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Introduction.

In the previous paper [9]^{1)} we have given certain generalization of integral
formulas of Minkowski type and obtained some properties of a closed ori-
entable hypersurface in a Riemannian manifold. For a submanifold in a
Riemannian manifold Y. Katsurada, T. Nagai and H. K\^ojy\^o [7], [8] obtained
the following

THEOREM A (Y. Katsurada and T. Nagai) Let R^{n} be a Riemannian
manifold which admits a vector fifield \xi^{i} generating a continuous one-para-
meter group G of homothetic transformations in R^{n} and V^{m} a closed ori-
entable submanifold in R^{n} such that

(i) its fifirst mean curvature H_{1}=const. ,
(ii) the inner product En_{i}\xi^{t} has fifixed sign on V^{m} ,

(iii) the generating vector \xi^{i} is contained in the vector space spanned
by m independent tangent vectors and Euler-Schouten unit vector
n^{i} at each point on V^{m} ,
E

(iv) R_{ifhk}n^{i}n^{h}g^{\alpha\beta}B_{\alpha}^{f}B_{\beta}^{k}\geqq 0EE at each point on V^{m} .
Then every point of V^{m} is umbilic with respect to the vector En^{i2)}.

THEOREM B (Y. Katsurada and H. K\^ojy\^o) Let R^{n} be a space of con-
stant curvature which admits a vector fifield \xi^{i} generating a continuous one-
parameter group G of conformal transformations in R^{n} and V^{m} a closed
orientable submanifold in R^{n} such that

(i) its fifirst mean curvature H_{1}=const. ,
(ii) the inner product En^{i}\xi^{i} has fifixed sign on V^{m} ,

(iii) the generating vector \xi^{i} is contained in the vector space spanned
by m indepent tangent vectors and En^{i} at each point on V^{m} .

Then every point of V^{m} is umbilic with respect to the vector En^{\dot{l}} .
THEOREM C (Y. Katsurada and H. K\^ojy\mbox{\boldmath $\delta$}) Let R^{n} be a space of con-

1) Numbers in brackets refer to the references at the end of the paper.
2) With respect to R_{ifhk},n^{i}E’ g^{\alpha\beta}andB_{\alpha}^{i} refer to \S 1 of the present paper.
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stant curvature satisfying the condition of Theorem B. Suppose that V^{m} is
a closed orientable submanifold in R^{n} such that

(i) principal curvatures Ek_{1} , k_{2}E ’ \cdots,Ek_{m} of V^{m} for the normal vector n^{i}

are positive on V^{m} and the \nu-th mean cumature EH_{\nu}(1<\nu\leqq m-1)

of V^{m} for the vector n^{i} equals constant for any \nu ,
E

(ii) the inner product En_{i}\xi^{i} has fifixed sign on V^{m} ,

(iii) the generating vector \xi^{i} is contained in the vector space spanned
by m independent tangent vectors and En^{i} at each point on V^{m} .

Then every point of V^{m} is umbilic with respect to Euler-Schouten unit
vector En^{i} .

The same problem for a submanifold in a Riemannian manifold has
been researched by B. Y. Chen [1], [18], M. Okumura [11], [12], [19], K.
Yano [15], [16], [17], [18], [19] and others. It is the aim of the present
author to give certain generalization of integral formula of Minkowski type
and to obtain some properties of a closed orientable submanifold in a Rie-
mannian manifold.

Notations and general formulas on a submanifold are given in \S 1. In
\S 2, we derive generalized integral formulas of Minkowski type. As a special
case of \S 2, the later section \S 3 and \S 4 are devoted to establish several
integral formulas. In \S 5, we give some properties of a closed orientable
submanifold in a Riemannian manifold.

The present author wishes to express his sincere thanks to Professor
Dr. Yoshie Katsurada for her constant guidance and also to Dr. Tamao
Nagai for his kind help.

\S 1. Notations and general formulas on a submanifold.

Let R^{n} be an n-dimensional orientable Riemannian manifold of class C^{r}

(r\geqq 3), and x^{i}, g_{if} , “ ; i ”. R_{ijk}^{h} , R_{ij}=R_{ijh}^{h} and R be local coordinates, the
metric tensor, the operator of covariant differentiation with respect to the

Christoffel symbols \{\begin{array}{l}hij\end{array}\} formed with the metric tensor g_{if} , the curvature

tensor, the Ricci tensor, and the curvature scalar of R^{n} respectively.
We now consider a closed orientable submanifold V^{m} of class C^{3} im-

bedded in a Riemannian manifold R^{n} whose local parametric expression is

x^{i}=x^{i}(u^{\alpha}) ,\cdot

where u^{\alpha} are local coordinates in V^{m} . Throughout this paper we will agree
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on the following ranges of indices unless otherwise stated:
1\leqq h, i,j, \cdots\leqq n ,
1\leqq\alpha, \beta, \gamma, \cdots\leqq m ,
0\leqq\lambda, \mu, \nu, \cdots\leqq m-1

m+1\leqq P, Q, R, \cdots\leqq n .
We use the convention that repeated indices imply summation.

