
Discrimination of the space-time V, II.

By Hy\^oitir\^o TAKENO

This paper is a continuation of [6]^{1)} . There, we have developed a theory
by which we can discriminate the space-times belonging to V_{I} , V_{II} and V_{III} ,

which are not V_{0} . Now, in the present paper, we first deal with the same
problem assuming that the given V is V_{IV} or V_{V} , which is not V_{0} , and
then proceed to the problem of V_{0} . The same notations, terminologies,
numbers of sections, of equations and of references as those in [6] are used.

\S 14. Discrimination of V_{IV} .
Now we deal with the problem of discriminating V_{IV} , assuming that the

given U is a U_{IV} . Just as in the case of V_{III} , we further assume that the
1

U_{IV} is not U_{0} and that u_{i} is known. V_{IV} ’s are classified into two subclasses
V_{IVa} and V_{IVb} , each of which is defined by \{\nu_{1}=\nu_{2}\neq\nu_{3}=\nu_{4}\} (or \{\nu_{1}=\nu_{3}\neq\nu_{2}=\nu_{4}\} )

or \{\nu_{1}=\nu_{4}\neq\nu_{2}=\nu_{3}\} respectively. Corresponding to this, we classify all U_{IV} ’s
into two subclasses. A U_{IV} is U_{IVa} or U_{IVb} according as the tw0-dimensional

1

eigenspace E_{s} composed of only space-like eigenvectors of K_{i}^{f}
. contains u_{l}

or not respectively. It goes without saying that the other tw0-dimensional
eigenspace E_{t} contains space-like, null and time-like eigenvectors.

First we consider U_{IV} ,
\ell’s. Determine the unit vector which is contained

1 2

in E_{s} and orthogonal to the u_{i} , and denote it by u_{i} . Let v_{i} and w_{i} be an
arbitrary pair of mutually orthogonal space-like and time-like unit vectors

belonging to E_{t} . Then by the c.v. test in which (u_{i})=(u_{i}, u_{i}, v_{i}^{*}, w_{i}^{*})a12,

where v_{i}^{*} and w_{i}^{*} are given by (5. 2), we can determine whether the given
U_{IVa} is a V_{Iva} or not. In the latter case, the U_{IVb} is not V.

1

Next we consider U_{IVb,1},’ s . In this case, u_{i} must belong to E_{t} . Since
u_{i}4 must be orthogonal to u_{i} , we can easily determine it. Then, if v_{i} and
w_{i} are any pair of mutually orthogonal unit space-like vectors belonging to

E_{s} , the c.v. test in which (u_{i})=(u_{i}, v_{i}^{*}, w_{v}^{*}i, u_{i})a14, where v_{i}^{*} and w_{i}^{*} are
given by (5. 1), is sufficient for the discrimination.

1) Numbers in brackets refer to the references at the end of the paper.
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\S 15. Discrimination of V_{v} .
Lastly, we deal with the discrimination of V_{v} , assuming that the given

U is a U_{v} , i.e. a U whose four principal values are the same. In other
words, the U is a space-time which is an Einstein space in the sense of the
differential geometry. As in the former sections, we further assume that

1
the U_{V} is not U_{0} and that u_{i} is known.

Such V_{v} ’s are studied in detail in \S \S 8, 9 and 1C of [2], and the properties
of their c.s. are made clear in \S 10 of [3]. The most important results are
as follows: Such a V_{v} is neither S(A) nor S(B). The scalar curvature K
is a constant. These V_{V} ’s are classified into the following four classes:

(A_{1}) V_{v} ’s satisfying K=0 and appearing in Proposition 9. 2 of [Z].
(A_{2}) ,, ,, K=0 and ,, in (ii_{\rho b}) of Proposition 9. 4

of [2].
(B) ,, ,, K<0 and ,, in Proposition 10. 1 of [2].
(C) ,, ,, K>0 and ,, in (C) of \S 10 of [2].

\{\lambda\} ’s of these space-times are of the form \{\rho_{2}, \rho_{2}, \rho_{3}, \rho_{3}, \rho_{4}, \rho_{4}\} , where \rho_{a} ’s
are non-constant (and accordingly, non-vanishing) functions which do not
satisfy \rho_{2}=\rho_{3}=\rho_{4} . In other words, \{\lambda\} is of type {three double eigenvalues}
or {one quadruple and one double eigenvalues}, or if we use the notations
in \S 13 of [6],

(15. 1) (5) \{a_{1}, a_{1}, a_{2}, a_{2}, a_{3}, a_{3}\},\cdot or (9) \{a_{1}, a_{1}, a_{1}, a_{1}, a_{2}, a_{2}\}
-

where a_{\rho}\neq a_{\sigma} when \rho\neq\sigma.
a

Now we shall show that, in the case of type (5), all u_{i}’s are determined
by the use of u_{i}1 and u_{\rho|A}’s, and that, in the case of type (9), one of u_{i}’ sa

is determined and the remaining two are determined to within a transfor-
mation of the type (5. 1) or (5. 2), although in both cases the numberings
of the vectors are not determined uniquely.

