Certain properties of a submanifold in a sphere

By Masayuki MOROHASHI

Introduction.

H. Liebmann has proved that an ovaloid with constant mean curva-
ture in a 3-dimensional Euclidean space is a sphere. Y. Katsurada [3],
and K. Yano have generalized the above theorem to an m-dimensional
hypersurface in a Riemannian manifold admitting an infinitesimal conformal
or homothetic transformation. Y. Katsurada [5], [6], H. Koéjyd [5], T. Nagai
[6],[10] and K. Yano have given the condition for a submanifold of
codimension greater than 1 in a Riemannian manifold to be pseudo umbilical
by making use of integral formulas.

On the other hand M. Okumura has given the condition for a
submanifold of codimension 2 in an odd dimensional sphere to be totally
umbilical by making use of the natural normal contact structure on the
sphere.

In this paper, the author studies a submanifold of codimension p in a
sphere by making use of a conformal Killing tensor field of degree p on
the sphere that has been defined by T. Kashiwada and S. Tachibana
[13], and proves that the submanifold is totally umbilical under certain con-
ditions by making use of integral formulas.

The author wishes to express his sincere thanks to Professor Yoshie
Katsurada for her kind guidance and advice.

§1. Tensor fields on a sphere induced from an Euclidean space.

Let E™*?*! be a (m+p+ 1)-dimensional Euclidean space with an orthogo-
nal coordinate system X“ (A=1,2,.-,m+p+1). Let S™? be a (m+p)-
dimensional sphere of radius 1 in E”*#*. Then S™*? is represented by
the equation

(1. 1) m:Zj:jI(XA)Z ~1.

We can take a local coordinate x* (A=1,2,---,m+p) of S™* in such a way
that

Xt=zx, 21=1,---,m+p,
(1' 2) (Xm+p+1)2 _— 1_ 9%10 (xZ)Z .

i=1
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If we put
(1. 3) B4 =0X4/ox*,
then we find easily
o, A=up,
(1° 4) BZA = X?
- W ’ A=m +P+ 1.

The Riemannian metric tensor G,, on S™? induced from E™***! and
Ly

Christoffel’s symbol { :v} with respect to G,, are given by

X' X"

(1. 5) GZ” = 521‘ + W , G* = BIF_XIX#.
and

A _
(1. 6) {W} - X'G,,

r~especti_vely. From (1.5) and (1.6), we find easily that the curvature tensor
R,.. of S™*? has the form

(1' 7) ﬁx;w: = GltGyv_leG,ux .
If we put
(1.8) (C) = (=X, = X7, .., —XmtoHy),

then C4 is a unit normal vector field of S™*?.

Now we define the van der Waerden-Bortolotti covariant derivative 7, BA
and V,C4 such that

(1.9) 7B =03,/ — ("B,

(1. 10) V,C4=0,C4, ,

where 9, denotes 8/dz". From (1.6), (1.8), (1.9) and (1.10), we obtain easily
V.B=—-X*G,, =C4G,,

V,C4A=—BA.

Now let @,.. 4, be a skew symmetric and parallel tensor of degree p
on E™*?*1 that is, satisfying

(1. 11)

¢A1"‘Aa"'Ab"'Ap = —HQAz"'Ab"'Aa"‘Ap ’

(1. 12)
BB(DAI...AI) = O 5
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where 9, means 9/0.X°%.
We put
(1. 13) Fl:"'lp = QA._"-ApBllAh . 'BlpAP .

Then F, .., is a skew symmetric tensor field of dgree p on S™*?. Differ-
entiating (1.13) covariantly on S™*?, we have

VZE{"‘] = BAAaA@Al...AszlAl'"Bprp
p
+ Z ¢Al~--A,,~-A, Bz lAl. ..C4...B Aszz,,
c=1 .