If we put

B_{\alpha}^{i}= \frac{\partial x^{i}}{\partial u^{\alpha}} ,

then B_{1}^{i} , B_{2}^{i} , \cdots , B_{m}^{i} are m linearly independent vectors tangent to V^{m} . The
first fundamental tensor g_{\alpha\beta} of V^{m} is given by

(1. 1) g_{\alpha\beta}=g_{if}B_{\alpha}^{i}B_{\beta}^{f}

and g^{a\beta} is defined by g^{\alpha\beta}g_{\beta\gamma}=\delta_{\gamma}^{a} , where \delta_{\gamma}^{\alpha} means the Kronecker deltas. We
assume that m vectors B_{1}^{i} , B_{2}^{i} , \cdots , B_{m}^{t} give the positive orientation on V^{m} and
we denote by Pn^{i} unit normal vectors of V^{m} such that B_{1}^{f} , B_{2}^{i} , \cdots , B_{m}^{i},n^{i}m+1’

\ldots , n^{i} give the positive orientation in R^{n} . Denoting by “ ; \alpha

” the operation
n

of D-symbol due to van der Waerden-Bortolotti ([13], p. 254), we have
(1. 2) B_{\alpha;\beta}^{i}=H_{\alpha\beta}^{i} ,

where H_{\alpha\beta}^{i} means the Euler-Schouten curvature tensor ([13], p. 256). Then
putting H_{\alpha\beta}^{i}n_{i}=b_{\alpha\beta}PP ’ we have

(1. 3) H_{\alpha\beta}^{i}= \sum_{P=m+1}^{n}b_{\alpha\beta}n^{i}PP ,

(1. 4) Pn_{;\alpha}^{i}=-b_{a}^{\gamma}B_{\gamma}^{i}P ,

where PPb_{\alpha}^{r}=gb_{\alpha\beta}\beta\gamma .
Let En^{i} be Euler-Schouten unit normal vector, that is, the unit vector of

the same direction to the vector g^{\alpha\beta}H_{\alpha\beta}^{i},

En^{i}= \frac{g^{\alpha\beta}H_{\alpha\beta}^{i}}{||g^{\alpha\theta}H_{\alpha\beta}^{i}||}

([7], p. 93, [8], p. 81).
We also have the equations of Gauss and Codazzi:

(1. 5) R_{hifk}B_{\alpha}^{h}B_{\beta}^{i}B_{\gamma}^{f}B_{\delta}^{k}=R_{a\beta\gamma\delta}- \sum_{P=m+1}^{n}(b_{\alpha\gamma}b_{\beta\delta}-b_{\beta\gamma}q_{\alpha\delta})PPPP

’
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(1. 6) R_{hifk}n^{h}B_{\alpha}^{i}B_{\beta}^{f}B_{\gamma}^{k}P=-(b_{\alpha\beta;\gamma}-b_{\alpha\gamma;\beta})PP

=-2b_{\alpha[\beta;\gamma]}P^{\cdot} ([13], p. 266)

where R_{\alpha\beta\gamma\delta}=g_{\alpha\epsilon}R_{\beta\gamma\delta}
. is the curvature tensor of the submanifold V^{m}, and the

symbol [ ] means alternating in 2 ([13], p. 14).
If we denote by PPk_{1},k_{2} , \cdots,Pk_{m} the principal curvatures of V^{m} for the

normal vector
Pn_{i}

, that is the roots of the characteristic equation

(1. 7) |_{PP}b_{\alpha\beta}-kg_{\alpha\beta}|=0 ,

then the \nu-th mean curvature H_{\nu}P is given by

(1. 8) (\begin{array}{l}m\nu\end{array})H_{\nu}=\sum_{\alpha_{1}P<\cdots<\alpha_{y}}k_{\alpha_{1}}\cdots k_{\alpha_{\nu}}=\sum b_{\ddagger\alpha_{1}^{1}}^{\alpha}\cdots b_{a_{\nu}J}^{\alpha_{\nu}}PP\alpha_{1},\cdots,\alpha_{\nu}PP

’

and H_{0}=1 . From equation (1. 7) and (1. 8) it follows immediately

b
(1. 9) mH_{1}=b_{\alpha}^{\alpha}PP’. H_{m}= \frac{P}{g}P”

where Pb and g’ are determinants of Pb_{\alpha\beta} and g_{\alpha\beta} respectively. Moreover we

have

(1. 10) H_{1}H_{\nu}-H_{\nu+1}= \frac{\nu!(m-\nu-1)!}{mm!}\sum_{\alpha_{1}PPP<\cdots<\alpha_{y+1}}k_{\alpha_{1}}\cdots k_{\alpha_{y-1}}(k_{\alpha}-k_{\alpha_{\nu\vdash 1}})^{2}PPP^{\nu}P

(cf. [3], p. 292).
We note here that

(1. 11) H_{1}^{2}-H_{2}= \frac{1}{(m-1)}(b_{\beta}^{\alpha}b_{\alpha}^{\theta}-\frac{1}{m}b_{\alpha}^{\alpha}b_{\beta}^{\beta})=\frac{1}{m^{2}(m-1)}\sum(k_{\beta}-k_{\alpha})^{2}\geqq 0PPPPPP\beta<\alpha PP

and consequently, if

H_{1}^{2}-H_{2}=0PP ’

then

PPPk_{1}=k_{2}\cdots k_{m}=k ,

that is
PPb_{\alpha\beta}=kg_{\alpha\beta} .

