On transitive permutation groups of degree 3p and 4p

By Hiroshi KIMURA and Nobuo NAKAGAWA

§1. Introduction.

In this paper [7] N. Ito proved that non-solvable transitive permutation groups of degree p have an irreducible complex character whose degree is divisible by p, where p is prime. N. Ito and T. Wada proved that non-solvable transitive permutation groups of degree 2p have also the same property.

In this paper we shall prove the following theorems.

THEOREM 1. Let Ω be the set of symboles $1, \dots, 3p$, where p is an odd prime number ($\neq 3$). Let G be a transitive permutation groups on Ω . Then one of the following occurs;

1) G has a normal Sylow p-subgroup,

2) G has an irreducible complex character whose degree is divisible by p.

THEOREM 2. Let Ω be the set of symbols $1, \dots, 4p$, where p is an odd prime number ($\neq 3$). Let G be a transitive permutation group on Ω . If G is doubly transitive or imprimitive, then it satisfies the conclusion in Theorem 1.

§2. Proof of Theorem 1.

Let H be the stabilizer of the symbol 1 in G.

(1) The case G is imprimitive on Ω . Let M be a maximal subgroup containing H. Then we have that either [M:H]=3 or [M:H]=p. At first assume [M:H]=3. Let $B=\{\Delta_1, \Delta_2, \dots, \Delta_p\}$ be the block system of G corresponding to M. Let K be the blockwise stabilizer of B in G. Since the length of Δ_i is equal to three, K is a solvable $\{2, 3\}$ -subgroup and K' is an abelian subgroup. If G/K is non-solvable, then since G/K is a transitive permutation group on B, by [6] G/K and hence G has an irreducible character whose degree is divisible by p.

If G/K is solvable, by [12, p 29], G/K is a Frobenious group. Let Q be a subgroup of G containing K such that Q/K is the Frobenious kernel of G/K. Let P be a p-Sylow subgroup of G. Then $Q=P \cdot K$. If Q is abelian, then P is normal in G. When Q is non-abelian, consider G/K'.

If Q/K' is non-abelian, by [6] the degree of a non-linear irreducible character of Q/K' is divisible by [Q/K':K/K']=p, and hence Q has an irreducible character whose degree is divisible by p. Since Q is normal in G by the Theorem of Clifford ([4], p 345), G has an irreducible character whose degree is divisible by p. If Q/K' is abelian, then PK' is normal in G. If PK' is abelian, then P is normal in G, and if PK' is non-abelian, since K' is abelian, it may be proved as above that PK' and hence G has an irreducible character whose degree is divisible by p.

Next assume that [M:H] = p. Let $\{\Lambda_1, \Lambda_2, \Lambda_3\}$ be the complete block system of G corresponding to M. Let K be the blockwise stabilizer in G of $\{\Lambda_1, \Lambda_2, \Lambda_3\}$. Since [G:K] is prime to p, K acts transitively on each Λ_i . Let L_1 be the pointwise stabilizer of Λ_1 in K. If K/L₁ is non-solvable, then K/L_1 and hence G has an irreducible character whose degree is divisible by p. Therefore we may assume K/L_1 is solvable and hence it is a Frobenious group. Let Q_1 be a subgroup of K containing L_1 such that Q_1/L_1 is the Frobenious kernel of K/L₁. For a *p*-Sylow subgroup P_1 of Q_1 , $Q_1=P_1L_1$. Since Q_1 is normal in K and $[K:Q_1]$ is prime to p, Q_1 acts transitively on Λ_i (i=1, 2). Let L_2 be the pointwise stabilizer of Λ_2 in Q_1 . If Q_1/L_1 is non-solvable, then it may be proved as above that G satisfies 2). Hence we may assume Q_1/L_1 is solvable. Let Q_2 be a subgroup of Q_1 containing L_2 such that Q_2/L_2 is the Frobenious kernel of Q_1/L_2 . For a p-Sylow subgroup P_2 of Q_2 , $Q_2 = P_2 \cdot L_2$. Since Q_2 is normal in Q_1 , it acts transitively on Λ_3 . Let L_3 be the pointwise stabilizer of Λ_3 in Q_2 . As above we may assume Q_3/L_3 is solvable. Let Q_3 be a subgroup of Q_2 containing L_3 such that Q_3/L_3 is the Frobenious kernel of Q_2/L_3 . We shall show that L_3 is a *p*-subgroup. Let y be a non-trivial p-'element of L₃, and |y| = l. If y is not contained in L₁ or L₂, then y can be written in the form $y = y_1y_2$, where y_1 and y_2 are elements of P_i and L_i , respectively (i=1 or 2). $yL_i = y_iL_i$ and $y^iL_i = y_i^iL_i$. This is a contradiction. Thus y is an element of $L_{1\cap}L_2$ and hence y=1, this is also a contradiction. Therefore Q_3 is a *p*-Sylow subgroup of G and normal in G.

