
Submanifolds of codimension greater

than 1 with certain properties

By Toshikiyo YAMADA

\S 1. Introduction
H. Liebmann [5] has proved that the only ovaloid with constant mean

curvature in a 3-dimensional Euclidean space is a sphere. Various generali-
zations of this theorem have been obtained recently. Y. Katsurada [1], [2]
and K. Yano [8] have generalized this theorem to a hypersurface of a
Riemannian manifold admitting an infinitesimal conformal or homothetic
transformation.

On the other hand Y. Katsurada [3], [4], H. K\={o}jyo [3], T. Nagai [4],
and K. Yano [9] studied this problem when the enveloping manifold admits
an infinitesimal conformal transformation, and proved that under some con-
ditions the submanifold in consideration is umbilical only with respect to
the mean curvature normal.

Furthermore, M. Okumura [7] studied the same problem as that in [3],
[4], [9] and proved that under certain conditions the submanifold in consid-
eration is not only umbilical with respect to the mean curvature normal
but also is totally umbilical.

The purpose of the present paper is to obtain a theorem which gen-
eralizes the result that M. Okumura has proved in [7]. The author wishes
to express to Prof. Y. Katsurada and Dr. T. Nagai his very sincere thanks
for their kind guidance.

\S 2. Submanifolds in a Riemannian manifold

Let M^{n} be an n-dimensional orientable differentiable manifold, and \iota be
an immersion of M^{n} into an m-dimensional Riemannian manifold \overline{M}^{m} . Then
the Riemannian metric.\tilde{q} of \overline{M}^{m} induces naturally a Riemannian metric g

on M^{n} by the immersion \iota in such a way that

g(X, Y)=\tilde{g}(d\iota(X), d\iota(Y))j

where we denote by d\iota , the differential map of \iota , and by X, Y vector fields
in M^{n} . In order to simplify the presentation we identify, for each point
p\in M^{n}, the tangent space T_{p}(M) with d\iota(T_{p}(M))\subset T_{e(p)}(M) by means of
the immersion.
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Since M^{n} is orientable, if we assume that \overline{M}^{m} is also orientable, in
a certain neighborhood U of p\in M^{n} we can choose two fields of mutually
orhtogonal unit normal vectors C_{v} of M^{n} at each point of U in such a way
that, if (B_{1}, \cdots, B_{n}) , is a positively oriented frame of tangent vectors at p
then the frame (d\iota(B_{1}), \cdots, d\iota(B_{n}), C_{v})_{t(p)} is also positively oriented, where
here and in the sequel the indices u, v run over the range \{n+1, \cdots, m\} .

Let X, Y be tangent to M^{n} . Then the covariant derivative of d\iota(X)

in the direction of d\iota(Y) is expressed as

(2. 1) \tilde{\nabla}_{d\ell(Y)}d\iota(X)=\nabla_{Y}X+\sum_{v}h_{v}(X, Y)C_{v} .

Although \nabla_{Y}X denotes the tangential components of \overline{\nabla}_{df(Y)}d\iota(X), it is
easily verified that \nabla_{Y}X is identical with the covariant derivative of X in
the direction of Y with respect to the induced Riemannian metric g.

The tensor h_{v} of type (0, 2) over M^{n} is called the second fundamental
tensor of M^{n} in \overline{M}^{m} with respect to the normal vector C_{v} . The normal
vector C_{v} is unit normal vector, and we can put

(2. 2) \tilde{\nabla}_{X}C_{v}=-A_{v}(X)+\sum_{u}l_{vu}(X)C_{u}.,

where A(X) denote the tangential component of \tilde{\nabla}_{X}C_{v} on M^{n}, and l is the
third fundamental form of M^{n}in\overline{M}^{m} .

Let X, Y\in T_{p}(M) . Then we have the equation of Weingarten:

(2. 3) \tilde{g}(\tilde{\nabla}_{X}C_{v}, Y)=-h_{v}(X, Y) .
Let \{x^{a}\} , a=1,2, \cdots , n be local coordinate in an open neighborhood U of
p\in M^{n}.