4y

“

by means of (1.11) If we put
(1. 14) ﬁxiclp = (_1)0 QAI--'A,,"-APBZXAI. : 'CA"""'B]')AP s

where i, denotes that 1, is omitted, then we get

. 2
(1. 15) Vl Fla"'lp = §(_1>cﬁ1“'ic"'lpGuc ’

by virtue of (1.12). Thus F; ., is a conformal Killing tensor field of degree
p on S™** that has been defined by T. Kashiwada [2] and S. Tachibana [13].
Therefore we find that there exists a conformal Killing tensor field of degree
p on S™*P,

§2. Submanifold in §™*7,

Let M™ be an orientable submanifold of codimension p in S™*?. In
terms of local coordinate (!, -+, z™*?) of S™*? and (&', ---, w™) of M™, M™ is
locally expressed by equations

2.1) =z (u), i=1.2
If we put

2.2 - B} =odx[ou’,

then B,? are m linearly independent local vector field tangent to M™. The

Riemannian metric tensor g, on M™ induced from the Riemannian metric
tensor G,, on S™*? is given by

(2. 3) 0= GAFszBi’J .

We choose p mutually orthogonal unit normal vectors N/} (A=m+
1,--,m+p), then we find
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GuB/Ny =0, G N/NS =064,
Btlth =0,", NNy, = 048 ’
B/N,=0, N/B, =0,
BB, + ; N/N,, =46},

(2. 4)

where we have put B,=G,B,'¢”, N,=G,N/.

Let H,; (A=m+1,---,m+p) be the second fundamental tensor with
respect to N, and L,z; the third fundamental tensor. Then the Gauss and
Weingarten equations are given by

(2. 5) VjB,/I - ; HAﬂNAz
and
(2. 6) VjN2=_HAj¢B¢Z+ZBLABjNBI

respectively, where V;B;* and V; N} are defined by
h 1 ’
=gt {1 (17
and

7,Ni=0a,N;i+ { ,fv} B/N,

respectively, {]ﬁi} and {;’J] being the Christoffel’s symbols of M™ and S™**.

We now write the equations of Gauss, Mainardi-Codazzi and Ricci-
Kiihne:

(2' 7) Rlcjih = El,ﬂv:BlclijBﬂl”Bh‘ + § (HAthAjt —HAkiAAjh) ’
(2- 8) EMWB,fBj"B;NA‘ =V, HAjfz—V jHAM + ZB: (HBjiLBAIc—HBIciLBAj) ’

(2- 9) Rzpu:BlchjllNA”N B = HAkiHBji_HAfHBM
+V i Lyps—V ;L pp+ § (LapsLoze—LapeLoss),
where Ry, and R, e denote the curvature tensor of M™ and S™*? respec-

tively. Since S™*? has the curvature tensor of the form (1.7), the above
equations can be written as

(2- 10) Rum = 0119 50— 990+ é: (HAthAﬁ _HAIciHAjh) ’

(2.11) ViH, 50—V ;H g0+ ZB (HppLgan—Hgrilgas) =0,
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(2' 1‘2) HA/L’i‘HBJi—HAjiHB/c'Z +V/CLABj_VjLABk
+ ; (LADJLDBI.:_LAD/CLDBJ) =0.

When at each point of M™ the second fundamental tensors H,; (A=
m+1,---,m+p) are proportional to the metric tensor gy, that is, satisfying
the following conditions

H,,,=Hu,, A=m+1, .-, m+p,

we call M™ a totally umbilical submanifold.

LEMMA 2.1. A necessary and sufficient condition for M™ to be totally
umbilical is that the following equations are satisfied:

(2 13) HAﬂ Aﬂ::_?l;(HAtt)z, A=m+1a7m+P
Proor. This follows the identity
(HAj'IJ _‘_HAt gj¢> (HAj - %Hmtgﬂ) = HAjiHAﬁ - —‘lﬁ’(HAth ’

and the positive definiteness of the Riemannian metric g .
Next we consider the normal bundle N(M™) of M™. For N*e N(M™),

a connection l; on N(M™) is defined by |
(2. 14) 7,N*= (7, N,

L3
where (F,N*? denotes the normal part of V;N. When F;N* vanishes
identically along M™, we say that N* is parallel with respect to the connec-

tion of the normal bundle N(M™).
Let H* be the mean curvature vector field of M™ Then H® is re-
presented by

(2. 15) =1 yH/Ng,
m A

and H* is independent of the choice of mutually orthogonal unit normal
vectors of M™.