As is seen in \S 8 of [2], the condition that a V be V_{v} is given, in terms
of \lambda_{a\beta}’ s , by

(15. 2) \lambda_{12}=\lambda_{34} , \lambda_{13}=\lambda_{24} , \lambda_{14}=\lambda_{23} .
Hence, when (\lambda_{12}, \lambda_{13}, \lambda_{14}\neq), the six-dimensional eigenspace is composed of
three tw0-dimensional eigenspaces, each of which is of signature type (+-).
The eigenvectors corresponding to, for example, \lambda_{12}(=\lambda_{34}), are given by

(15. 3) u_{A}=au_{12|A}+bu_{34|A} , (u_{A}u^{A}=a^{2}-b^{2}) ,

or, in terms of four-dimensional expressions,
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1 2 3 4
\langle15. 4) u_{if}=au_{\ddagger i}u_{fl}+bu_{\zeta i}u_{fj}

,\cdot

where a and b are arbitrary scalars. Thus we have

(15. 5) 2 u_{ij}u^{f}=au_{ii}12

2 1

which shows that we can determine u_{i} from u_{i} and u_{A} . Similarly, we can
3 4

determine u_{i} and u_{i} by using the eigenvectors4 corresponding to \lambda_{13} and \lambda_{14}

respectively. We can distinguish u_{i} from the other two by the condition
that it must be time-like. If we consider the fact that we cannot distinguish
beforehand \lambda_{12} , \lambda_{13} and \lambda_{14} from \{\lambda\}on1ya’ we can conclude that when a V_{V}2

of type3(5) is givenl, we can determine u_{i}’s to within the interchange of u_{i}

and u_{b}i by using u_{i} and the six-dimensional eigenvectors corresponding to
a_{1} , a_{2} and a_{3} .

Next we consider the case of (9), i.e. the case in which two of \lambda_{12} , \lambda_{13}

and \lambda_{14} are equal. In this case by dealing with the tw0-dimensional eigen-

space in the same way as the above, we can determine one of u_{i}’ sc\iota . Then
1 a

the remaining two, which are orthogonal to both u_{i} and the determined u_{i} ,
are determined in the form of (5. 1) or (5.2) according as the determined
a 4 2 3

u_{i} is u_{i} or u_{i} (or u_{i}) respectively.
Now we shall show that \lambda_{a} ’s are determined from \rho_{a}’s. As the result

of \S 1O of [3], we can find that (\lambda_{2}, \lambda_{3}, \lambda_{4}) is a permutation of (\lambda_{2}^{*}, \lambda_{3}^{\star_{1}}, \lambda_{4}^{*}) ,
where \lambda_{a}^{*}’ s are determined from \rho_{a} ’s by

(15. 6) (\lambda_{2}^{*}\lambda_{3}^{*}\lambda_{4}^{*})^{2}=\rho_{2}\rho_{3}\rho_{4} ; (\lambda_{2}^{*})^{2}=\rho_{3}\rho_{4}/\rho_{2} , \cdots ; \lambda_{3}^{*}/\lambda_{2}^{*}=\lambda_{2}/\lambda_{3} , \cdots

Thus when a U_{V} which is not U_{0} is given, we can determine to a great

extent the quantities which must be identical with u_{i}^{\sigma}’ s and \lambda_{a} ’s when the
U_{v} is a V_{v} . Therefore it will not be difficult to execute the c.v. test. We
shall omit the discrimination theorem, which is evident, for brevity’s sake.

We have completed the discriminations of V_{I} and V_{II} , and those of
V_{II1} , V_{Iv} and V_{V} which are not V_{0} .

\S 16. Discrimination of V_{0}, 1.
1

As is frequently stated, when a V is not V_{0} , we can determine u_{i} as
the unit space-like vector proportional to the gradient of any non-constant
\lambda_{\alpha\beta} . But if we consider a V_{0} , this method cannot be applied. This is the
reason why we deal with the problem of discriminating V_{0} separately. In
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the present section, we shall make some preparatory investigations.
It is shown in Proposition 3. 1 of [2] that V_{0}’s are classified into the

four types (I), (II), (III) and (IV). The types (II) and (III) are further clas-
sified into subtypes \{(II_{\rho a}), (II_{\rho b}), (II_{\rho b’})\} and \{(III_{\rho a}), (III_{\rho b}), (III_{\rho b’})\} , (\rho=2,3, 4),
respectively. The actual forms of (\beta, \gamma, \delta), (B, C, D), \lambda_{a} ’s and \lambda_{a\beta}’s in the
standard coordinate system for the c.s. are given in detail in [Z]. Of these
V_{0}’s, those of type (III_{\rho a}) or (IV) are nothing but the flat space-time S(B),
which is characterized by K_{ij}^{mn}..=0 , or, in terms of c.s. , \lambda_{\alpha_{1}9},=0 . Hence we
shall assume hereafter that the V_{0} is non-flat. In other words, the V_{0}’s
dealt with in the following are restricted to those belonging to (I), (II_{\rho a}) , (II_{\rho b}),
(II_{\rho b’}) , (III_{\rho b}) and (III_{\rho l},,) .

It is also shown in the same Proposition that \lambda_{a\beta}’ s of these space-times
are given respectively by

(I) \{p_{2}^{2}, p_{3}^{2}, p_{4}^{2}, p_{3}p_{4}, p_{4}p_{2}, p_{2}p_{3}\}’
’

(p_{2}p_{3}p_{4}\neq 0) .
(II_{4\iota},) \{p_{2}^{2}, p_{s^{2}},0,0, 0, p_{2}p_{3}\} , (p_{2}p_{3}\neq 0) .
(II_{4b}) or (II_{4b^{l}}) \{P, P, 0, 0, 0, P\} , (P=\pm p^{2}\neq 0) .
(III_{4b}) or (III_{4b’}) \{0, 0, P, 0, 0, 0\}-, (P=\pm p^{2}\neq 0) .