Using the local coordinate, (2. 2) is expressed as

(2. 4) \overline{\nabla}_{B_{c}}C_{v}=-H_{vc}^{a}B_{a}+\sum_{u}L_{vuc}C_{u} ,

where L_{vuc}.=l_{vu}(B_{c}).
By virture of (2. 3)

(2. 5) H_{Jba}.=h_{v} def(\frac{\partial}{\partial x^{b}}, \frac{\partial}{\partial x^{a}})

=-\tilde{g}(\overline{\nabla}_{B_{b}}C_{v}, B_{a})

=H_{vb}^{c}\tilde{g}(B_{c}., B_{a})

=H_{vb}^{c}g_{ca}’.
where g_{ca}=\tilde{g}(B_{c}, B_{a}), and we use Einstein’s summation convention for sim-
plicity. Let \tilde{R} and R be curvature tensors of \overline{M}^{m} and M^{n} respectively.
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Then the equation of Mainardi-Codazzi is given by

(2. 6) \tilde{g}(\tilde{R}(B_{c}, B_{b})B_{a}, C_{v})

= \nabla_{c}H_{vba}-\nabla_{b}H_{vca}+\sum_{u}(L_{vub}H_{uca}-L_{vuc}H_{uba}) ,

where R_{abcd}=g (R(\frac{\partial}{\partial x^{a}} , \frac{\partial}{\partial x^{b}}) \frac{\partial}{\partial x^{c}} , \frac{\partial}{\partial x^{\iota l}}), and \nabla_{a} denotes the operation of

covariant differentiation in classical tensor calculus.

\S 3. Submanifolds and some vector fields

Let g^{ab} be the inverse matrix of g_{ab} , and put

H_{va}^{a}=g^{ba}H_{vab} , H_{v}^{ab}=g^{ac}H_{vc}^{b} .
Then the vector H defined by

(3. 1) H= \frac{1}{n}\sum_{v}H_{va}^{a}C_{v}

is dependent of the choice of mutually orthogonal unit normal vectors of
M^{n}, and so defines a vector field along M^{n} . We call this vector field the
mean curvature vector field along M^{n} with respect to \overline{M}^{m}.

When at each point of M^{n} there exist function h_{v}’ such that h_{v}(X, Y)=

h_{v}’g(X, Y) or equivalently

(3. 2) H_{vba}=h_{v}’g_{ba} ,

we call M^{n} a totally umbilical submanifold. From this definition, if M^{n} is
totally umbilical we have

(3. 3) h_{v}’= \frac{1}{n}H_{va}^{a}c

PROPOSITION 3. 1. A necessary and sufficient condition for a submani-
fold to be umbilical is that the following equation is satisfified:
(3. 4) H_{vba}H_{v}^{ba}= \frac{1}{n}(H_{va}^{a})^{2} .

PROOF. This follows from the identity

(H_{vba}- \frac{H_{vc}^{c}}{n}g_{ba})(H_{v}^{ba}-\frac{H_{vc}^{c}}{n}g^{ba})

=H_{vba}H_{v}^{ba}- \frac{1}{n}(H_{vc}^{c})^{2} ,

and the positive definiteness of Riemannian metric g_{ba} .
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Next we consider the normal bundle N(M^{n}) of M^{n} . For X\in T(M^{n}) ,

N\in N(M^{n}) , a connection ’
\nabla on N(M^{n}) is defined by

(3. 5) ’ \nabla_{X}N=(\overline{\nabla}_{X}N)^{N} ,

where (\tilde{\nabla}_{X}N)^{N} denotes the normal part of \overline{\nabla}_{X}N. When \tilde{\nabla}_{X}N vanishes iden-
tically along M^{n} we say that N is parallel with respect to the connection
of the normal bundle N(M^{n}) .

PROPOSITION 3. 2. The mean curvature vector fifield H is parallel with
respect to the connection of the normal bundle if and only if the following
equation is valid,

(3. 6) \nabla_{c}H_{ua}^{a}=-\sum_{v}H_{va}^{a}L_{vuc} .

PROOF.

\tilde{\nabla}_{B}, H= \frac{1}{n}\sum_{v}\overline{\nabla}_{B_{G}}(H_{va}^{a}C_{v})

= \frac{1}{n}\sum_{v}\nabla_{c}H_{va}^{a}C_{v}+\frac{1}{n}\sum_{v}H_{va}^{a}(-H_{vc}^{b}B_{b}+\sum_{u}L_{vuc}C_{u})

= \frac{1}{n}\sum_{v}H_{va}^{a}H_{vc}^{b}B_{b}+\frac{1}{n}\sum_{a}(\nabla_{c}H_{ua}^{a}+\sum_{u}H_{av}^{v}L_{vuc})C_{u} ,

from which we have Proposition 3. 2.

