A remark on permutation groups of degree 2p

By Tomoyuki WADA

1. Introduction

Let Ω be the set of letters $1, 2, \dots, 2p$, where p is an odd prime number. In this note we shall prove the following theorem.

THEOREM. Let G be a permutation group on Ω . Then one of the following occurs.

1) G has a normal Sylow p-subgroup;

2) G has an irreducible complex character whose degree is divisible by p.

In [4] N. Ito and the author proved the theorem in the case G is transitive. In this note we may assume that G is intransitive. The author thanks to Professor T. Tsuzuku and Professor H. Kimura who have given him valuable suggestions.

2. Proof of the theorem

Let Ω_i $(i=1, \dots, r)$ be the orbit of G in Ω . If $|\Omega_i| < p$ for all $i=1, \dots, r$, then Sylow p-subgroup of G is trivial. Therefore we may assume $|\Omega_1| \ge p$. At first we assume that $|\Omega_1| = p$. Let π be the permutation representation of G on Ω_1 . If G/Ker π is non-solvable, then 2) occurs by [3]. If G/Ker π is solvable, then G/Ker π is a Frobenius group whose kernel is Q/Ker π , where Q is the inverse image of the Frobenius kernel by the natural homomorphism G onto G/Ker π . If $r \ge 3$, a Sylow *p*-subgroup of Q is normal in it. For $Q = \text{Ker } \pi \cdot P$ for some Sylow *p*-subgroup P of G and every element of Ker π commutes with any element of P. Therefore 1) occurs. Assume that r=2, i.e. $\Omega = \Omega_1 \cup \Omega_2$, where $|\Omega_2| = p$. Let η be the permutation representation of Q on Ω_2 . If Q/Ker η is intransitive on Ω_2 , then a Sylow p-subgroup of Q is normal in it. Hence 1) occurs. So we may assume that Q/Ker η is transitive. Then it is easy to see that Ker η is a p-group. If Q/Ker η is non-solvable, then 2) occurs by [3] and the theorem of Clifford ([2], p. 565). If Q/Ker η is solvable, then a Sylow *p*-subgroup of Q is normal in it. Thus 1) occurs.

Next we assume that $|\Omega_1| = p + k \ (0 < k < p)$. Since a Sylow *p*-subgroup of G is not trivial, G/Ker π has an element of order *p*. It follows that

G/Ker π is primitive on Ω_1 ([5], Theorem 8. 4).

If G/Ker π contains the alternating group on Ω_1 , then G has an irreducible character corresponding to the Young diagram $[p, 1^k]$ whose degree is divisible by p. Hence 2) occurs. If G/Ker π does not contain the alternating group, then k=1 or 2 by the theorem of Jordan ([5], Theorem 13. 9).

Assume $|\Omega_1| = p+1$. Since G/Ker π is doubly transitive on Ω_1 , G/Ker π has the irreducible character of degree p which appears in the permutation character of G/Ker π on Ω_1 . Thus 2) occurs.

Assume $|\Omega_1| = p + 2$. G/Ker π is triply transitive on Ω_1 ([5], Theorem 13. 8). If the stabilizer of two letters a and b of G/Ker π is solvable, then it is a Frobenius group on $\Omega_1 - \{a, b\}$. By [1] G/Ker π is one of the group PGL (2, 2^m), where m is an integer, and P/L (2, 2^q), where q is prime, and $2^m + 1 = p + 2$ or $2^q + 1 = p + 2$ in each case (where PGL (2, 2^m) is a two dimensional projective general linear group over the finite field GF (2^m), P/L (2, 2^q) is the extension of PGL (2, 2^q) by the Galois group of GF (2^q)). It is well known that these groups satisfy 2). If the stabilizer of a and b of G/Ker π is non-solvable, then G/ker π is quadraply transitive on Ω_1 ([5], Theorem 11. 7). By a theorem of Frobenius ([2], p. 602) the restriction to G/Ker π of the irreducible character of the symmetric group on Ω_1 corresponding to the Young diagram [p, 1^2] is also irreducible. Since its degree is p(p+1)/2, G/Ker π satisfies 2) and so does G. This completes the proof.

> Department of Mathematics, Hokkaido University

References

- D. GORENSTEIN and D. R. HUGHES: Triply transitive groups in which only the identity fixes four letters, Ill. Jour. Math., 5 (1961), 486-491.
- [2] B. HUPPERT: Endliche Gruppen 1, Springer, Berlin, 1967.
- [3] N. ITO: Über die Darstellungen der Permutationsgruppen von Primzahlgrad, Math. Zeit., 89 (1965), 196-198.
- [4] N. ITO and T. WADA: A note on transitive permutation groups of degree 2p (to appear).
- [5] H. WIELANDT: Finite permutation groups, Academic press, New York, 1964.

(Received on May 24, 1972)