Those for \{(II_{2a}), (II_{2b}), (II_{2b’}), (II_{3a}), (II_{3b}), (II_{3b’})\} and \{(III_{2b}), (III_{2b’}), (III_{3b}), (III_{3b’})\}

are given by the expressions similar to those for \{(II_{4a}), (II_{4b}), (II_{4b’})\} and \{(III_{4b}),
(III_{4b’})\} respectively. The p_{a} ’s and P are constants satisfying the conditions
in brackets respectively.

The \lambda_{a\beta}’s in the above are written in the order \{\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{34}, \lambda_{42}, \lambda_{23}\}

respectively. If we change the orders suitably, the types of the \{\lambda\} ’s are
given by the following four:

(a) \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\},\cdot (e_{\rho}\neq 0 ^{\rho}j=1,2, \cdots, 6; e_{1}, e_{2}, e_{3}>0) .
(b) \{0, 0, 0, e_{1}, e_{2}, e_{3}\} , (e_{\rho}\neq 0. \rho=1,2, 3; e_{1}, e_{2}>0) .
(c) \{0, 0, 0, e, e, e\} , (e\neq 0) .
(d) \{0, 0, 0, 0, 0, e\} , (e\neq 0) .

Here e’s are arbitrary constants satisfying the conditions in the brackets
respectively.

Now we consider the problem of determining p_{a} ’s from \{\lambda\} , or, in other
words, from e’s. If we consider the properties of \{\lambda\}_{s} at the same time,
the results will become more useful in the discrimination theory. But we
start only with the values of \lambda_{a\beta}’s for brevity’s sake. (See the next section.)

First we deal with the case of type (a). Then the V_{0} is of type (I) and
its line element in the standard coordinate system stated above is given by
(1.6. 1) ds^{2}=-dx^{2}-c_{2}e^{2p_{2}x}dy^{2}-c_{3}e^{2p_{3}x}dz^{2}+c_{4}e^{2p_{4}x}dt^{2} , (p_{2}p_{3}p_{4}\neq 0) ,
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and we have \lambda_{a}=-p_{a} . Our present problem is to solve

(‘16. 2) e_{1}=q_{2}^{2}’. e_{2}=q_{3\backslash }^{2}e_{3}=q_{4}^{2} , e_{4}=q_{3}q_{4} , e_{5}=q_{4}q_{2} ,\cdot e_{6}=q_{2}q_{3} ,

and to detprmine q_{a} ’s and then p_{a} ’s. Here it should be noted that we use
the notations q_{a}’s in place of p_{a}’s, since, as will be seen in due course, q_{a}’s
do not necessarily coincide with p_{a} ’s. As a matter of course, q_{a}’s are
assumed to be real. As is easily seen, we have q_{2}q_{3}q_{4}\neq 0 . When (q_{2}, q_{3}, q_{4})

are solutions of (16.2), (-q_{2}, -q_{3}, - q_{4}) are also solutions. (This corresponds
to the fact that the transformation x’=-x, by which the V_{0} is kept in-
variant, changes the signs of p_{a}’s in the line element (16. 1).) Therefore
we can assume without any loss of generality that we have either (q_{2}, q_{3} ,
q_{4}>0) or (two of q_{a}’s are positive and the remaining one negative).

First we consider the case in which (e_{4}, e_{5}, e_{6}>0) holds. Then we have
(q_{2}, q_{3}, q_{4}>0) . By eliminating q_{a} ’s from (16. 2), we have

(16. 3) e_{4}=\sqrt\overline{e_{2}e_{3}} , e_{5}=\sqrt\overline{e_{3}e_{1}} , e_{6}=\sqrt\overline{e_{1}e_{2}}

Conversely, when (16. 3) is satisfied,

(16. 4) q_{2}=\sqrt\overline{e_{1}} , q_{3}=\sqrt\overline{e_{2}}-
,

q_{4}=\sqrt\overline{e_{3}} ,

satisfy (16. 2). Hence we have
PROPOSITION 16. 1. A necessary and suffiffifficient condition that \{e_{0}\} of

type (a), in which e_{\rho}>0 for all \rho, admit (q_{a}) , which satisfifies q_{a}>0 for all
a, is givm by (16. 3).

Next we consider the problem of the freedom of (q_{a}) , i.e. the problem
of determining, when \{e_{\rho}\} satisfying e_{\rho}>0 and (16. 3) is given, whether we
have any solution other than that given by (16. 4). If we consider the fact
that the numberings of e_{\rho}’s are arbitrary, we can restate this problem in
more precise form: Let a set of six positive constants \{e_{\rho}\} be given, and
(1’, 2’, \cdots, 6’) be any permutation of (1, 2, \cdots, 6) . Then the problem is to
determine all sets of positive constants (q_{2}, q_{3}, q_{4}) satisfying

(16. 2’) e_{1’}=q_{2}^{2} , e_{2’}=q_{3}^{2} , \cdots , e_{6’}=q_{2}q_{3} .
To solve this problem, we must make clear whether or not we have a solution
of (16. 2) of the form, for example, (q_{2}=\eta^{\overline{\prime}}e_{4}, q_{3}=\sqrt\overline{e_{5}}, q_{4}=\sqrt\overline{e_{6})} . After ex-
amining all possible cases, we obtain

PROPOSITION 16. 2. The set (q_{a}) stated in the above problem is deter-
mined uniquely to within the freedom of the numberings of q_{a}

’s. If we
remove the condition “q_{a}>0 for all a”, the set obtained by changing the
signs of all q_{a}’s also gives a solution.
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If we elucidate the first part of the Proposition in more detail, the
circumstances are as follows: If we have some relations among e_{\rho}’s (for
example, e_{1}=e_{2}=\cdots=e_{6}), we may have some other solutions (q_{a})’s (for example,
q_{2}=\sqrt\overline{e_{1}}, q_{3}=\sqrt\overline{e_{4}},\cdot q_{4}=\sqrt\overline{e_{6})} formally different from (q_{a}) given by (16. 4). But
all solutions are the same if we disregard the numberings of q_{a} ’s and regard
each (q_{a}) as a set of three posistive constants.