PROPOSITION 3. 3. If the mean curvature vector fifield H is parallel
with respect to the induced connection of the normal bundle, then \sum_{v}(H_{va}^{a})^{2}

is constant.
PROOF. From Proposition 3. 2. this is easily verified.
PROPOSITION 3. 4. Let M^{n} be a totally umbilical submanifold on \overline{M}^{m}

such that at each point of M^{n} the tangent space is invariant under the
cunature transformation of \overline{M}^{m} . Then the mean curvature vector fifield H
is parallel with respect to the induced connection of the normal bundle.

PROOF. Since at each point of M^{n} the tangent space is invariant under
the curvature transformation of \overline{M}^{m}, equation (2. 6) reduces to

(3. 7) \nabla_{c}H_{va}^{a}-\nabla_{b}H_{vc}^{b}=\sum_{u}(L_{vuc}H_{ua}^{a}-L_{vub}H_{uc}^{b}) .

Assuming M^{n} to be totally umbilical submanifold of \overline{M}^{m}, we have
H_{va}^{a}=nh_{v}’

(3. 8) H_{vc}^{b}=H_{vca}g^{ab}=h_{v}’g_{ea}g=h_{v}’ab\delta_{c}^{b} ,

and consequently, inserting the relation (3. 8) into (3. 7), we obtain
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\nabla_{c}h_{v}’=\sum_{u}h_{u}’L_{vuc}=-\sum_{u}h_{\acute{u}}L_{uvc}

\frac{1}{n}\nabla_{c}H_{va}^{a}=-\frac{1}{n}\sum_{u}H_{ua}^{a}L_{uvc} ,

from which, together with Proposition 3. 2, we have Proposition 3. 4.

\S 4. lntegral formulas
Let M^{n} be a compact, orientable submanifold of \overline{M}^{m} in which there

exists an infinitesimal conformal transformation \tilde{X}, that is, in which \tilde{X} is
a fifield of \overline{M}^{m} and satisfies for any vector fields \overline{Y},\overline{Z}\in T(\overline{M}^{m}),

(4. 1) (\mathscr{S}_{A}(\tilde{X}).\tilde{q})(\overline{Y},\tilde{Z})=\tilde{\sigma}(\tilde{\nabla}_{7}\tilde{X},\tilde{Z})+\tilde{g}(\overline{Y},\tilde{\nabla}_{\tilde{Z}}\tilde{X})=2\rho\tilde{g}(\overline{Y},\tilde{Z}) ,

where \mathscr{L}(\tilde{X}) is the operator of Lie derivative with respect to \tilde{X} and \rho is
a function on \overline{M}^{m} . \overline{X} is represented as a linear combination of B_{a} , C_{v} .
Hence we put

(4. 2) \tilde{X}=X+\sum_{v}\alpha_{v}C_{v} , X=v^{a}B_{a}

Since (2. 1) and (4. 2) yield that

g( \nabla_{Y}X, Z)=\tilde{g}(\tilde{\nabla}_{Y}X-\sum_{v}h_{v}(X, Y)C_{v}, Z)

=\overline{g}(\tilde{\nabla}_{Y}X, Z)

= \tilde{g}\{\overline{\nabla}_{Y}(\tilde{X}-\sum_{v}\alpha_{v}C_{v}), Z\}

= \tilde{g}(\tilde{\nabla}_{Y}\tilde{X}, Z)-\sum_{v}\alpha_{v}\tilde{g}(\nabla_{Y}C_{v}, Z)

= \overline{g}(\overline{\nabla}_{Y}\overline{X}, Z)+\sum_{v}\alpha_{v}\tilde{g}(H_{vc}^{a}B_{a}, Z) .
Similarly we have

g(Y, \nabla_{Z}X)=\tilde{g}(Y,\tilde{\nabla}_{Z}\tilde{X})+\sum_{v}\alpha_{v}\tilde{.\emptyset}(Y, H_{vb}^{a}B_{a}) .
Substituting v^{a}\partial/\partial x^{a}, \partial/\partial x^{a} and \partial/\partial x^{b} for X, Y and Z respectivety, we get

(4. 3) \nabla_{c}v_{b}+\nabla_{b}v_{c}=2(\rho_{g_{bc}}+\sum_{v}\alpha_{v}H_{vbc})

because of (4. 1), which implies that

(4. 4) div X= \nabla_{a}v^{a}=n\rho+\sum_{v}\alpha_{v}H_{v\iota}^{a},=n\{\rho+.\tilde{q}(H,\tilde{X})\}

Since M^{n} is compact, orientable we have

(4. 5) \int_{M^{n}}\rho dM=-\int_{M^{n}}\tilde{.q}(H,\tilde{X})dM .