(2) The case G is uniprimitive on Ω . By [10] G has an irreducible character of degree p or 2p except p=7, 19 and 31. Therefore we may assume p=7, 19 or 31. Suppose the theorem is false and let G be a minimal counterexample. If the order of G is divisible by p^2 , then G contains a p-cycle or the product of two p-cycles. Then by the Theorem of Jordan [12, p 39], G contains the alternating group on Ω . This is a contradiction. We may assume the order of a p-Sylow subgroup of G is p and any p-element $(\neq 1)$ of G is semi-regular on Ω . If G contains a non-trivial normal subgroup

N, then N is transitive on Ω . If N is primitive, then N satisfies 2) by the minimality of G and if N is imprimitive, then N also satisfies the conclution of the Theorem by the first case. Hence G has an irreducible character whose degree is divisible by p, or G must contain a regular normal subgroup and then p=3. Therefore we may assume G is a simple group.

Let x be an involution of G. Assume $C_G(x)$ contains a p-element y($\neq 1$). Let \triangle_i (i=1,2,3) be orbits of $\langle y \rangle$ on Ω . If x stabilizes each \varDelta_i , x acts trivially on Ω . This is a contradiction. If x stabilizes \varDelta_1 , and exchanges \varDelta_2 and \varDelta_3 , then x is written as the product of p transpositions and x is an odd permutation. This contradicts the simplicity of G. Hence we may assume $C_G(x)$ is a p'-subgroup for any involution x, and $C_G(y)$ is a 2'subgroup for any p-element y ($\neq 1$). Let y be a p-element ($\neq 1$). Since $N_G(\langle y \rangle)/C_G(\langle y \rangle)$ is a cyclic group and $C_G(\langle y \rangle)$ is a 2'-subgroup, all involutions which invert y are conjugate in $N_G(\langle y \rangle)$. If G has at least two classes of involutions, then by the Theorem of Brauer-Fowler ([1]), G has an irreducible character whose degree is divisible by p, this is a contradiction. Hence we may assume that G has exactly one class of involutions.

Let x be an involution of G such that $xyx^{-1}=y^{-1}$. We denote the number of fixed symbols by an element u of G by $\alpha(u)$. If $\alpha(x) \ge 4$, then p=2, this is a contradiction. If $\alpha(x)=3$, then x is an odd permutation since (3p-3)/2 is odd, and it contradicts the simplicity of G. Hence we may assume $\alpha(x)=1$, and $1^x=1$. Let S be a 2-Sylow subgroup of G containing Since the stabilizer of any two symbols of Q is of odd order, S is x. semiregular on $\Omega - \{1\}$. On the orther hand, by [10], for p=7, 19 and 31, the subdegrees of G are (1, 4, 8, 8), (1, 6, 20, 30) and (1, 20, 32, 40) respectively. For p=19, the order of S is 2 and it contradicts the simplicity of G. If p=7 or 31, then the order of S equals four. By the theorem of Gorenstein-Walter ([5]), G is isomorphic to PSL (2, q), q > 3, $q \equiv 3$ or 5 (mod 8). But then G has characters whose degrees are q-1, q and q+1. Hence p divides one of q-1, q and q+1. Therefore G satisfies 2). This is a contradiction.