(Note that if we consider \{\lambda\}_{s} together with \{\lambda\} , or, in terms of e_{\rho}’s,
\{e_{\rho}\}_{s} together with \{e_{\rho}\} , the six e_{\rho}’s are classified into two classes, each of
which is composed of three e_{\rho}’s, according as the corresponding eigenvectors
are minus or plus respectively, and the results take more complicated but
useful forms. We omit such considerations, however, as is stated in the
above.)

Next we consider the case in which two of (e_{4}, e_{5}, e_{6}) are negative and
the remaining one is positive. In the same way as before, we can prove

PROPOSITION 16. 3. Let \{e_{\rho}\} , (e_{1}, e_{2}, e_{3}, e_{6}>0;e_{4}, e_{5}<0), be given. A
necessary and suffiffifficient condition that there exist (q_{a}) satisfying (16. 2) and
(q_{2}, q_{3}>0, q_{4}<0) is given by
(16. 5) e_{4}=-\sqrt\overline{e_{2}e_{3}} , e_{5}=-\sqrt\overline{e_{1}e_{3}} , e_{6}=\sqrt\overline{e_{1}e_{2}}

When (16.5) holds, a set of solutions (q_{a}) is given by (\sqrt\overline{e_{1}},\cdot \sqrt\overline{e_{2}},, -\sqrt\overline{e_{3}}) .
PROPOSITION 16. 4. When (16. 5) holds, the set (q_{a}) satisfying (q_{2}, q_{3}>

0, q_{4}<0) and (16. 2’) with (e_{1 },, e_{2 },, e_{3 },, e_{6}, >0;e_{4 },, e_{5}, <0) , is determined uniquely
to within the interchange of q_{2} and q_{3} .

For example, if we consider the case in which e_{1}e_{2}=e_{3}^{2} holds, ( \sqrt\overline{e_{1}}

,\cdot

\sqrt\overline{e_{2}}-,-\sqrt\overline{e_{6}}) gives a set of solutions, but this is identical with the above
(\sqrt\overline{e_{1}}, \sqrt\overline{e_{2}}, -\sqrt\overline{e_{3}}) . If we consider the fact that (16.2) and (16.2’) are sym-
metric with respect to q_{a} ’s, Propositions 16. 2 and 16. 4 can be rewritten in
the following form:

PROPOSITION 16. 5. When (16. 3) or (16. 5) holds, the solution of (16. 2)

are determined uniquely to within the freedom of numberings of q_{a}’s and
that of the change of signs of all q_{a}

’s.
Now we come back to the problem of the discrimination of V_{0} . From

the above we can conclude that, when a V_{0} of type (a) is given, its \{\lambda\}

must be one of the following two types:

(a_{1}) e_{1} , e_{2} , \cdots , e_{6}>0 , (a_{ii}) e_{1} , e_{2} , e_{3} , e_{6}>0 ; e_{4} , e_{5}<0 ,

by changing the numberings of e_{\rho}’s when necessary. Then (16.3) or (16.5)
must hold respectively. Thus we have
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PROPOSITION 16. 6. When a U_{0} is given, calculate its \{e_{\rho}\} . If it satis-
fifies the conditions stated above, it has a possibility of being a candidate for
V_{0} of type (a), and if it does not satisfy, it is not V_{0} and accordingly is
not V.

The actual method of the discrimination for U_{0} satisfying the conditions
in the Proposition will be considered in the following sections.

Lastly, we touch on a special kind of V_{0} of type (a). We consider a
V_{0} satisfying

(16. 6) e_{1}=e_{2}=\cdots=e_{6}=p^{d}’(>0), i.e. \{\lambda\}=\{p^{2}, \cdots,p^{2}\}

In this case, the V_{0} satisfies

(16. 7) K_{ij}^{mn}..=p^{2}(\delta_{i}^{m}\delta_{f}^{n}-\delta_{f}^{m}\delta_{\dot{f}}^{n}) , (K=-12p^{2}<0) ,

and the V_{0} is nothing but the S(A) whose scalar curvature is negative.
(Compare this result with (8. 7) of [2]. The p in the (8. 7) is -2p in terms
of the present p. )

\S 17. Discrimination of V_{0} , 2.

Now we consider V_{0} whose \{\lambda\} is of type (b). In this case, the V_{0}

belongs to (II_{\rho a}) , and the line element is given by (16. 1) with p_{\rho}=0 . The
equation corresponding to (16. 2) is

(17. 1) e_{1}=q_{2}^{2} , e_{2}=q_{3}^{2} , e_{3}=q_{2}q_{3} , (e_{4}=e_{5}=e_{6}=0 ; q_{4}=0) .
Similarly to Propositions 16. 1 and 16. 2, we have

PROPOSITION 17. 1. A necessary and suffiffifficient condition that \{e_{\rho}\} of
type (b) admit a solution of (17. 1) is given by

(17. 2) e_{3}^{2}=e_{1}e_{2}1

When this condition is satisfified, the set (q_{a}) is determined uniquely to within
the freedom of the numberings and the change of all signs of q_{a}

’s.
Hence, when a U_{0} of type (b) satisfies the condition stated above, it has

a possibility of being a candidate for V_{0} of type (II_{\rho a}) . The actual method
of the discrimination will be considered in the following sections.