Now we put F= \sum_{v}A_{v}H_{vl}^{\prime l}, . Then it is easily verified that F is inde-
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pendent of the choice of mutually orthogonal normal vector C_{v} and con-
sequently that F defines a linear transformation on T(M^{n}) . Let Y=FX,
that is,

Y= \sum_{v}H_{v\iota l}^{d}A_{v}(X)

= \sum_{v}H_{vd}^{\prime l}A_{v}(v^{b}\frac{\partial}{\partial x^{b}})

= \sum_{v}H_{vl}^{d},H_{vb}^{\prime\iota}\frac{\partial}{\partial x^{a}}v^{b} .

Putting Y=u^{c}\partial/\partial x^{c}
” we have

(4. 6) u_{e}=g(Y, \partial/\partial x^{e})=\sum_{v}H_{vd}^{d}H_{vbe}v^{b} ,

from which
\nabla_{a}u_{e}=\sum_{v}(\nabla_{a}H_{vd}^{d})H_{vbe}v^{b}+\sum_{v}H_{vd}^{d}(\nabla_{a}H_{vbe})v^{b}

+ \sum_{v}H_{vl}^{d},H_{vbe}(\nabla_{a}v^{b}) .
Thus we get

div Y= \nabla_{a}u^{a}=\sum_{v}(\nabla_{a}H_{vd}^{d})H_{vb}^{a}v^{b}+\sum_{v}H_{v\acute{d}}^{l}(\nabla^{e}H_{vbe})v^{b}

+ \sum_{v}H_{vl}^{d},H_{vb}^{a}(\nabla_{a}v^{b})\ulcorner

Moreover,

\sum_{v}H_{v\iota l}^{a}H_{vb}^{a}\nabla_{a}v^{b}=\sum_{v}H_{vd}^{\prime l}H_{v}^{ac}g_{cb}\nabla_{a}v^{b}

= \sum_{v}H_{v\prime l}^{\prime l}H_{v}^{ac}\nabla_{a}v_{c_{J}}

= \frac{1}{2}\sum_{v}(H_{v\iota l}^{d}H_{v}^{ac}\nabla_{a}v_{c}+H_{v\iota l}^{\iota l}H_{v}^{ca}\nabla_{c}v_{a})

= \frac{1}{2}\sum_{v}H_{vd}^{d}H_{v}^{ac}(\nabla_{a}v_{c}+\nabla_{c}v_{a})

= \sum_{v}H_{vel}^{d}H_{v}^{ac}(\rho_{g_{ac}}+\sum_{u}\alpha_{u}H_{uac})

(4. 7) =p \sum_{u,v}(H_{vd}^{d})^{2}+\sum\alpha_{u}H_{uac}H_{va}^{d}H_{v}^{ac} .

LEMMA. W= \sum_{u,v}(H_{u’ l}^{\prime f}H_{vac}H_{u}^{ac}-H_{v’ l}^{d}H_{uac}H_{u}^{ac})C_{v} .

It can be easily veriefified that W is also independent of the choice of
mutually orthogonal unit normal vectors of M^{n} , and so defifines a vector
fifield along M^{n} . The vector fifield W vanishes identically if the submanifold
is totally umbilical.

PROOF. W= \sum_{u,v}(nh_{\acute{u}}h_{v}’g_{ac}h_{\acute{u}}g^{ac}-nh_{v}’h_{\acute{u}}g_{ac}h_{\acute{u}}g^{ac})C_{v}=0
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Using the vector field W defined in the Lemma,

(4. 8) .\tilde{q}

(W, \tilde{X})=\sum_{u,v}\alpha_{v}(H_{ud}^{d}H_{vac}H_{u}^{ac}-H_{v’ l}^{\prime l}H_{uac}H_{u}^{ac}) ,

moreover,

(4. 9) n \tilde{v}(H,\hat{X})(\sum_{u}H_{uac}H_{u^{ac}})=\sum_{u,v}\alpha_{v}H_{v’ l}^{l}‘ H_{uac}H_{u}^{ac} .

Adding (4. 8) and (4. 9), we have

(4. 10) \tilde{g}(W,\tilde{X})+n.\tilde{q}(H,\overline{X})(\sum_{u}H_{uae}H_{u}^{ac})=\sum_{u,v}\alpha_{v}H_{ud}^{\prime l}H_{vac}H_{u}^{ac} .
Thus we get

div Y=n \tilde{g}(H,\tilde{X})(\sum_{u}H_{uac}H_{u}^{ac})+\rho\sum_{v}(H_{v\acute{d}}^{l})^{2}

+ \tilde{g}(W,\tilde{X})+\sum_{v}H_{vd}^{d}(\nabla^{a}H_{vba})v^{b}

+ \sum_{v}(\nabla_{a}H_{vd}^{d})H_{vb}^{a}v^{b} .

