Normal subgroups of quadruply transitive permutation groups*

To Yoshie Katsurada on her Sixtieth Birthday

By Noboru Ito

Introduction. Let Ω be the set of symbols $1, \cdots, n$. Let G be a permutation group on Ω. Wagner [6] proved the following theorem:

If G is triply transitive and if n is odd and greater tnan 3, then every normal subgroup $(\neq 1)$ of G is also triply transitive.

In this note we prove the following theorem:
Theorem. If G is quadruply transitive and if n is prime to 3 and greater than 5 , then every normal subgroup $(\neq 1)$ of G is also quadruply transitive.

The outline of the proof is as follows. First of all, by the above theorem of Wagner we may assume that n is odd. Let $H(\neq 1)$ be a normal subgroup of G which is not quadruply transitive. Then without the restriction that n is prime to 3 we obtain some permutation-character theoretical results on H which are slightly more than needed in the proof. At the final point, with the restriction that n is prime to 3 we utilize results obtained above to get a contradiction.

Definitions and Notation. Let $x \in G$. Then $\alpha(x), \beta(x), \gamma(x)$ and $\delta(x)$ denote the numbers of $1-, 2$-, 3 - and 4 -cycles in the permutation structure of x respectively. Let $X \subseteq G$. Then $\alpha(X)$ denotes the set of symbols of Ω each of which is fixed by X. Let X be a subgroup of G. Let φ and ψ be class functions on X. Then $(\varphi, \psi)_{X}=\frac{1}{|X|} \sum_{x \in X} \varphi(x) \overline{\psi(x)}$ and $N_{X}(\varphi)=(\varphi, \varphi)_{X}$. $X_{(\Lambda)}$ and X_{Δ} denote the global and pointwise stabilizers of Δ in X respectively. $X_{(\Delta)}^{A}$ denotes the restriction of $X_{(A)}$ to Δ. If $\Delta=\{1\},\{1,2\}$ or $\{1,2$, 3\}, we also write $X_{1}, X_{1,2}$ or $X_{1,2,3}$ instead of X_{4}. Let Y be a subgroup of X. Then $N s_{X} Y$ denotes the normalizer of Y in $X . \quad L F(2, q)$ denotes the linear fractional group over the field of q elements.

Proof. (a) The following permutation-character theoretical formulae for quadruply (and triply) transitive permutation groups are well-known ([4], p. 597; [7], (9.9)).

[^0]\[

$$
\begin{align*}
& \sum_{G} \alpha=|G| ; \quad \sum_{B} \alpha=|H| \tag{1}\\
& \sum_{G} \alpha^{2}=2|G|, \quad \sum_{G} \beta=\frac{1}{2}|G| ; \quad \sum_{B} \alpha^{2}=2|H|, \quad \sum_{H} \beta=\frac{1}{2}|H| \tag{2}\\
& \sum_{G} \alpha^{3}=5|G|, \quad \sum_{G} \alpha \beta=\frac{1}{2}|G|, \quad \sum_{G} \gamma=\frac{1}{3}|G| ; \quad \sum_{H} \alpha^{3}=5|H| \tag{3}\\
& \sum_{H} \alpha \beta=\frac{1}{2}|H|, \quad \sum_{H} \gamma=\frac{1}{3}|H| . \\
& \sum_{G} \alpha^{4}=15|G|, \quad \sum_{G} \alpha^{2} \beta=|G|, \quad \sum_{\theta} \alpha \gamma=\frac{1}{3}|G|, \quad \sum_{G} \beta^{2}=\frac{3}{4}|G|, \tag{4}\\
& \sum_{G} \delta=\frac{1}{4}|G| .
\end{align*}
$$
\]

Put $\quad X_{0}=\alpha-1, \quad X_{0}=\frac{1}{2}(\alpha-1)(\alpha-2)-\beta, \quad$ and $X_{00}=\frac{1}{2} \alpha(\alpha-3)+\beta$.
These are all irreducible characters of $G . \quad X_{0}$ remains irreducible in H. Furthermore,

$$
\begin{equation*}
\left(X_{0} X_{0}\right)_{H}=\left(X_{0}, X_{00}\right)_{H}=0 \tag{5}
\end{equation*}
$$

(b) Lemma. For all $\Delta \subseteq \Omega$ with $|\Delta|=4$ the group $H_{(\Delta)}^{A}$ is the symmetric group of degree 4.