A point of a submanifold V^{m} at which all principal curvatures PPk_{1},k_{2} , \cdots,Pk_{m}
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are equal, is called an umcilical point for the normal vector Pn^{i} .
For any \nu, if we put

(1. 12) H_{(\nu)}^{\alpha\beta}= \frac{1}{(m-1)!}\epsilon_{\alpha_{1}\cdots\alpha_{\nu}\rho_{\nu+}\rho_{m-1}}‘\ldots\epsilon’ b_{\beta_{1}^{1}}^{\alpha}\alpha\beta\beta_{1}\cdots\beta_{n-1}\ldots b_{\beta_{\nu}^{\nu}}^{\alpha}PPP

’

(1. 13) H_{(\nu)\beta}= \frac{1}{m!}\epsilon^{\alpha_{1}\cdots\alpha\gamma_{\nu+2}\cdots\gamma_{m}}\nu+1\epsilon_{\beta\beta_{2}\cdots\beta_{d+1}\gamma_{\nu+2}\cdots\gamma_{m_{PPP}}}.b_{\alpha_{1}^{2};\alpha_{2}}^{\beta}b_{a_{3}^{3}}^{\rho}\cdots b_{\alpha_{\nu\perp}^{\nu+1}}^{\beta}P

‘

= \frac{1}{(\begin{array}{l}m\nu+1\end{array})}

PPPb_{\zeta\beta j^{1}\alpha_{1}}^{\alpha}b_{\alpha_{2}^{2}}^{\alpha}\cdots b_{\alpha_{\nu}3}^{\alpha_{\nu}} ,

then we have the following relations

(1. 14) g_{\alpha\beta}H_{(\nu)}^{\alpha\beta}=mH_{\nu}PP ’ b_{\alpha\beta}H_{(\nu)}^{\alpha\beta}=mH_{\nu+1}PP ’

and

(1. 15) H_{(\nu),\alpha}^{\alpha\beta}.=P-\nu mH_{(\nu)\alpha}gP\alpha\beta .

where \epsilon_{\alpha_{1}\cdots a_{m}} denotes the \epsilon-symbol of V^{m} and the symbol [ ] means alter-
nating in \nu+1 . In particular we have
(1. 16) H_{(0)}^{\alpha\beta}=g^{\alpha\beta} , H_{(0)\nu}=0 ,

(1. 17)
H_{(1)\alpha}= \frac{1}{(\begin{array}{l}m2\end{array})}P

Pb_{I\alpha;\beta\overline{\lrcorner}}^{\beta}\tau

\S 2. Generalized Minkowski formulas for a closed submanifold.

We suppose that R^{n} admits a one-parameter continuous group G of
transformations generated by an infinitesimal transformation

(2. 1) \overline{x}^{i}=x^{i}+\xi^{i}\delta\tau ,

where \xi^{i} are the components of a contravariant vector and \delta\tau is an infini-
tesimal. In R^{n}, we consider a domain U. If the domain U is simply covered
by the orbits of transformations generated by \xi^{i}, and \xi^{i} is everywhere of
class C^{3} and \neq 0 in U, then we call U a regular domain with respect to
the vector field (cf. [4], p. 448). If \xi^{i} is a Killing vector, a homothetic
Killing vector, a conformal Killing vector, then the group G is called is0-
metric, homothetic and conformal respectvely.

The vector field \xi^{i} is said to be conformal, homothetic, or Killing when
it satisfies
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(2. 2) \mathcal{L}g^{if}=\xi_{i;j}+\xi_{j;i}=2\phi(x)g_{ij}\xi , Xg_{ij}=2cg_{if}\xi , Xg_{if}=0\xi

respectively, where Ig_{if}\xi denotes the Lie derivative of g_{if} with respect to

tha infinitesimal transformation (2. 1), \phi(x) is a scalar function, c is a con-
stant and \xi_{i}=g_{ij}\xi^{f} (cf. [14]). When the generating vector \xi^{i} is a conformal
Killing vector, it satisfies

(2. 3) a\xi C
\{\begin{array}{l}hij\end{array}\}=\xi_{;i;f}^{h}+R_{ifk}^{h}\xi^{k}

=\delta_{i}^{h}\phi_{j’}+\delta_{f}^{h}\phi_{i}-\phi^{h}g_{if} ,

where \phi_{i}=\phi_{;i} , \phi^{h}=\phi_{i}g^{ih} .
Now, we shall consider n^{i} as one of the unit normal vectors of V^{m},

E
that isn^{i}m+1=n^{i}E and assume that at each point on V^{m} the generating vector
\xi^{i} is contained in the vector space \wp’(B_{1}^{i}, B_{2}^{i}, \cdots, B_{m}^{i},n^{i})E spanned by m+1

independent vectors B_{1}^{i} , B_{2}^{i} , \cdots , B_{m}^{i}andn^{i}E^{\cdot} This assumption is always satisfies
for the case m=n-1, that is, V^{m} is a hypersurface in R^{n}([7] , p. 94, [8],
p. 83). Then we may put

(2. 4) \xi^{i}=\varphi^{\gamma}B_{\gamma}^{i}+F_{E}^{n^{i}} ,

where p=n_{i}\xi^{i}E^{\cdot}

Hereafter we denote by V^{m} an m-dimensional closed orientable sub-
manifold of class C^{3} imbedded in a regular domain U with respect to the
vector \xi^{i} . We assume that at any point P on V^{m}, the vector \xi^{i} is not on
its tangent space.

