nullity spaces of the curvature operator, Michigan Math. Journ., 17 (1970), 85-89.
- [4] D. FERUS: On the type number of hypersurfaces in spaces of constant curvature, Math. Ann., 187 (1970), 310-316.
- [5] D. FERUS: Totally geodesic foliations, Math. Ann., 188 (1970), 313-316.
- [6] T. FRANKEL: Manifolds with positive curvature, Pacific Journ. of Math., 11 (1961), 165-174.
- [7] A. GRAY: Spaces of constancy of curvature operators, Proc. of Amer. Math. Soc., 17 (1966), 897-902.
- [8] A. GRAY: Integral distributions determined by an immersion, Global Analysis, Proc. of Symposia in Pure Math., 15 (1970), 239-249.
- [9] R. MALTZ: The nullity spaces of the curvature operator, Cahiers de Topologie et Géom. Diff., 8 (1966), 1-20.

- [10] K. NOMIZU: On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, Journ. of Math. Soc. Japan, 21 (1969), 266– 269.
- [11] K. NOMIZU and B. SMYTH: Differential geometry of complex hypersurfaces II, Journ. of Math. Soc. Japan, 20 (1968), 498-521).
- [12] T. OTSUKI: Isometric imbedding of Riemann manifolds in a Riemann manifold, Journ. of Math. Soc. Japan, 6 (1954), 221-234.

(Received July 2, 1971)