In the above investigations, if we consider the case in which e_{1}=e_{2}=e_{3}

holds, \{e_{\rho}\} is of type (c) with e>0 , and the V_{0} belongs to type (II_{\rho b}) at the
same time. The V_{0} is nothing but the S(C) or S(\overline{C}) . This is also seen
from the fact that the line elements of (II_{\rho b}) given in \S 3 of [2] can contain
those of (II_{\rho a}) if we consider the special case in which a=0 or b=0 holds.
In connection with these circumstances, we give the following Proposition,
written for \rho=4 :
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PROPOSITION 17. 2. A necessary and suffiffifficient condition that a V_{0} of
type (II_{4a}) given by (p_{2}, p_{3},0) be of type (II_{4b})(i.e. S(C)) at the same time
is given by p_{2}=p_{3} .

The proof is easy if we use the facts: (1) \delta_{4}^{i} is the unique parallel
vector field, and (ii) a necessary and sufficient condition that the three-
dimensional space orthogonal to this vector be of constant curvature is given
by p_{2}^{2}=p_{3}^{2}‘=p_{2}p_{3} , together with Proposition 19. 1 below.

As a matter of course, we have similar Propositions for \rho=3 and 2, in
which cases S(C) should be replaced by S(\overline{C}) .

Thus we have completed the investigations of the problem of deter-
mining p_{a}’s from \{\lambda\} assuming that the V_{0} belongs to (I) or (II_{\rho a}) . The dis-
cussions have been made only from the values of \lambda_{a\beta}’s. As is stated in the
last section, however, the consideration of \{\lambda\}_{s} together with \{\lambda\} will be
of use in determining the numberings of p_{a}’s and, as a result, in the dis-
crimination process itself. If the given U_{0} is a V_{0} , the six-dimensional
eigenvectors corresponding to three e_{\rho}’s must be plus and those corresponding
to the remaining three must be minus vectors. Therefore, when \{\lambda\}_{s} does
not satisfy this condition, the U_{0} is not V_{0} . Next, as an example, we con-
sider a U_{0} whose \{\lambda\} is of type (a). When, for example, e_{1} is a simple
eigenvalue and the eigenvector u_{1|A} is plus, the e_{1} should be identified with
one of p_{2}^{2} , p_{3}^{2} and p_{2}p_{3} . On t.he contrary, if u_{1|A} is minus, the e_{1} should
be one of p_{4}^{2} , p_{2}p_{4} and p_{3}p_{4} . It will be easily understood that such con-
siderations are of use in determining the numberings of p_{a} ’s. Similar cir-
cumstances also hold for all cases belonging to (a) or (b). But we stop here
for brevity’s sake.

\S 18. Discrimination of V_{0} , 3.

Let a V_{0} belong to type (I) or (II_{\rho a}) . From the formulas in \S 2, we
find that such a V_{0} has a c.s. satisfying

(18. 1) \lambda_{2}=-p_{2i} \lambda_{3}=-p_{3} , \lambda_{4}=-p_{4} ;

\nu_{1}=-(p_{2}^{2}+p_{3}^{2}+p_{4}^{2}) , \nu_{2}=-p_{2}(p_{2}+p_{3}+p_{4}) ,
(18. 2)

\nu_{3}=-p_{3}(p_{2}+p_{3}+p_{4}) , \nu_{4}=-p_{4}(p_{2}+p_{3}+p_{4}) .

As a matter of course, these \nu_{a} ’s are constants, and we can determine them
as the eigenvalues of the Ricci tensor K_{i}^{f}

. . Further, the eigenvectors of
K_{i}^{j}

. corresponding to \nu_{1} are time-like, and those to \nu_{a}’s are space-like. On
the other hand, p_{a} ’s are almost determined from \lambda_{a\beta}’s by the methods stated
in the preceding sections. If we consider these circumstances, it is evident
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that (18.2) is of use in determining p_{a}’s more precisely.
From Proposition 3.2 of [2], we have the following table concerning

the relation between the type (I) or (II_{\rho a}) and the classification (V_{I}, V_{II}, \cdots, V_{v}) .
(I), (II_{\rho a}) V_{I}

(I) V_{IIa} , V_{IIb} , V_{IIc} , V_{IId}\cdots\cdots\cdots\cdots V_{II}

(II_{\rho a})(I) V_{IIIc}V_{IIIa}

, V_{IIIb} , V_{IIIc}

\} ............ V_{III}

(I) S(A) ................................. V_{v}

From this table, we find, for example, that V_{0} belonging to V_{I} is of type
(I) or (II_{\rho a}), and that the only V_{0} belonging to V_{v} is S(A), which is of
type (I).