Let us consider a differential form of (m-1)-degree at a point P of V^{m},
defined by

((n,n, Em+2\cdots,n\underline{E}En, f\xi, \delta n, \cdots, \delta n, d_{\frac{x}{m-\nu}\frac{}{-1},,dx},\cdots,,))

\nu

(2. 5) =\sqrt\overline{g} (nE’m+2nEEn,\cdots,n ,f\xi,\delta n ,\cdots ,\delta n ,dx,\cdots ,dx)

=\sqrt\overline{g} ( n,n ,
\cdots,nn

, f\xi,n_{;\alpha_{1}}E ’ \cdots,En_{;\alpha_{\nu}}
, \frac{\partial x}{\partial u^{\alpha_{\nu+1}}} , \cdots,\frac{\partial x}{\partial u^{\alpha_{m-1}}} ) du^{\alpha_{1}}\Lambda du^{\alpha_{2}}\Lambda

...\wedge du^{\alpha_{m-1}}
,\cdot

where the symbol ( ) means a determinant of order n whose columns are
the components of respective vectors or vector-valued differential forms, \Lambda

denotes the exterior multiplication, and dx^{i} be a displacement along V^{m},
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i.e. , dx^{i}=B_{\alpha}^{i}du^{\alpha} , g the determinant of the metric tensor g_{if} of R^{n} and f a
differentiable scalae function on V^{m} .

Differentiating exteriorly, we have

d((n,n, \cdots,n, f\xi, \delta n, \cdots, \delta nEm+2nEE’ dx, \cdots, dx))

(2. 6) =((\delta n,n, Em+2\cdots,nEEn, f\xi, \delta n, \cdots, \delta n, dx, \cdots, dx))+

\sum_{Q=m+2}^{n}((n,n, \cdots, \delta n, Em+2Q\cdots,nEEn, f\xi, \delta n, \cdots, \delta n, dx, \cdots, dx))+

((n, n ,\cdots,n
E m+2n ’

df\xi,\delta n ,\cdots ,\delta nEE’ dx,\cdots ,dx)) +

((n,n, Em+2\cdots,nEEn, f\delta\xi, \delta n, \cdots, \delta n, dx, \cdots, dx))+

\nu((n,n, Em+2\cdots,nEEEn, f\xi, \delta(\delta n), \delta n, \cdots, \delta n, dX^{ },\cdots, dx)) .

On substituting (1. 4) into the first term of the right-hand member of (2. 6),
we obtain
(2. 7) ((\delta n,n, \cdots,n, f\xi, \delta n, \cdots, \delta nEm+2nEE’ dx, \cdots, dx))

=m ! (-1)^{(n-1)(n-m)-\nu_{E}}H_{\nu+1}pdA’.

where EH_{\nu+1} denotes the (\nu+1)-th mean curvature of V^{m} for the normal di-
rection En^{i} and dA means the volume element of V^{m} .

By virtue of (1. 4) we can see that the vectors

En\cross m+2n\cross\cdots\cross\delta nQ\cross\cdots\cross nn\cross\delta n\cross\cdots\cross\delta n\cross dx\cross\cdots\cross dx

\frac{EE}{\nu} \overline{m-\nu-1}

(Q=m+2, \cdots, n)

have the same direction to the covariant vector Qn . Then we obtain

((n,nEm+2 , \cdots, \delta n, \cdots,n, f\xi Qn’\delta nE’ dx, \cdots, dx))=0 .

(Q=m+2, \cdots, n)

Since the vector

En\cross nm+2\cross\cdots\cross nn\cross\delta n\cross\cdots\cross\delta n\cross dx\cross\cdots\cross dx

\frac{EE}{\nu} \overline{m-\nu-1}

is orthogonal to the vectors En, m+2n,\cdots ,
n -l
n and nn and \delta n^{i}=-b_{\alpha}^{\beta}B_{\beta}^{i}du^{\alpha}EE’ we have
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(2. 8) ((n,n, \cdots,nEm+2n’ df\xi, \delta n, \cdots, \delta nEE’ dx, \cdots, dx))

=(m-1) ! (-1)(n-1)(n-m)-\nu_{E(\nu)}H^{\alpha\beta}\xi_{\alpha}f_{\beta}dA ,

(2. 9) ((n,n, Em+2\cdots,nn, f\delta\xi, \delta n, \cdots, \delta nEE’ dx, \cdots, dx))

= \frac{(m-1)!}{2}(-1)^{(n-1)(n-m)-\nu}fH^{\alpha\beta}B_{\alpha}^{i}B_{\beta}^{f}\mathcal{L}g_{if}dA_{j}E(\nu)\xi

where f_{\alpha}= \frac{\partial f}{\partial\alpha^{a}} , \xi_{\alpha}=B_{\alpha}^{i}\xi_{i} .