LEMMA 2.2. In order that the mean curvature vector field H* of M™
is parallel with respect to the connection of the normal bundle, it is neces-
sary and sufficient that

(2. 16) VjHAtt = - § HBttLBAj .

Proor. Differentiating (2.15) covariantly, we have
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{; VJ'}IAttZ\[AZ + § HAtt ('—IquhBh'I + 4; LABjNBI)}

1
m

L S HH. B+ L7, Hi' + 5 Hui L) Ni)
m 4 A B

from (2.6). Thus we get

V,H* = 1 ; 7, H,' + ZB: Hyp'Lpa) N,

m

from which we have the assertion of Lemma.

LemMA 2.3. Suppose that the mean curvature vector field H* of M™
s parallel with respect to the connection of the normal bundle, then the
mean curvature h of M™ is constant.

Proor. The mean curvature 2 of M™ is given by

2 __ 1 \2
(2. 17) B = 3 (HLY.

Differentiating (2.17) covariantly and making use of (2.16), we have

thz = —%—;HA;V_,HA:

2 s
= e ZA: z; H,'Hp, LBAj =0
by virtue of L,p;=—Lg,;. This proves that A is constant.

LemMA 2.4. If the mean curvature vector field H* of M™ is parallel
with respect to the connection of the normal bundle, then we have the fol-
lowing relation

(2. 18) V; Hyl=— z\; HB/chBAj .

PrROOF. By means of (2.11) and (2.16), we get (2.18) easily.

Cemma 2.1, -+, 2.4 was proved by T. Yamada [16]. But his paper does
not appear. '

When there exists mutually orthogonal normal vector fields N/ (A =
m+1,---,m+p) such that L,5,=0, we say that the connection of the normal

bundle of M™ is trivial. We obtain the following Lemma by J. Erbacher [1]:

LEMMA 2.5. The connection of the normal bundle is trivial if and
only if that

(2- 19) HAIciHBji = HA;;HBM .
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ReEmARrk. If p=1, the connection of the normal bundle is trivial under
no assumption. If p=2, the connection of the normal bundle is trivial under
the condition that the mean curvature vector field H* of M™ is parallel
with respect to the connection of the normal bundle.

§ 3. Integral formulas.

In this section, we assume that a submanifold M™ is compact orientable
and the mean curvature vector field H* of M™ is parallel with respect to
the connection of the normal bundle and the connection of the normal
bundle is trivial. Let F,. 7, be the tensor field of degree p on S™*? that is
defined by (1.13) in §1.

Now we put
(3. 1) r= Fl"“lem-i-i] e 'Nm+;p .

LEMMA 3.1. The function r is independent of the choice of mutually
orthogonal unit normal vectors.

Proor. Let (T43), A,B=m+1,---,m+p, be a orthogonal matrix such
that det(7,5)=1, that is, satisfying the following conditions

é: TABTAC = 530 s ; TACTBC =045,
det (TAB) == 1 .

(3. 2)

We put
(3- 3) ,JVAZ = Z T,‘uz?i’\/vz?/1 .
B
Then 'N} (A=m+1,---,m+p) are mutually orthogonal unit normal vectors.
Substituting (3. 3) into 'r=F, i, Npift+' Ny g, then we have
'r= 2 717»-}-1111'"Tm+pAprl-~~2pNAl1"'NApr
A,,,4,

= Z Sgn(m_i—ql’.”,m+P)Tm+1A1'“Tm+pAF Nm+1 N, 47

Ay, Ay, 1> """ L1y e
= det (TAB)F} 2 Nm+]_2""N +p2p =r
by virtue of (3.2) and the skew symmetry of F,..,. This proves the asser-

tion of Lemma 3.1.