Now we come back to the problem of the discrimination. When the
given U_{0} is U_{I} or U_{II} , the discrimination is easy by using the theory de-
veloped in \S 4 and \S 5. In this case, the execution of the c.v. test will
become much simpler if we use the values of \lambda_{a}’s obtained from (18. 1) by
using p_{a}’s almost determined by the methods studied in the preceding sec-
tions. On the other hand, S(A) is characterized by (16. 7), or, in terms of
\{\lambda\} , by (16. 6). Thus the method of the discrimination is evident. Hence,
if it is known that the given U_{0} is of type (I) or (II_{\rho a}), the only remaining
case to be studied is that in which the U_{0} belongs to U_{III} .

By virtue of the circumstances stated above, we consider in the fol-
lowing the V_{0}’s, which are of type (I) or (II_{\rho a}) and belong to V_{III} . The
line element of such a V_{0} in the coordinate system of (1. 1) is given by
(16. 1) when the V_{0} is of type (I), and by the same expression in which one
of p_{a}’s is 0 and the remaining two are non-zero when it is of type (II_{\rho a}) .

First we consider the case of V_{IIIa} . From the definition of V_{IIIa} , we
have \nu_{1}=\nu_{2}=\nu_{3}\neq\nu_{4} , or, in terms of p_{a} ’s,

(18. 3) p_{2}^{2}+p_{3}^{2}+p_{4}^{2}=p_{2}(p_{2}+p_{3}+p_{4})=p_{3}( )\neq p_{4}( ) ,

from which we can obtain

(18. 4) p_{2}=p_{3}(\equiv p) , p_{4}=0 ; \nu_{1}=\nu_{2}=\nu_{3}=-2p^{2}\neq\nu_{4}=0 ,

(18. 5) \{\lambda\}=\{0,0,0, P, P, P\} , \{\lambda\}_{s}= \{-- -, +++\} , (P\equiv p^{2}>0) .
Therefore the V_{0} is nothing but the S(C) studied in detail in \S 5 of [2], and
the method of its discrimination is given by Proposition 19. 1 below.

Next we consider the case of V_{IIIb} . In the same way as in the above,
we can obtain from \nu_{1}=\nu_{3}=\nu_{4}\neq\nu_{2} (or \nu_{1}=\nu_{2}=\nu_{4}\neq\nu_{3}),
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(18. 6) p_{3}=p_{4}(\equiv p) , p_{2}=0 ; \nu_{1}=\nu_{3}=\nu_{4}=-2p^{2}\neq\nu_{2}=0 ,

and

(18. 7) \{\lambda\}=\{0,0,0, P, P, P\} , \{\lambda\}_{s}=\langle++- , +– }, (P\equiv p^{2}>0) .
The equation for the case (\nu_{1}=\nu_{2}=\nu_{4}\neq\nu_{3}) corresponding to (18.6) is evident.
The V_{0} is nothing but the S(\overline{C}), whose discrimination theorem is given by
the same Proposition 19. 1 below.

Lastly we deal with V_{0} belonging to V_{IIIc} . In this case, we have \nu_{1}

\neq\nu_{2}=\nu_{3}=\nu_{4} , or, in terms of p_{a} ’s,

(18. 8) p_{2}^{2}+p_{3}^{2}+p_{4}^{2}\neq p_{2}(p_{2}+p_{3}+p_{4})=p_{3}( )=p_{4}( ) ,

from which we have
(18. 9) p_{2}+p_{3}+p_{4}=0 .

Considering the case p_{2}p_{3}p_{4}\neq 0, we can easily prove from these equations
PROPOSITION 18. 1. When a V_{0} of type (I) belongs to V_{IIIc} , its \{\lambda\} is

of type stated in Propositions 16. 3 and 16. 4. Further, a necessary and
suffiffifficient condition that \{e_{\rho}\} have a solution of (16. 2) and (18. 9) is givm
by that in Proposition 16. 3 and

(18. 10) e_{3}+e_{4}+e_{5}=0r

When this condition is satisfified, p_{a} ’s are determined from \lambda_{a\beta}’s uniquely to
within the interchange of p_{2} and p_{3} and the change of all signs, if we take
the \{\lambda\}_{s} into consideration.

For example, (p_{2} and p_{3}) or (p_{3} and p_{4}) (or p_{2} and p_{4}) are of the same
sign according as the eigenvectors corresponding to e_{6} , which is positive,
are plus or minus vectors respectively.

Next we proceed to the case in which one of p_{a} ’s, say p_{4} , is 0. From
(18. 9), we have

(18. 11) p_{2}=-p_{3}(\equiv p)\neq 0 ; \nu_{2}=\nu_{3}=\nu_{4}=0\neq\nu_{1}=2P,, (P\equiv p^{2}) ,

(18. 12) \{\lambda\}=\{0,0,0, P, P, -P\}i \{\lambda\}_{s}=\{++-, +--\}

Considering similarly the cases p_{3}=0 and p_{2}=0, we have
PROPOSITION 18. 2. Whm a V_{0} of type (II_{\rho a}) bdongs to V_{IIIc} , its \{\lambda\}

is of type given in (18. 12). Whm this condition is satisfified, p_{a} ’s are &ter-
mined by \lambda_{a\beta}’ s uniqudy to within the interchange of p_{2} and p_{3} and the
change of all signs, if we consider \{\lambda\}_{s} . (It should be noted here that one
of p_{a} ’s is 0.)
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Now we shall show a theorem which is of use in discriminatinglV_{0}

which belongs to V_{IIIc} and is of type (I) or (II_{\rho a}) . In such a V_{0} , u_{i} is
known from K_{i}^{j}

. by considering the unit eigenvector corresponding to the
simple eigenvalue.