Since we have

(2. 10) \delta(\delta n^{i})E=(_{EE}b_{\alpha;\beta}^{\gamma}B_{\gamma}^{i}+b_{\alpha}^{\gamma}\sum_{P=m+1PP}^{n}b_{\gamma\beta}n^{i})du^{\alpha}\wedge du^{\beta}.

,

the last term of the-right hand member of (2.6) becomes

(2. 11) ((n,n, Em+2\cdots,nn, f\xi, \delta(\delta n)E’\delta n, \cdots, \delta nEE’ dx, \cdots, dx))

=m ! (-1)^{(n-1)(n-m)-\nu-1}f\xi^{\alpha}HdA\tau E(\nu)\alpha

Accordingly by means of (2.7), (2.8), (2. 9) and (2. 11) it follows that

\frac{1}{m!}d((n,n,\cdots,n, f\xi Em+2n’\delta n, \cdots, \delta nEE’ dx, \cdots, dx))

(2. 12) =(-1)^{(n-1)(n-m)-\nu\{(H_{\nu+1}p+\frac{1}{2m}H_{(\nu)}^{a\beta}B_{\alpha}^{i}B_{\beta}^{f}Lg_{if}-\nu\xi^{\alpha}H_{(\nu)\alpha})f}EE\xi E

+ \frac{1}{m}H_{(\nu)}^{\alpha\beta}\xi_{\alpha}f_{\beta}\}E dA.

Integrating both members of (2. 12) over the whole submanifold V^{m} and
applying Stokes’ theorem, we have

\frac{1}{m!}I_{\partial r^{mEm+2nEE}}^{(( }n,n,\cdots,n,f\xi,\delta n ,\cdots ,\delta n , d_{X^{ }},\cdots ,dx))

(2. 13) =(-1)^{(n-1)(n-m)-\nu} \int_{V^{m}}\{\{H_{\nu+1}pdA+F_{\lrcorner} \frac{1}{2m}H_{(\nu)}^{\alpha\beta}B_{\alpha}^{i}B_{\beta}^{f}\sum_{\xi E}g_{ff}dA

- \nu\xi^{\alpha_{E}}H_{(\nu)\alpha}dA)f+\frac{1}{m}H_{(\nu)}^{\alpha\beta}\xi_{\alpha}f_{\beta}dA\}E ’

where \partial V^{m} means the boundary of V^{m} . Since the submanifold V^{m} is closed,
it follows that
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(I) \int V^{mE}fH_{\nu+1}pdA+\frac{1}{2m}I_{V^{nE\xi}}^{fH_{(,)}^{\alpha_{J}\beta}B_{\alpha}^{i}B_{\beta}^{f}Lg_{ij}dA-\nu\int_{r^{n}}f\xi^{\alpha}H_{(\nu)\alpha}dA}E

+ \frac{1}{m}I_{r^{mE}}^{H_{(\nu)}^{\alpha\beta}\xi_{\alpha}f_{\beta}dA=0} .

This formula is nothing but the generalization of the formula established
by Y. Katsurada and H. K\^ojy\^o [7] p. 96.

\S 3. Minkowski formulas concerning a conformal transformation.

In this section we shall discuss the formula (I) for a conformal Killing
vector \xi^{i}.

Let G be a group of conformal transformations, then from equations
(1. 1), (1. 14) and (2. 2) we obtain

H_{(\nu)}^{\alpha\beta}B_{a}^{i}B_{\beta}^{f}\mathcal{L}g_{if}=2m\phi H_{\nu}E\xi E^{\cdot}

Therefore (I) is rewritten in the following form:

(3. 1) \int_{r^{m}}\{(EH_{\nu+1}p+H_{\nu}\phi-\nu\xi^{\alpha}H_{(r)\alpha}.)EEf+\frac{1}{m}H_{(\nu)}^{\alpha\beta}\xi_{\alpha}f_{\beta}\}E dA=0

On substituting f=const. into the formula (3. 1), we obtain

(I)_{c} \int_{V^{m}EEE}(H_{\nu+1}p+H_{\nu}\phi-\nu\xi^{a}H_{(\nu)\alpha})dA=0 .

For \nu=0 , we have

(II)_{c} \int_{V^{m}E}(H_{1}p+\phi)dA=0 .

Formula (II)_{c} is due to Y. Katsurada, H. K\^ojy\^o and T. Nagai ([7], p. 94 and
[8], p. 82).

If our manifold R^{n} is a space of constant Riemann curvature, that is,

(3. 2) R_{hifk}=\kappa(g_{hf}g_{ik}-g_{hk}g_{if})’.

we obtain H_{(\nu)\alpha}=0E from (1. 6), (1. 13) and (3. 2), and consequently from (I)_{c}

we obtain

(3. 3) \int_{V^{m}EE}(H_{\nu+1}p+H_{\nu}\phi)dA=0 .

This formula is due to Y. Katsurada H. K\^ojy\^o ([7], p. 96).
Now, let us consider a differential form of (m-1)-degree at a point of

the submanifold V^{m}, defined by
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def -
((n,n, \cdots,nEm+2n’\xi_{;i}n^{i}E’ \frac{dx,\cdots,dx}{m-1}))=\sqrt g(n,n, \cdots,nEm+2n’\xi_{;i}n^{i}E’ d_{X}, \cdots, dx)

.