Proof. It suffices to show that $H_{(4)}^{4}$ contains an odd permutation, since $H_{(\Delta)}^{\Delta}$ is normal in $G_{(4)}^{A}$ which is the symmetric group of degree 4. Then it suffices to show that $H_{1,2}$ has even order, because G is quadruply transitive. Now assume that $H_{1,2}$ has odd order. Then by a theorem of Bender [1] H_{1} contains a normal subgroup isomorphic to $L F(2, q)$ with q odd. But then H_{1} has no transitive extension ([5], (5.2)). This is a contradiction.
(c) By Lemma in (b) and Lemma 2 of [5] we have several transitive permutation representations of G each of which is divided into the equal number, say s, of H-transitive constituents:
(i) The permutation representation of G on the set of all ordered quartets with distinct members on Ω. Since $\alpha(\alpha-1)(\alpha-2)(\alpha-3)$ is the character of this permutation representation, by (a) we obtain that

$$
\begin{equation*}
\sum_{\boldsymbol{H}} \alpha^{4}=(s+14)|H| \tag{6}
\end{equation*}
$$

(ii) The permutation representation of G on the set of all 2-element
subsets of the set of all ordered pairs with distinct members on Ω. Since $\frac{1}{2} \alpha(\alpha-1)(\alpha-2)(\alpha-3)+2 \beta(\beta-1)$ is the character of this permutation representation, by (a) and (6) we obtain that

$$
\begin{equation*}
\sum_{H} \beta^{2}=\frac{1}{4}(s+2)|H| \tag{7}
\end{equation*}
$$

(iii) The permutation representation of G on the set of all ordered pairs with distinct members on the set of all 2-element subsets of Ω. Since $\frac{1}{4} \alpha(\alpha-1)(\alpha-2)(\alpha-3)+\alpha(\alpha-1) \beta+\beta(\beta-1)$ is the character of this permutation representation, by (a), (6) and (7) we obtain that

$$
\begin{equation*}
\sum_{H} \alpha^{2} \beta=\frac{1}{2}(s+1)|H| \tag{8}
\end{equation*}
$$

(iv) The permutation representation of G on the set of all 2-element subsets of Ω. Since $\frac{1}{8} \alpha(\alpha-1)(\alpha-2)(\alpha-3)+\frac{1}{2} \alpha(\alpha-1) \beta+\frac{1}{2} \beta(\beta-1)+\delta$ is the character of this permutation representation, by (a), (6)-(8) we obtain that

$$
\begin{equation*}
\sum_{H} \delta=\frac{1}{4} s|H| \tag{9}
\end{equation*}
$$

(v) The permutation representation of G on the set of all 4-element subsets of Ω. Since $\frac{1}{24} \alpha(\alpha-1)(\alpha-2)(\alpha-3)+\frac{1}{2} \alpha(\alpha-1) \beta+\frac{1}{2} \beta(\beta-1)+\alpha \gamma+\delta$ is the character of this permutation representation, by $(a),(6)-(9)$ we obtain that

$$
\begin{equation*}
\sum_{H} \alpha \gamma=\frac{1}{3} s|H| \tag{10}
\end{equation*}
$$

Now by (a) and (6)-(10) we obtain that

$$
\begin{equation*}
N_{H}\left(X_{0}\right)=1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{H}\left(X_{00}\right)=s \tag{12}
\end{equation*}
$$