Differentiating (3.1) covariantly and maklng use of (1.15) and (2.6), w
find

)
Vﬂ’ = BJ{Z ( ) ﬁ R u,} Nm+11,__,Nm+;,,

p
+ Z F11~--1a~--1me+lzh"<_Hm+aithxa + ZL—.: Lm+aBiN1572“) Nm+pzp
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from which we have

Y4
(3. 4) Vir=— GZJIHqu: Ayedgeidy a1t Byl Nm+p1p

Differentiating (3. 4) covariantly, we have

) ' ) 2
) 11...2“...1me+11""thn"’Nm.)_pp
a=

? P
- Z Hm+aih Z Fxl---z‘, 2
a=1 a

k
= ---11)N7n+121 o '( _Hm+cj Bkzc + § Lm+chNBxc)' o
o*a
2 2
...Bha...Nm+pp
P
h i
- Zle+ai Fz,---x,.-- dp 1 ZHAM e Nm+p”
a@=

4
Z= ( m+ai + ZHC'Z LCm+aj)F --~1a---1me+12

D
3 k 2 2 2 2
+ Zle+a¢ Hm+cj le---xc---za---Zme+l 1o Bife.--Byla-- N,
a,c=
a¥c

+p?

azl("”1)aHm+ad¢ﬁ,---za---x,,Nm+1 N !

2
m+a a"'Nm+p r

- 7'2 Hm+m§ Hm+ajh

by virtue of (1.15), (2.5) and (2.6), where N,,, /" means that N,
Thus we get

yd
Vjer = Z= ( m+ah + Z HCh LCm+aj)F A2

& 2 ... B a... 2
+ Zleﬂz Hm+cj E, gl ,,]Vm+11”"B/cc Bh“ Nm+
a,c=
atc

e
- Z ( ) m+atf;1 N ime+1 Nm+a3a...Nm 2y

- 7'§ HAj-iHA #,

from which we have

$ 2
VjV.ir— - Z ( ) m+at 0 PAES me+111"'Nm+a2a"'Nm+pp

by virtue of our aséumptions, and the skew symmetry of F

1...tha...Nm+p1P

‘a is omitted.

47
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Therefore we obtain the following integral formula
(3.5) j NS HLGH,
M A

+

DM

(—'l)a m+(llt 1‘...1‘“...2me+111---Nm+axa.. Nm+p }dM O

1

by means of Green’s theorem.
Next we put

D
w, = Z: H tF‘ .
[ 2 ) mtat L A2
a=

LEMMA 3.2. w; is independent of the choice of mutually orthogonal
unit normal vectors. Consequently it defines a vector field on M™.

Proor. We take T, and ‘N satisfying (3.2) and (3.3). From (3.2)
and (3.3), we find

Nm+1 B “ ‘Z\Im+_)zp .

ip

5 Tu'Ni = 5 Tae S TaNy
— 3 0esNZ = N,

from which we have

(3.6) N} = § Ts.'Ng .

Let 'H ,;, be the second fundamental tensor with respect to 'N,/. Making
use of (3.6), we have

Vszz = § ,HAji ’NAR = é: HAj'tNAz
= Z HAji Z TBA, BA = Z (Z HBjiTAB) INAA s
4 B 4 B
from which we get
Ajv: = Z TsH Bji +
Thus we find
(3. 7) IHAtt = § TABHBtt.

