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\S 1. Introduction.

In this paper [7] N. Ito proved that non-solvable transitive permutation
groups of degree p have an irreducible complex character whose degree is
divisible by p, where p is prime. N. Ito and T. Wada proved that non-
solvable transitive permutation groups of degree 2p have also the same
property.

In this paper we shall prove the following theorems.
THEOREM 1. Let f2 be the set of symboles 1. \cdots , 3p, where p is an odd

prime number (\neq 3) . Let G be a transitive permutation groups on \Omega . Then
one of the following occurs;

1) G has a normal Sylow p-subgroup,
2) G has an irreducible complex character whose degree is divisible

by p.
THEOREM 2. Let f2 be the set of symbols 1, \cdots , 4p, where p is an odd

prime number (\neq 3) . Let G be a transitive permutation group on \Omega . If
G is doubly transitive or imprimitive, thm it satisfies the conclusion in
Theorem 1.

\S 2. Proof of Theorem 1.

Let H be the stabilizer of the symbol 1 in G.
(1) The case G is imprimitive on \Omega . Let M be a maximal subgroup

containing H. Then we have that either [M:H]=3 or [M:H]=p . At
first assume [M:H]=3. Let B=\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{p}\} be the block system of G

corresponding to M. Let K be the blockwise stabilizer of B in G. Since
the length of \triangle_{i} is equal to three, K is a solvable {2, 3}-subgroup and K’ is
an abelian subgroup. If G/K is non-solvable, then since G/K is a transitive
permutation group on B, by [6] G/K and hence G has an irreducible char-
acter whose degree is divisible by p.

If G/K is solvable, by [12, p29] , G/K is a Frobenious group. Let Q

be a subgroup of G containing K such that Q/K is the Frobenious kernel
of G/K. Let P be a p-Sylow subgroup of G. Then Q=P\cdot K . If Q is
abelian, then P is normal in G. When Q is non-abelian, consider G/K’.
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If Q/K’ is non-abelian, by [6] the degree of a non-linear irreducible char-
acter of Q/K’ is divisible by [Q/K’ : K/K’]=p , and hence Q has an irreducible
character whose degree is divisible by p . Since Q is normal in G by the
Theorem of Clifford ([4], p345), G has an irreducible character whose degree
is divisible by p. If Q/K’ is abelian, then PK’ is normal in G. If PK’ is
abelian, then P is normal in G, and if PK’ is non-abelian, since K’ is abelian,
it may be proved as above that PK’ and hence G has an irreducible character
whose degree is divisible by p .

Next assume that [M:H]=p . Let \{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\} be the complete block
system of G corresponding to M. Let K be the blockwise stabilizer in G

of \{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\} . Since [G:K] is prime to p , K acts transitively on each \Lambda_{i} .
Let L_{1} be the pointwise stabilizer of \Lambda_{1} in K. If K/L_{1} is non-solvable, then
K/L_{1} and hence G has an irreducible character whose degree is divisible by
p. Therefore we may assume K/L_{1} is solvable and hence it is a Frobenious
group. Let Q_{1} be a subgroup of K containing L_{1} such that Q_{1}/L_{1} is the
Frobenious kernel of K/L_{1} . For a p-Sylow subgroup P_{1} of Q_{1} , Q_{1}=P_{1}L_{1} .
Since Q_{1} is 1lormal in K and [K:Q_{1}] is prime to p, Q_{1} acts transitively on
\Lambda_{i}(i=1,2) . Let L_{2} be the pointwise stabilizer of \Lambda_{2} in Q_{1} . If Q_{1}/L_{1} is
non-solvable, then it may be proved as above that G satisfies 2). Hence we
may assume Q_{1}/L_{1} is solvable. Let Q_{2} be a subgroup of Q_{1} containing L_{2}

such that Q_{2}/L_{2} is the Frobenious kernel of Q_{1}/L_{2} . For a p-Sylow subgroup
P_{2} of Q_{2} , Q_{2}=P_{2}\cdot L_{l} . Since Q_{2} is normal in Q_{1} , it acts transitively on \Lambda_{3} .
Let L3 be the pointwise stabilizer of \Lambda_{3} in Q_{2} . As above we may assume
Q_{3}/L_{3} is solvable. Let Q_{3} be a subgroup of Q_{2} containing L3 such that Q_{3}/L_{3}

is the Frobenious kernel of Q_{2}/L_{3} . We shall show that L3 is a p-subgroup.
Let y be a non-trivial p-’element of L_{3} , and |y|=l . If y is not contained
in L_{1} or L_{2} , then y can be written in the form y=y_{1}y_{2} , where y_{1} and y_{2}

are elements of P_{i} and L_{i} , respectively (i=1 or 2). yL_{i}=y_{i}L_{i} and y^{l}L_{i}=y_{i}^{l}L_{i} .
This is a contradiction. Thus y is an element of L_{1\cap}L_{2} and hence y=1 ,
this is also a contradiction. Therefore Q_{3} is a p-Sylow subgroup of G and
normal in G.

(2) The case G is uniprimitive on \Omega . By [10] G has an irreducible
character of degree p or 2p except p=7,19 and 31. Therefore we may
assume p=7,19 or 31. Suppose the theorem is false and let G be a minimal
counterexample. If the order of G is divisible by p^{2} , then G contains a p-
cycle or the product of two p-cycles. Then by the Theorem of Jordan [12,
p39] , G contains the alternating group on \Omega . This is a contradiction. We
may assume the order of a p-Sylow subgroup of G is p and any p-element
(\neq 1) of G is semi-regular on \Omega . If G contains a non-trivial normal subgroup
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N, then N is transitive on \Omega . If N is primitive, then N satisfies 2) by the
minimality of G and if N is imprimitive, then N also satisfies the conclution
of the Theorem by the first case. Hence G has an irreducible character
whose degree is divisible by p, or G must contain a regular normal subgroup
and then p=3. Therefore we may assume G is a simple group.