PROPOSITION 18. 3. Let a V_{0} defifined by (16. 1) be given. Then the
equations

(18. 13) \nabla_{i}u_{j}=-p_{2}u_{i}u_{j}1 , u_{i}u^{i}=-1 , u_{i}u^{i}=01 ,

determine u_{i} uniquely to within its sign, provided p_{2}\neq p_{3} and p_{2}\neq p_{4} . Here
1

u_{i} and u_{i} are known and unknown quantities respectively. In other words,
2

we have u_{i}=\in u_{i} in th2is case. 4Whenp_{2}=p_{3}=p_{4}23 or p_{2}=p_{3}\neq p_{4}2 or p_{2}=p_{4}\neq p_{3}

holds, we have u_{i}=au_{i}+b^{3}u_{i}+cu_{i} or u_{i}=au_{i}+bu_{i} or u_{i}=au_{i}+b^{4}u_{i} , where a,
b and c are arbitrary constants satisfying a^{2}+b^{2}-c^{2}=1 or a^{2}+b^{2}=1 or a^{2}

-b^{2}=1 respectively. Similar Propositions hold if we replace p_{2} by p_{3} or p_{4}

in (18. 13), and, in the case of p_{4} , the second equation by u_{i}u^{i}=1 .
It is evident that the existence of the arbitrariness of (a, b, c) and (a, b)

correspond to the freedoms of the generalized \omega- and \omega-transformations of
c.s . respectively. The proof is evident if we calculate the actual expressionl

of (18. 13) in the coordinate system of (16. 1), and use the relation u_{i}=\delta_{i}^{1} .
From the above considerations, we can conclude that when a V_{0} of type

(I) or (II_{\rho a}) is given, and it is known that it belongs to V_{IIIc} , we can de-
1 a

termine its p_{a} ’s, u_{i} and u_{i}’s by using Ki^{f}, \{\lambda\} and \{\lambda\}_{s} and solving (18.13).
On the other hand, both V_{IIIb} and V_{IIIc} (generically called V_{III2}) are

characterized by the fact that the eigenvector v_{i} of K_{i}^{f}
. corresponding to

the simple eigenvalue is space-like. Further, if we use Proposition 2. 1 of
[2], we can determine whether a given V_{III2} is V_{IIIb} or V_{IIIc} as follows:

PROPOSITION 18. 4. A V_{III2} belongs to V_{IIIc}whm and only whm
v^{i}\nabla_{i}v_{f}=0 and \nabla_{i}v_{j}\neq 0 . Thus, when v^{i}\nabla_{i}v_{f}\neq 0 or \nabla_{i}v_{f}=0 holds, the V_{III2}

belongs to V_{IIIb} .
Now we come back to the problem of the discrimination. Let a U_{0}

belonging to U_{III} be given. We assume that it is known to belong to U_{IIIc} ,
by examining the sign of the magnitude of the v_{i} and trying the test stated
in the above Proposition. Further we assume that its \{\lambda\} be of type (a)
or (b). (It is evident that the U_{0} is neither S(C) nor S(\overline{C}) , since they belong
to V_{IIIa} and V_{1IIb} respectively, and accordingly that the \{\lambda\} of the given U_{0}

cannot be of type (c).) Then from the discussions in \S 16 and the present
section, we can conclude that, if the U_{0} is a V_{0} , it must be of type (I) or



Discrimination of the space-time V, II. 37

(II_{\rho a}) , and its \{\lambda\} and \{\lambda\}_{s} must satisfy the conditions stated in Proposition
18. 1 or 18. 2. (If this is not the case, the U_{0} cannot be a V_{0} .) Determine

1

p_{a}’ s1 from \lambda_{a\beta}’ s as is stated in these Propositions, u_{i} from K_{i}^{j}
. by putting

u_{i}=v_{i} , and u_{i}’ sa by the method stated in Proposition 18.3. Then try c.v.
test. If the U_{0} fails anywhere, it is not V_{0} . It should be noted here that

a
in the process of finding u_{i}’s, we may have some arbitrariness given by a
and b stated 2inProposition318.3 . It is evident in this case, however, that
any pair of u_{i} and u_{i} , for example, will be of use in the c.v. test. More-
over, we cannot have the case in which p_{2}=p_{3}=p_{4} holds, since the relation
(18. 9) must hold.

Thus we have finished the investigations concerning the discrimination
of U_{0} , which belongs to any of U_{I} , U_{II} , U_{v} and U_{III} , and whose \{\lambda\} is of
type (I) or (II_{\rho a}) . But we will not restate the results in the from of PrO-
position for brevity’s sake.

\S 19. Discrimination of V_{0} , 4.
In the previous sections, we have completed the discussions for the cases

in which \{\lambda\} ’s are of type (a) or (b). Now we consider the case of type (c).
As is stated in \S 17, the case of (c), in which e>0 holds, is a special case
of (b), and gives S(C) or S(\overline{C}) . Now we shall give a theorem characterizing
S(C) and S(\overline{C}) , which naturally includes the case e<0 also.

PROPOSITION 19. 1. An S(C) (or S(\overline{C})) is characterized by the conditions
that (i) it admit one and only one parallel time-like (or space-like) vector

fifield v_{i} to within an arbitrary constant multiplier, and that (ii) it be con-
formally fiat.