From (3.3), (3.7) and the skew symmetry of F .., we have

Nm+1 B a m+p1p

D P

v :
= Zl ’Hm+at‘ Fl
a=

p
=2 2 HA: m+14," Tm+aA,,"'Tm+pApFal--.za-~szAf""Bil"'"NA;"’

a=14,,,4
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4

Z m+th Z Tm-i—lAl"'Tm+am+b'”Tm-l'pAI,Fil"'Ra'“l x

b=1 a=14,, »

.. Ba... lp
Bz NAP

I
M-

N,*

» T~ v
H +btt Z: (____ )a+c Z Sgn(m_l_l’ 0y mA+C9 T m‘l‘P) %
T,

b=1 a,c=1 A, p Al)”"Aa9°”7Ap
A 2 2
m+14, Tm+am+b' * .Tm+pA])F2 --~).,,--~2me+1 te ”Bi c"'Nm_!_p p
" .
= Z +bt Z Tm+am+bTm+am+cF1~~1,,---2 Nm+1 B Nm+p

(Ec-—

where Tm+am+,, denotes the cofactor of T iami.. Making use of the fol-
lowing relation

det(TAB)> b=C, ’

L
Zl = m+am+bTm+am+c =
a=

0 , b¥Fc,
we obtain

p

= det ( ) Z e zlmzb-nx

— »

Nm+121' --B?;"’- "Nm+p2p
= wi

by means of (3.2), which proves the assertion of Lemma.

Differentiating w, covariantly and making use of (1.15), (2.5) and (2. 6),
we have

A
Nm+12“ * 'Bila °t 'Nm-l-P P

p-dy

P
ij,z = EIVme+attR1,..
P P
+ Z=:1 Hm+attBj2 {bZzll( - 1)bﬁ,-~~i,,---1pGub} Nm+1l" : 'Biz"' : 'Nm+p1”

+ Z Z H,..d'F -~-z,,~-za.--1me+1Z“ (= H,pof* Bilo+ § L cp;N#)

a=1lc=1
cta

..Biza.. . Z\)m_'_pzp
b4 - ‘ 2
+ 2 Hotad By g N 2 HageN Ao “Npip?
a=

»
2 2 2
Z ( H, .+ Z H,,' Bm+aJ)F21---2a---2me+1 1By a"'Nm+p r

=1

|

y4
2 1 2
+ 2 Hm+atth+cth11---Rc~--za---1 N, Byle--Bia--- Ny i p'r

a,c=1 v
aFc

p ~
¢ ... 2 2
+ 2 (=1 Hpiar f/‘l1~~-i,,---2me+l 1o N sa @ Ny 5 9 34
a=1 ’



50 M. Morohashi

b2
2
+r Zle+at Hm+aji ’
a=

from which we get

~,

y4
Viw,;=m az_:l< —1) Hm+a1tﬁx"'2a'"lg,Nm+lll N d Ny ?+7 § (H'}

by means of our assumptions. Thus we have the following integral formula
3.8 | (rzE.
wm UG

D
+m 3 (=1 Hyprai fi

¢=1

N, N, Ja. .Nm+pzp} dM =0

p

by virtue of Green’s theorem.

From (3.5)3.8) ><711—, we have

(3.9) Swrg {HM@-HA”—- —%—(HA;)Z} AM=0.

THEOREM 3.3. Let M™ be a compact orientable submanifold of codi-
mension p in a sphere S™*? of radius 1. Suppose that the mean curvature
vector field H* of M™ is parallel with respect to the connection of the normal.
bundle and that the connection of the normal bundle is trivial. If the func-
tion r has fixed sign on M™, then M™ is totally umbilical.

: . . 1 . .
Proor. Since H,y Aﬁ__nT(H 4+'F is non negative, we have

HAﬁHAﬁ"‘ (HAtt)Z =0

1
m
from (3.9) and the assumption. Thus we find that M™ is totally umbilical
by virtue of [Lemma 2.7l

In the case of p=1 and p=2, we have the following corollaries by

means of Remark in §2.

CoROLLARY 3.4. Let M™ be a compact orientable hypersurface in a
sphere S™' of radius 1. Assume that the mean curvature h of M™ is con-
stant. If the function r has fixzed sign on M™, then M™ is umbilical.