(11) shows that X_{0} remains irreducible on H.
(d) Clearly s equals the number of $N s_{H}\left(H_{1,2}\right)$-orbits on the set Φ of all

2-element subsets of $\Omega-\{1,2\}$. Since H is triply transitive on $\Omega([7],(9.9))$, every $N s_{H}\left(H_{1,2}\right)$-orbit contains a 2 -element subset containing 3 . Since $N s_{\boldsymbol{G}}\left(H_{1,2}\right)$ is transitive on Φ, the lengths of all $N s_{H}\left(H_{1,2}\right)$-orbits on Φ are equal to $\frac{(n-2)(n-3)}{2 s}$. Further $2 s$ divides $n-3$.

Now put

$$
X_{00}=a \sum_{i=1}^{t} \chi_{i}
$$

where $\chi_{1}, \cdots, \chi_{t}$ are G-associated irreducible characters of H ([4], p. 565). Then by (12) $s=a^{2} t$. Now by a theorem of Frame ([7], (30.5)) the following rational number F is an integer :

$$
F=\frac{\left\{\frac{1}{2} n(n-1)\right\}^{2} 2(n-2)\left\{\frac{(n-2)(n-3)}{2 s}\right\}^{s}}{(n-1)\left\{\frac{n(n-3)}{2 a t}\right\} a^{2} t}=\frac{(n-1)^{s-1}(n-2)^{s+1}}{2^{s-1} \cdot a^{s}}
$$

Since n is odd and s divides $n-3$, a must be a power of 2. Since a^{2} divides $n-3$ and $n-1, a=1$. Hence we obtain that

$$
\begin{equation*}
X_{00}=\chi_{1}+\cdots+\chi_{s} \tag{13}
\end{equation*}
$$

where $\chi_{1}, \cdots, \chi_{s}$ are G-associated distince irreducible characters of H.
(e) A double coset $\left(N s_{H} H_{1,2}\right) x\left(N s_{H} H_{1,2}\right)$ of H with respect to $N s_{H} H_{1,2}$ is called real, if it coincides with $\left(N s_{H} H_{1,2}\right) x^{-1}\left(N s_{H} H_{1,2}\right)$. Let f be the number of real cosets of H with respect to $N s_{H} H_{1,2}$. Then by a theorem of Frame [3] we obtain that

$$
\begin{aligned}
f & =\frac{1}{|H|} \sum_{x \in H}\left\{\frac{1}{2} \alpha(\alpha-1)+\beta\right\}\left(x^{2}\right) \\
& =\frac{1}{|H|} \sum\left\{\frac{1}{2}(\alpha+2 \beta)(\alpha+2 \beta-1)+2 \delta\right\} \\
& =(s+2)|H| \\
& =\frac{1}{|H|} \sum_{x \in H}\left(1_{H}+X_{0}+\chi_{1}+\cdots+\chi_{s}\right)\left(x^{2}\right) \\
& =2+\frac{1}{|H|} \sum_{x \in H} \chi_{1}\left(x^{2}\right)+\cdots+\chi_{s}\left(x^{2}\right)
\end{aligned}
$$

This implies that $\sum_{x \in H} \chi_{1}\left(x^{2}\right)=\cdots=\sum_{x \in H} \chi_{s}\left(x^{2}\right)=|H|$. Thus the representations cor-
responding to $\chi_{1}, \cdots, \chi_{s}$ are real ([2], (3.5)).
Remark. The argument in (e) can be used to obtain (9), since $\chi_{1}, \cdots, \chi_{s}$ are G-associated and hence $\sum_{x \in H} \chi_{1}\left(x^{2}\right)=\cdots=\sum_{x \in B} \chi_{s}\left(x^{2}\right)$.
(f) By (b) and by Lemma 4 and Remark (iii) of [6] $H_{1,2,3}$ has at most 1 orbit of odd length and at most 2 orbits of lengths prime to 3 on $\Omega-\{1$, $2,3\}$. Since $H_{1,2,3}$ has exactly s orbits of length $\frac{n-3}{s}$, we obtain that

$$
\begin{equation*}
s=2 \quad \text { and } \quad n \equiv 3(\bmod 4) \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{n-3}{s} \equiv 0(\bmod 6) . \tag{15}
\end{equation*}
$$