Differentiating exteriorly, and applying the Stokes’ theorem, we have

\frac{1}{(m-1)!}\int_{\partial V^{mEm+2nE}}((n,n, \cdots,n, \xi_{ji}n^{i}d_{X^{ }},\cdots, dx))

=(-1)^{(n-1)(n-m)} \int_{r^{m}E}(R_{hifk}n^{h}B_{\alpha}^{i}\xi^{k}B_{\beta}^{k\alpha\beta}g+mq)dA

by virtue of (2. 3), where q=n_{i}\phi^{i}E^{\cdot}

On making use of that the submonifold V^{m} is colsed, we have

(3. 4) I_{r^{m}E}^{(R_{hifk}n^{h}B_{\alpha}^{i}\xi^{f}B_{\beta}^{k}g^{\alpha\beta}+mq)dA=0} .
Let G be the group of homothetic transformations, that is, \phi\equiv const. , then
we have

(3. 5) \int_{\nabla^{m}E}R_{hifk}n^{h}B_{\alpha}^{i}\xi^{f}B_{\beta}^{k\alpha\beta}gdA=0 .

Using the Green’s theorem, K. Yano derived above formulas (3. 4) rnd (3.5)
([16], pp. 382, 383).

\S 4. Integral formulas in \bm{R}^{n} admitting a scalar field such that
\bm{\rho}_{\bm{;}\bm{i}\bm{;}\bm{j}}=\bm{h}\bm{(}\bm{\rho}\bm{)}\bm{g}_{\bm{i}\bm{j}} .

In this section we assume that the Riemannian manifold admits a non-
constant scalar field \rho such that
(4. 1) \rho_{;i;j}=h(\rho)g_{iJ\prime}. \rho_{i}=\rho_{;i} ,

where h(\rho) is a differentiable function of \rho, and assume that \rho^{i}=g^{ij}\rho_{j} lies
in the vector space r (B_{1}^{i}, \cdots, B_{m}^{i},n^{i}) E spanned by the vectors B_{1}^{i} , \cdots , B_{m}^{i} and
En^{i} at each point of V^{m} . Then we may put

(4. 2)
\rho^{i}=\psi^{\gamma}B_{\gamma}^{i}+\alpha_{E}n^{i}

on the submanifold V^{m} .
We consider a differential form of (m–1)-degree at a point P of the

submanifold V^{m} defined by

((n, n ,\cdots,n ,f\Phi
E m+1n ’ \delta x))

\frac{EEn,\cdots,\delta n}{\nu},\frac{dx,\cdots,d}{m-\nu-1}

def=\sqrt\overline{g} (nE’ m+2nn,\cdots,n , f\Phi,
\delta nE ’

\cdots , \delta nE’ dx, \cdots , dx),



122 T. Muramori

where \Phi=\rho^{i}\frac{\partial}{\partial x^{i}} . Differentiating exteriorly and making use of calculations

analogous to those of \S 2, we have the following integral formula:

(4. 3) \int_{\mu}\{(H_{\nu+1}\alpha+H_{\nu}h-\nu\rho^{\alpha}H_{(\nu)\alpha})f+\frac{1}{m}H_{(\nu)}^{\alpha\beta}\rho_{\alpha}f_{\beta}\}EEEE dA=0 ,

where \alpha=n^{i}\rho_{;i}E’\rho_{\alpha}=\rho_{;i}B_{\alpha}^{i} . On substituting f=const. into the formula (4. 3),

we obtain

(I’) \int f^{m}EE\rho^{\alpha}(H_{\nu+1}\alpha+H_{\nu}h-\nu H_{(v)\alpha})dA=0E ’

in particular for \nu=0 we have

(II’) \int_{r^{\sim}}n_{E}(H_{1}\alpha+h)dA=0 .

\S 5. Some properties of a closed orientable submanifold.

In this section we shall show the following seven theorems for a closed
orientable submanifold V^{m} in a Riemannian manifold R^{n} .

THEOREM 5. 1. Let R^{n} be a Riemannian manifold which admits a

continuous one-parameter group G of conformal transformations and V^{m}a

closed orientable submanifold sucd that
(i) H_{\nu}=constE^{\cdot} and \xi^{\alpha_{E}}H_{(\nu)\alpha}=0 for any \nu (1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{2}>0, \cdots,Ek_{m}>0 for and \nu (2\leqq\nu\leqq m-1) ,

(iii) \xi^{i}\in r(B_{1}^{i}, B_{2}^{i}, \cdots, B_{m}^{i},n^{i})E ’

(iv) the inner productn_{i}\xi^{\dot{l}}E does not change the sign on V^{m} .
Then every point of V^{m} is umbilic with respect to Euler-Schouten vector En.

PROOF. On substituting the assumption \xi^{\alpha_{E}}H_{(\nu)\alpha}=0 into the formula (I)_{c}

in \S 3, we obtain

(III)_{c} I_{V^{m}EE}^{(H_{\nu+1}p+H_{\nu}\phi)dA=0} .

From (III)_{c} and (II)_{c} in \S 3, we obtain

I_{V^{m}EE}^{(H_{\nu+1}p+H_{\nu}\phi)dA=0}\wedge,

I_{fEEE}^{(H_{1}H_{\nu}p+H_{\nu}\phi)dA=0}
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because of EH_{\nu}=constant . Therefore we have

(5. 1) \int_{V^{n}EEE}(H_{1}H_{\nu}-H_{\nu+1})pdA=0 .