Let x be an involution of G. Assume C_{G}(x) contains a p-element y
(\neq 1) . Let \triangle_{i}(i=1,2, 3) be orbits of \langle y\rangle on \Omega . If x stabilizes each \Delta_{i} , x
acts trivially on \Omega . This is a contradiction. If x stabilizes \Delta_{1} , and ex-
changes \Delta_{2} and \Delta_{3} , then x is written as the product of p transpositions and
x is an odd permutation. This contradicts the simplicity of G. Hence we
may assume C_{G}(x) is a p’-subgroup for any involution x, and C_{G}(y) is a 2’-
subgroup for any p-element y(\neq 1) . Let y be a p-element (\neq 1) . Since
N_{G}(\langle y\rangle)/C_{G}(\langle y\rangle) is acyclic group and C_{G}(\langle y\rangle) is a 2’-subgroup, all involu-
tions which invert y are conjugate in N_{G}(\langle y\rangle) . If G has at least two classes
of involutions, then by the Theorem of Brauer-Fowler ([1]), G has an irre-
ducible character whose degree is divisible by p , this is acontradiction.
Hence we may assume that G has exactly one class of involutions.

Let x be an involution of G such that xyx^{-1}=y^{-1} . We denote the
number of fixed symbols by an element u of G by \alpha(u) . If \alpha(x)\geqq 4, then
p=2, this is a contradiction. If \alpha(x)=3 , then x is an odd permutation since
(3p-3)/2 is odd, and it contradicts the simplicity of G. Hence we may
assume \alpha(x)=1 , and 1^{x}=1 . Let S be a 2-Sylow subgroup of G containing
x. Since the stabilizer of any two symbols of 12 is of odd order, S is
semiregular on \Omega-\{1\} . On the orther hand, by [10], for p=7,19 and 31,
the subdegrees of G are (1, 4, 8, 8), (1, 6, 20, 30) and (1, 20, 32, 40) respectively.
For p=19, the order of S is 2 and it contradicts the simplicity of G. If
p=7 or 31, then the order of S equals four. By the theorem of Gorenstein-
Walter ([5]), G is isomorphic to PSL (2, q), q>3 , q\equiv 3 or 5 (mod 8). But
then G has characters whose degrees are q-1, q and q+1. Hence p divides
one of q-1, q and q+1. Therefore G satisfies 2). This is acontradiction.

(3) The case G is doubly transitive on \Omega . Suppose the theorem is
false and let G be a minimal counterexample. If G contains the alternating
group on 12, then the degree of the irreducible character of G corresponding
to the Yong diagram [3p-3,3] has degree (3p-1)/2\cdot p\cdot(3p-5) . This is a
contradiction. Hence likewise in the case (2), we may assume that the order
of G is divisible by p only to the first power, and any p-element of G is
semiregular on \Omega . If G contains a regular normal subgroup, then the degree
of G is prime power and it contradicts p\neq 3 . Hence we may assume that
G does not contain a regular normal subgroup.
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If the order of the stabilizer of two symbols is odd. then by the theorem
of Bender ([2]), G contains a normal subgroup N isomorphic to PSL (2, q),
S_{z}(q) or U_{3}(q) as a permutation group, where q is a power of two. Now
N is not isomorphic to S_{z}(q) since the order of N is divisible by 3. If N

is isomorphic to U_{3}(q), then q^{3}+1=3p and it contradicts p\neq 3 . If N is
isomorphic to PSL (2, q), then N and hence G has an irreducible character
whose degree is q+1=3p. This is a contradiction. Hence we may assume
that the stabilizer of two symbols in G contains an involution x.

Let P be a p-Sylow subgroup of G and y be a generator of P. If
C_{G}(x) contains a p-element (\neq 1), then likewise in the case (2), it can be
shown that x is an odd permutation. Then [G:G_{\cap}A_{3p}]=2 and G_{\cap}A_{3p} is
doubly transitive on \Omega . By the minimality of G, G_{\cap}A_{3p} satisfies 2) and so
does G. Hence we may assume C_{G}(x) is a F’-subgroup and C_{G}(y) is a 2’-

subgroup. If G contains an involution which is not conjugate to an element
of N_{G}(P), by the theorem of Brauer-Fowler ([1]), G has an irreducible char-
acter whose degree is divisible by p . Hence we may assume xyx=y^{-1} . If
x stabilizes four symbols at least, x must stabilize two symbols in some
orbit of P on \Omega . It contradicts p\neq 2 . Hence we may assume \alpha(u)\leqq 3 for
any involution u of G. Since all involutions are conjugate, then every in-
volution fixes just three symbols of \Omega . Then by [9] G is permutation is0-
morphic to A7 with p=5. Since A7 has an irreducible character of degree
15, this is a contradiction.

This completes the proof of the Theorem 1.

\S 3. Proof of Theorem 2.

If G is imprimitive, then likewise in \S 2, we may prove the Theorem.
In the case G is doubly transitive, use [11] and [3], and the theorem can
be proved by the same way as in \S 2.
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