PROOF. We prove the theorem for S(C). The necessity is evident by
the direct calculations. (Cf. Proposition 5. 6 of [2].) Conversely, we assume
that (i) and (ii) are satisfied. Just as in [3.1] of [1], the line element can
be brought into the form

(19. 1) ds^{2}=-h_{\rho\sigma}dx^{\rho}dx^{\sigma}+dt^{2} , v^{i}=v_{i}=\delta_{i}^{4} ,

where h_{\rho\sigma}=h_{\rho\sigma}(x^{\tau}) and \rho, \sigma, \tau=1,2,3 . Then it is easy to prove that the
condition that the space-time be conformally flat is equivalent to that the
three-dimensional space defined by h_{\rho\sigma} be of constant curvature. Thus the
space-time is S(C).\cdot Similarly, we can prove the theorem for S(\overline{C}) .

Thus we can conclude that when a U_{0} , which belongs to U_{IIIa} or U_{IIIb}

and whose \{\lambda\} is of type (c), is given, we can determine whether it is a V_{0}
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of type (II_{\rho b}) or (II_{\rho b’}) , i.e. S(C) or S(\overline{C}) . As a matter of course, the special
case of type (b) stated in the above is included in the above discussions.

Proposition 19. 1 is written in an invariant form, and is of use as a
discrimination theorem for S(C) and S(\overline{C}) . Moreover, it is shown in PropO-
sition 3. 1 of [2] that a V_{0} of type (c) is necessarily S(C) or S(\overline{C}) . There-
fore we can conclude that we have completed the discrimination theory for
V_{0} of type (c).

REMARK. The invariant characterization of S(C) was investigated in
detail by the present author in [7] from the standpoint that it is a special
type of the spherically symmetric space-time. Another method is seen in
[8] by the same author.

Lastly, we consider the case of V_{0} whose \{\lambda\} is of type (d). Such V_{0}’ s

are studied in detail in \S 3 and \S 7 of [2]. The main results are as follows.
We have only three kinds of such V_{0}’s, i.e. those satisfying (\lambda_{14}=P, other
\lambda_{\alpha\beta}=0) , (\lambda_{13}=P, other \lambda_{a\beta}=0) and (\lambda_{12}=P, other \lambda_{\alpha\beta}=0). The first one belongs
to V_{IVb} and the remaining two to V_{IVa} . Each class is further classified
into two subclasses according as the sign of P. They are \{(III_{4b}), (III_{4b’})\} ,
\{(III_{3b}), (III_{3b’})\} and \{(III_{2b}), (III_{2b’})\} . The indices b and b’ correspond to the
cases P>0 and P<0 respectively. The last two classes are (23)-conjugate
to each other and their space-times are the same. Hence we can consider
that these two classes are the same.

From these considerations, we arrive at the following results. When
a V_{0} of type (d) is given, we can discriminate to which of V_{IVa} or V_{Ivb} it
belongs by the condition (\nu=-P, \nu’=0) or (\nu=0, \nu’=-P) respectively, or
by the condition that the six-dimensional eigenvector u_{A} corresponding to
P be plus or minus vector respectively. Here \nu is the double eigenvalue of
K_{i}^{f}

. whose eigenspace is composed of only space-like eigenvectors and \nu’ is
the other double eigenvalue. In other words, when a U_{0} belonging to U_{IV}

is given (or when U_{0} of type (d) is given), and if the U_{0} is a V_{0} , we can
determine the subclass to which the U_{0} belongs by the method stated above.

Now we assume shat a U_{0} belonging to U_{IV} is given, and that it is
found by the method stated above that it belongs to V_{IVa} . If this U_{0} is
a V_{IVa} , its u_{i}’ s\alpha are given by (u_{i}=u_{i}^{*}, u_{i}=u_{i}^{*})2233 and

(19. 2) u_{i}=u_{i}^{*}11 cosh \sigma+u_{i}^{*}4 sinh \sigma , u_{i}=u_{i}^{*}41 sinh \sigma+u_{i}^{*}4 cosh \sigma ,

where \sigma is an arbitrary scalar and (u_{i}^{*}, u_{i}^{*})23 and (u_{i}^{*}, u_{i}^{*})14 are any pairs of
the unit eigenvectors of Ki^{f} corresponding to - P and 0 respectively, and
satisfying the orthonormal condition (F_{1}) . Further, as a result of \S 7 of [2],
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we must have \lambda_{2}=\lambda_{3}=0 . (This is the reason why we can take any pair of
(u_{i}^{*}, u_{i}^{*})23 as (u_{i}^{2}, u_{i}^{3}).) Thus we can determine whether the given U_{0} is a

a
V_{IVa} or not by the c.v. test using these u_{i}’s and \lambda_{a} ’s. Similar results can
be obtained with respect to the case of V_{IVb} , but we omit them for brevity’s
sake.

Thus we have completed the discrimination theory for V_{0} of type (d).
As an appendix we add a proposition concerning V_{0}’s of type (III_{\rho b}) or (III_{\rho b’})

and corresponding to Proposition 19. 1.
PROPOSITION 19. 2. \prime Ihe V_{0} of type (III_{4b}) or (III_{4b’}) is a direct product

of twO-dimmsional fiat space (whose signature is -2) and a twO-dimmsional
space of constant curvature (whose signature is 0). The twO-dimmsiond
fiat space is the linear space spanned by the two mutually orthogonal parallel
vector fifields, which are both space-like. Similar propositions hold for the
cases of (III_{2b}), (III_{2b’}), (III_{3b}) and (III_{3b’}) .

The proof is easy if we use the results of \S 5 and \S 7 of [2]. As a
matter of course, we can use this Proposition in the discrimination process
of the V_{0} under consideration.
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