(g) Now we assume that n is prime to 3. Then in (f)(14) holds. Hence the inertia group of χ_{1} in G has index 2. By induction on $G: H$ we may assume that $G: H=2$. Then we obtain that X_{00} is the character of G induced by χ_{1} of H. In particular, X_{00} vanishes outside H. Hence every element x of G with $\alpha(x) \geq 4$ belongs to H. In particular, $G_{1,2,3,4}$ is contained in H.

If $n \equiv 1(\bmod 3)$, then $\frac{n-3}{2} \equiv 2(\bmod 3)$. By the proof of Lemma 4 and Remark (iii) of [6] this is a contradiction. Hence we obtain that $n \equiv 2(\bmod 3)$.

Now let S be a Sylow 3 -subgroup of $G_{1,2,3,4}$. Since $n \equiv 2(\bmod 3), S$ leaves one more point, say 5 , invariant. By a theorm of Witt ([7], 9.4)) $N s_{G} S$ is quadruply transitive on $\alpha(S)$. Since S is a Sylow 3 -subgroup of $G_{1,2,3}$ and $H_{1,2,3}$, we have that $N s_{G} S \triangleq H$. If $S \neq 1$, then, since $|\alpha(S)| \equiv$ $2(\bmod 3)$, by induction on n, we obtain that $H \cap N s S$ is quadruply transitive on $\alpha(S)$ or $|\alpha(S)|=5$. If $H \cap N s S$ is quadruply transitive on $\alpha(S)$, then $H \cap\left(N s_{G} S\right)_{1,2,3,4} \mp\left(N s_{G} S\right)_{1,2,3,4}$. This is a contradiction. If $|\alpha(S)|=5$ and $H \cap N s_{G} S$ is not quadruply transitive on $\alpha(S), H \cap N s_{G} S$ cannot contain a 4cycle. This contradicts (4) and (9). Hence we obtain that $S=1$.

By (3) we have that $\sum_{\boldsymbol{\theta}-H} \gamma=\frac{1}{3}|H| . \quad$ By (3) and (10) $\sum_{\boldsymbol{\theta}-\boldsymbol{H}} \alpha \gamma=0 . \quad$ Since $S=1$, we have that $\alpha(x) \leq 2$ if $\gamma(x)>0$, where $x \in G$. Now let y be an element of $G-H$ such that $\gamma(y)>0$. Since $n \equiv 2(\bmod 3)$, the cycle structure of y contains a cycle C whose length is prime to 3 . Then clearly we may assume that the length of C is a power of 2 , and hence is equal to 2 . But then $X_{00}(y)>0$, which is a contradiction.

Department of Mathematics
 University of Illinois at
 Chicago Circle

Bibliography

[1] H. Bender: Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Zeitschr. 104 (1968), 175-204.
[2] W. Feit: Characters of finite groups, Benjamin, 1967.
[3] J. S. Frame: The double cosets of a finite group, Bull. Amer. Math. Soc. 47 (1941), 458-467.
[4] B. Huppert: Endliche Gruppen I, Springer, 1967.
[5] H. Lüneburg: Transitive Erweiterungen endlicher Permutationsgruppen, Springer, 1969.
[6] A. WAGNER: Normal subgroups of triply-transitive permutation groups of odd degree, Math. Zeitschr. (1966), 219-222.
[7] H. Wielandt: Finite permutation groups, Academic Press, 1964.
(Received June, 15. 1971)

[^0]: * This work is partially supported by NSF GP 28420.