CoROLLARY 3.5. Let M™ be a compact orientable submanifold of
codimension 2 in a sphere S™* of radius 1. Assume that the mean curva-
ture vector field H* of M™ is parallel with respect to the connection of the
normal bundle. If the function r has fixed sign on M™, then M™ is totally
umbilical.

When p=1, F, that is given by (1.13) is a conformal Killing vector
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field on S™*'. Therefore Corollary 3.4 is included in the theorem of Y.
Katsurada [3], [4] When p=2, [Corollary 3.5 is considered as the generali-
zation of the theorem of M. Okumura [11].

§ 4. Examples.

When m=2n+1 and p=2, M. Okumura has given a example of
a submanifold that the function r is constant by making use of the normal
contact structure on S***!. Similarly we give examples of submanifolds in
a sphere such that r is constant in the case of p=2 and p=3.

(1) Case of p=2: We take @, on E™*® in the following way

R 0 00
(4.2 @)= 0 00
O ............................... 0 01
S 0 _10/

Then we find easily that @, is a skew syrﬁmetric and parallel tensor of
degree 2 on E™*, From (1.4) and (1.13), we have

Xl
O --------------------------------------------------- 0 Xm+3
(4.2)  (F)= o
X7.n+1
0 .................................................... 0 Xm+3
T T i
- Xm+3 > T s Xm+3 ? 0

Now we consider a submanifold M™ of S™*? whose local representation
is given by

Xt=u, t=1,2,--,m)

(4. 3) (Xm0 =s— S, 0<t<1,
i=1 :
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I .Xm+2=0’
l X3 =\J1—¢.

Then we see that the submanifold M™ is compact and totally umbilical in
Sm-l-Z.
We put

-9 (D)= (X, X0, 0)x (1L

Then C? and D* are mutually orthogonal unit normal vectors of M™.
From (4.2), (4.3) and (4. 4), we have

2 1 1—t "5 xren
r=F1FCDF‘=—Xm+3\/ — X

1 1—¢ —
=~ 1=7 p Xt=—qt.

This shows that the submanifold M™ is a desired one.
(ii) Case of p=3: We take three vectors @,, @, and @, on E™** in
) 1 2 3

such way that
(QA) = (09 O, Tt 1) ’

1

(4. 5) (@4)=(0,0,:-,1,0),

We put

(4. 6) O o= 3 sgn<1’ 2, 3)@,,@3@0 . (@bc=1,23).
a 1] c

a,b,c

Then we find easily that @, is a skew symmetric and parallel tensor of
degree 3 on E™*t,

We put
(4- 7) Fz=¢ABzA, Fz=@ABzA: Fz:"QABzA-
1 1 2 2 3 3
Then we get
1 m+3
(F2)=<——X—4":_X )
1 Xm+ Xm+4
(4 8) (FZ):(O’ 09 '”,O, 1)

2

(£2)

3

I

(0’ "':0’ 1: O)
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by virtue of (1.4) and (4.7). From (1.13), we have

(4' 9) F]./w = ngn<1’ %’ B)FZF/JFD> (a7 b,C=1, 2’ 3)'
] a, 0,Clqa" v ¢

Now we consider a submanifold M™ of S™** whose local representation
is given by
f in=ui’ | (z:1a29,m)

(X == 3P,  0<e<l,

(4. 10) 4 i=1
Xm+2 =0 , Xm+3 =0 ,
Xmtd — w/——-—l—t ]
We put ”

(Nm+21) = (0) RS 19 0);

(Noppt) = (X3, -o, X™41,0, 0) x 17 :

Then N,/ Ny’ and N,.s’ are mutually orthogonal unit normal vectors
of M™. o ’
Making use of (4.8), (4.9) and (4.10), we have

. 1 ! _
r= Fz.u»Nm+1 Nm+2 le+3” - F.l f/IIF‘uNm+11Nm+ZFNm+3v
2

__ 1 I—t & yvoe— 7
S B X

Thus we see that the submanifold M™ is a desired one.
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Hokkaido University
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