Since M^{n} is compact, orientable we have

(4. 11) - \int_{M^{n}}\rho\sum_{v}(H_{vd}^{d})^{2}dM=\int_{N^{n}}\{n\tilde{g}(H,\overline{X})(\sum_{u}H_{uac}H_{u}^{ac}.)

+ \tilde{g}(W,\overline{X})+\sum_{v}H_{v\prime l}^{\prime l}(\nabla^{a}H_{vba})v^{b}

+ \sum_{v}(\nabla_{a}H_{vd}^{d})H_{vb}^{ah}v\}dM

\S 5. Compact submanifolds with certain Properties

In this section we assume that M^{n} is a compact, orientable submanifold
of \overline{M}^{m} in which there exists an infinitesimal conformal transformation \tilde{X} of
\overline{M}^{m} and that M^{n} satisfies the following condition:

1) The tangent space at each point of M^{n} is invariant under the
curvature transformation of \overline{M}^{m}

2) The mean curvature vector of M^{n} in \overline{M}^{m} is parallel with respect
to the connection of the normal bundle and is non-vanishing at almost
everywhere.

Then the condition 1), together with (2. 6), implies that
(5. 1) \nabla_{c},H_{vba}-\nabla_{b}H_{vca}=\sum_{u}(L_{vur}H_{uba}-L_{vvb}H_{uca}) .
Furthermore, from condition 2), Proposition 3. 2. and (5. 1) it follows that
(5. 2) \nabla_{b}H_{vc}^{b}=\sum_{u}L_{vub}H_{uc}^{b}\tau

Using (5. 1) and 5. 2),
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\sum_{v}H_{vl}^{\prime:},(\nabla^{a}H_{vba})v^{b}+\sum_{v}(\nabla_{a}H_{vd}^{d})H_{vb}^{ab}v

= \sum_{u,v}H_{vd}^{d}L_{vuc}H_{ub}^{c}v^{b}+\sum_{u,v}H_{ud}^{d}L_{vua}H_{vb}^{a}v^{b}

=01

Thus we get

(5. 3) - \sum_{v}(H_{vd}^{d})^{2}\int_{M^{n}}\rho dM

= \int_{M^{n}}\{n\tilde{g}(H,\tilde{X})(\sum_{u}H_{uac}H_{u}^{ac})+\tilde{g}(W,\overline{X})\}dM

because of (4. 11) and Proposition 3. 3. Substituting (4. 5) into (5. 3), we have

(5. 4) \int_{Jp^{n}}[n\tilde{g}(H,\tilde{X})\{\sum_{v}H_{vab}H_{v}^{ab}-\frac{1}{n}\sum_{v}(H_{va}^{a})^{2}\}+\tilde{g}(W,\overline{Y})]dM

=0 .
Thus, if the vector field W is on the same side as H with respect to the
normal part of \tilde{X} in the normal bundle, and \tilde{g}(H,\tilde{X}) has fixed sign on M^{n},
then tne integrand of (5. 4) has a definite sign. In this case we have

\sum_{v}(H_{vab}H_{v}^{ab}-\frac{1}{n}(H_{va}^{a})^{2})=0 .

Consequently we have, from Proposition 3. 1,

THEOREM 5. 1. Let M^{n} be a compact, orientable submanifold of \overline{M}^{m}

whose tangent space at each point is invariant under the curvature trans-
formation of \overline{M}^{m} . Suppose that \overline{M}^{m} admits an infifinitesimal conformal
transformation \overline{X} and the mean curvature vector fifield of M^{n} in \overline{M}^{m} is
parallel with respect to the connection of the normal bundle and \tilde{g}(H,\tilde{X}) is
nonvanishing at almost everywhere on M^{n} . If, with respect to the normal
part of \tilde{X}, the vector fifield W defifined by Lemma is on the same side as
the mean curvature vector fifield in the normal bundle and \tilde{g}(H,\tilde{X}) has
fifixed sign, then M^{n} is a totally umbilical submanifold of \overline{M}^{m}.

Theorem 5. 1 is due to M. Okumura ([7] p. 464) for the case where
m=n+2.

Department of Mathematics,
Hokkaido University
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