Due to (1.10) and the assumption (ii) (iii) and (iv), the integrand on the left
side of equation (5. 1) keeps a constant sign; the relation is possible, only
when the integrand vanishes identically, which in turn implies

H_{1}H_{\nu}-H_{\nu+1}=0EEE ’

that is,

EEEk_{1}=k_{2}=\cdots=k_{m}

at all points of the submanifold V^{m} . Accordingly every point of V^{m} is
umbilic with respect to Euler-S.chouten vector En.

Theorem 5. 1 has been obtained by T. Nagai ([10], p. 153) for \nu=1 . In
the case where R^{n} admits a group G of proper homothetic transformations,
Theorem 5. 1 has been obtained by Y. Katsurada and T. Nagai for \nu=1

i.e. , Theorem A stated in the introduction. In the case where R^{n} is a space
of constant curvature, Theorem 5. 1 becomes Theorem B and Theorem C
stated in the introduction.

THEOREM 5. 2. Let R^{n} be a Riemannian manifold which admits a non-
constant scalar fifield \rho such that \rho_{;i;f}=h(\rho)g_{if} and V^{m} a closed orientable
submanifold such that

(i) H_{\nu}=constE^{\cdot} and \rho^{\alpha_{E}}H_{(\nu)a}=0 for any \nu (1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{2}>0 , \cdots,Ek_{m}>0 for any \nu (2\leqq\nu\leqq m-1) ,

(iii) \rho^{i}\in r(B_{1}^{i}, B_{2}^{i}, \cdots, B_{m}^{i},n^{i})E ’

(iv) the inner product \alpha=n^{i}\rho_{i}E does not change the sign on V_{m} .

Thm every point of V^{m} is umbilic with respect to Euler-Schouten vector En.
PROOF. On substituting the assumption (i) into the formula (I’) in \S 4,

we have

(III’) \int_{V^{m}EE}(H_{\nu+1}\alpha+H_{\nu}h)dA=0 .

From (III’) and (II’) in \S 4, we obtain

f_{V^{m}EE}^{(H_{\nu+1}\alpha+H_{\nu}h)dA=0} :
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\int_{\Psi EEE}(H_{1}H_{\nu}\alpha+H_{\nu}h)dA=0

because of EH_{\nu}=constant . Therefore we have

(5. 2) \int_{V^{n}EEE}(H_{1}H_{\nu}-H_{\nu+1})\alpha dA=0,\cdot

which holds if and only if H_{1}H_{\nu}-H_{\nu+1}=0EEE^{\cdot} Thus we can see the conclusion.
For \nu=1 , this theorem reduces to a result due to K. Yano ([15], p. 505).

THEOREM 5. 3. Let R^{n} be a Riemannian manifold which admits a con-
tinuous one-parameter group G of conformal transformations and V^{m} a closed
orientable submanifold such that

(i) EH_{1}p+\phi\leqq 0(or\geqq 0) and \xi^{\alpha}H_{(\nu)\alpha}=0E for any \nu(1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{2}>0 , \cdots,Ek_{m}>0 for any \nu(2\leqq\nu\leqq m-1) ,

(iii) \xi^{i}\in{?}’(B_{1}^{\acute{\nu}, B_{2}^{i}, \cdots, B_{m}^{i},n^{i})E ’

(iv) the inner product p=n_{i}\xi^{i}E does not change the sign on V^{m} .
Then every point of V^{m} is umbilic with respect to Euler-Schouten vector_{E}n .

PROOF. From our assumption (i) and (II)_{c} in \S 3 we have the relation

(5. 3) H_{1}p=-\phi E^{\cdot}

Substituting (5. 3) into the formula (III)_{c} , we obtain

\int V^{7l}(H_{1}H_{\nu}-H_{\nu+1})pdA=0EEE
’

which hold if and only if

EEEH_{1}H_{\nu}-H_{\nu+1}=0 .

Then we obtain the conclusion.
THEOREM 5. 4. Let R^{n} be a Riemannian manifold which admits a

continuous one-parameter group G of conformal transformations and V^{m}a

closed orientable submanifold such that
(i) H_{\nu+1}p+H_{\nu}\phi\leqq 0E (or\geqq 0) and \xi^{\alpha_{E}}H_{(\nu)\alpha}=0 for any \nu(1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{2}>0, \cdots,Ek_{m}>0 ,

(iii) \xi^{i}\in^{c}\mathscr{K}’(B_{1}^{i}, B_{2}^{i}, \cdots, B_{m}^{i},n^{i})E ,

(iv) the inner product p=n_{i}\xi^{i}E does not change the sign on V^{m} .
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Then every point of V^{m} is umbilic with respect to the vector_{E}n .

PROOF. From our assumption ( i) and (III)_{c} we have the relation

(5. 4) EH_{\nu+1}=-H_{\nu}\phi Et

Substituting (5. 4) into the formula (II)_{c} in \S 3, we obtain

(5. 5) \int_{r^{mEEF_{\lrcorner}}}\frac{1}{H_{\nu}}(H_{1}H_{\nu}-H_{\nu+1})pdA=0 ,

which holds if and only if H_{1}H.-H_{\nu+1}=0EEE^{\cdot} Thus we can see the con-
clusion.