(3) The case G is doubly transitive on Ω . Suppose the theorem is false and let G be a minimal counterexample. If G contains the alternating group on Ω , then the degree of the irreducible character of G corresponding to the Yong diagram [3p-3, 3] has degree $(3p-1)/2 \cdot p \cdot (3p-5)$. This is a contradiction. Hence likewise in the case (2), we may assume that the order of G is divisible by p only to the first power, and any p-element of G is semiregular on Ω . If G contains a regular normal subgroup, then the degree of G is prime power and it contradicts $p \neq 3$. Hence we may assume that G does not contain a regular normal subgroup.

If the order of the stabilizer of two symbols is odd. then by the theorem of Bender ([2]), G contains a normal subgroup N isomorphic to PSL (2, q), $S_z(q)$ or $U_3(q)$ as a permutation group, where q is a power of two. Now N is not isomorphic to $S_z(q)$ since the order of N is divisible by 3. If N is isomorphic to $U_3(q)$, then $q^3+1=3p$ and it contradicts $p\neq 3$. If N is isomorphic to PSL (2, q), then N and hence G has an irreducible character whose degree is q+1=3p. This is a contradiction. Hence we may assume that the stabilizer of two symbols in G contains an involution x.

Let P be a p-Sylow subgroup of G and y be a generator of P. If $C_G(x)$ contains a p-element $(\neq 1)$, then likewise in the case (2), it can be shown that x is an odd permutation. Then $[G:G_{\cap}A_{3p}]=2$ and $G_{\cap}A_{3p}$ is doubly transitive on Ω . By the minimality of G, $G_{\cap}A_{3p}$ satisfies 2) and so does G. Hence we may assume $C_G(x)$ is a p'-subgroup and $C_G(y)$ is a 2'-subgroup. If G contains an involution which is not conjugate to an element of $N_G(P)$, by the theorem of Brauer-Fowler ([1]), G has an irreducible character whose degree is divisible by p. Hence we may assume $xyx=y^{-1}$. If x stabilizes four symbols at least, x must stabilize two symbols in some orbit of P on Ω . It contradicts $p \neq 2$. Hence we may assume $\alpha(u) \leq 3$ for any involution u of G. Since all involutions are conjugate, then every involution fixes just three symbols of Ω . Then by [9] G is permutation isomorphic to A_7 with p=5. Since A_7 has an irreducible character of degree 15, this is a contradiction.

This completes the proof of the Theorem 1.

§3. Proof of Theorem 2.

If G is imprimitive, then likewise in §2, we may prove the Theorem. In the case G is doubly transitive, use [11] and [3], and the theorem can be proved by the same way as in §2.

Hokkaido University

References

- [1] R. BRAUER, and K. A. FOWLER: On groups of even order, Ann. Math., 62 (1955), 565-583.
- [2] H. BENDER: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlässt, J. Alg., 17 (1971), 527-554.
- [3] F. BUEKENHOUT: Doubly transitive groups in which the maximal number of fixed points of involutions is four (to appear).
- [4] C. W. CURTIS, and I. REINER: Representation theory of finite groups and associative algebras, Interseience, New York, 1962.

- [5] D. GORENSTEIN and J. H. WALTER: The characterization of finite groups with dihedral Sylow 2-subgroups I, II, III, J. Alg., 2 (1965) 85-151, 218-270, 334-393.
- [6] N. ITO: On the degrees of irreducible representations of a finite group. Nagoya Math. J., 3 (1951) 5-6.
- [7] N. ITO: Über die Darstellungen der Permutationsgruppen von Primzahlgrad, Math. Zeit., 89 (1965), 196-198.
- [8] N. ITO, and T. WADA: On transitive permutation groups of degree 2p (to appear).
- [9] J. D. KING: Doubly transitive groups in which involutions fix one or three points, Math. Zeit., 111 (1969), 311-321.
- [10] P. M. NEUMANN: Primitive permutation groups of degree 3p (to appear).
- [11] R. NODA: Doubly transitive groups in which the maximal number of fixed points of involutions is four, Osaka Math. J., (to appear).
- [12] H. WIELANDT: Finite permutation groups, Academic Press, New York, 1964.

(Received, June 21, 1972)