THEOREM 5. 5. Let R^{n} be a Riemannian manifold which admits a con-
tinuous one-parameter group G of conformal transformations and V^{m}a

closed orientable submanifold such that

(i)
- \frac{\phi}{H_{1},E},

\geqq p (or\leqq p) and \xi^{\alpha}H_{(\nu)\alpha}=0E for any \nu (1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{1}<0 , \cdots,Ek_{m}>0 for any \nu(2\leqq\nu\leqq m-1) and H_{1}>0E (or<0)

for \nu=1 ,
(iii) \xi^{i}\in V(H_{1}^{\cdot}, B_{\Delta}^{i}, \cdots, B_{m}^{i},n^{\sqrt[\dot{\sigma}]{}})E ’

(iv) the inner product p=n_{i}F\lrcorner\xi^{\nu}\dot{a} does not change the sign on V^{m}.
Then every point of V^{m} is umbilic with respect to Euler-Schouten vector_{E}n .

PROOF. By virtue of our assumptions and pt(II)_{c} in \S 3, we obtain the
following relation

(5. 6)
p=- \frac{\phi}{H_{1},E},1

Substituting (5. 6) into (III)_{c} , we obtain

\int_{r^{m}EEE}(H_{1}H_{\nu}-H_{\nu+1})pdA=0 ,

which holds if and only if H_{1}H_{\nu}-H_{\nu+1}=0EEE^{\cdot} Then we obtain the conclusion.
In the case that R^{n} is a space of constant curvature, Theorem 5. 3 ond

Theorem 5. 5 have been obtained by Y. Katsurada and H. K\^ojy\^o ([7]).

THEOREM 5. 6. Let R^{n} be a Riemannian manifold w’ hich admits a
continuous one-parameter group O of conformal transformations and V^{m}a

closed orientable submanifold such that
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\langle i) - \frac{H_{\nu}E}{H_{\nu+1},E},\phi\geqq p (or\leqq p) and \xi^{\alpha}H_{(\nu)\alpha}=0E for any \nu(1\leqq\nu\leqq m-1) ,

(ii) EEk_{1}>0,k_{2}>0, \cdots,Ek_{m}>0 ,

(iii) \xi^{i}\in r(B_{1}^{i}, H_{2}, \cdots, B_{m}^{i},n^{i})E ’

(iv) the inner product p=n_{i}\xi^{i}E does not change the sign on V^{m} .
Thm every point of V^{m} is umbilic with respect to Euler-Schoutm vector En.

PROOF. The formula (III)_{c} is rewritten as follows

I_{r^{mE}}^{H_{\nu+1}}(p+\frac{H_{\nu}E}{H_{\nu+1},E},\phi) dA=0

By virtue of our assumptions, we have the following relation

(5. 7) p=- \frac{H_{d}E}{H_{\nu+1},E},\cdot\phi .

Substituting (5. 7) into (II)_{c} in \S 3, we obtain

\int_{r^{m,EEE}}\frac{1}{H_{\nu},E}(H_{1}H_{\nu}-H_{\nu+1})pdA=0j

which holds if and only if H_{1}H_{\nu}-H_{\nu+1}=0EEE^{\cdot} Then we obtain the conclusion.

THEOREM 5. 7. Let R^{n} be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V^{m}a

closed orientable submanifold such that

(i) EH^{\frac{1}{\nu\nu}}p=-\phi for any \nu (2\leqq\nu\leqq m-1) ,

(ii) EH_{1}>0 , H_{2}>0E’ \cdots,EH_{\nu}>0 ,

(iii) \xi^{i}\in{?}’(B_{1}^{i}., B_{2}^{f}, \cdots, B_{m}^{t},n^{i})E ’

(iv) the inner product p=n_{i}\xi^{i}E does not change the sign on V^{m}.
Then every point of V^{m} is umbilic with respect to Euler-Schouten vector En.

PROOF. The following lemma is well-known.
LEMMA. If H_{1}E ’ H_{2}E ’

\cdots , H_{\nu}E(2\leqq\nu\leqq m-1) are positive, then we have

\langle5. 8) EEEH_{1}\geqq H_{2^{2}}^{1}\geqq\cdots\geqq H^{\frac{1}{\nu\nu}} ,
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where the equality implies that V^{m} is umbilic with respect to the vector En,
i.e.,k_{1}=k_{2}=\cdots=k_{m}EEE^{\cdot} (cf. [2], p. 52).

On substituting the assumption (i) into the formula (II)_{c} , we obtain

(5. 9) \int_{V^{n}EE}(H_{1}-H^{\frac{1}{\nu\nu}})pdA=0t

Due to the inequality (5.8) the integrand in the left side of equation (5.9)
keeps a constant sign, and therefore

EBH_{1}-H^{\frac{1}{\nu\nu}}=0 ,

which implies that V^{m} is umbilic with respect to the vector En.
REMARK. If R^{n} admits a special concircular scalar field \rho such that

\rho_{;i;f}=c\rho_{g_{if}} , c=const. ,

then we can prove that V^{m} in the preceding theorems is isometric to a
sphere. (cf. [6], [10]).
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