Integral formulas for closed submanifolds in a Riemannian manifold

By Takao MURAMORI

Introduction.

In the previous paper [9]¹⁾ we have given certain generalization of integral formulas of Minkowski type and obtained some properties of a closed orientable hypersurface in a Riemannian manifold. For a submanifold in a Riemannian manifold Y. Katsurada, T. Nagai and H. Kôjyô [7], [8] obtained the following

THEOREM A (Y. Katsurada and T. Nagai) Let \mathbb{R}^n be a Riemannian manifold which admits a vector field ξ^i generating a continuous one-parameter group G of homothetic transformations in \mathbb{R}^n and \mathbb{V}^m a closed orientable submanifold in \mathbb{R}^n such that

- (i) its first mean curvature $H_1 = const.$,
- (ii) the inner product $n_i \xi^i$ has fixed sign on V^m ,
- (iii) the generating vector ξ^i is contained in the vector space spanned by *m* independent tangent vectors and Euler-Schouten unit vector n^i at each point on V^m ,
- (iv) $R_{ijhk} \underset{E}{n^i n^h} g^{\alpha\beta} B^j_{\alpha} B^k_{\beta} \ge 0$ at each point on V^m .

Then every point of V^m is umbilic with respect to the vector n^{i} .²)

THEOREM B (Y. Katsurada and H. Kôjyô) Let \mathbb{R}^n be a space of constant curvature which admits a vector field ξ^i generating a continuous oneparameter group G of conformal transformations in \mathbb{R}^n and \mathbb{V}^m a closed orientable submanifold in \mathbb{R}^n such that

- (i) its first mean curvature $H_1 = const.$,
- (ii) the inner product $n^i \xi^i$ has fixed sign on V^m ,
- (iii) the generating vector ξ^i is contained in the vector space spanned by *m* indepent tangent vectors and n^i at each point on V^m .

Then every point of V^m is umbilic with respect to the vector n^i .

THEOREM C (Y. Katsurada and H. Kôjyô) Let \mathbb{R}^n be a space of con-

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ With respect to R_{ijhk} , n^i , $g^{\alpha\beta}$ and B^i_{α} refer to §1 of the present paper.

stant curvature satisfying the condition of Theorem B. Suppose that V^m is a closed orientable submanifold in \mathbb{R}^n such that

- (i) principal curvatures k_1, k_2, \dots, k_m of V^m for the normal vector n^i are positive on V^m and the v-th mean curvature $\underset{E}{H_v} (1 < \nu \leq m-1)$ of V^m for the vector n^i equals constant for any ν ,
- (ii) the inner product $n_i \xi^{i}$ has fixed sign on V^m ,
- (iii) the generating vector ξ^i is contained in the vector space spanned by m independent tangent vectors and n^i at each point on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten unit vector n^i .

The same problem for a submanifold in a Riemannian manifold has been researched by B. Y. Chen [1], [18], M. Okumura [11], [12], [19], K. Yano [15], [16], [17], [18], [19] and others. It is the aim of the present author to give certain generalization of integral formula of Minkowski type and to obtain some properties of a closed orientable submanifold in a Riemannian manifold.

Notations and general formulas on a submanifold are given in §1. In §2, we derive generalized integral formulas of Minkowski type. As a special case of §2, the later section §3 and §4 are devoted to establish several integral formulas. In §5, we give some properties of a closed orientable submanifold in a Riemannian manifold.

The present author wishes to express his sincere thanks to Professor Dr. Yoshie Katsurada for her constant guidance and also to Dr. Tamao Nagai for his kind help.

§1. Notations and general formulas on a submanifold.

Let R^n be an *n*-dimensional orientable Riemannian manifold of class C^r $(r \ge 3)$, and x^i , g_{ij} , "; *i*", R^n_{ijk} , $R_{ij} = R^n_{ijh}$ and R be local coordinates, the metric tensor, the operator of covariant differentiation with respect to the Christoffel symbols $\begin{cases} h \\ ij \end{cases}$ formed with the metric tensor g_{ij} , the curvature tensor, the Ricci tensor, and the curvature scalar of R^n respectively.

We now consider a closed orientable submanifold V^m of class C^3 imbedded in a Riemannian manifold R^n whose local parametric expression is

$$x^i = x^i(u^{\alpha})$$
,

where u^{α} are local coordinates in V^{m} . Throughout this paper we will agree

on the following ranges of indices unless otherwise stated:

$$1 \leq h, i, j, \dots \leq n,$$

$$1 \leq \alpha, \beta, \gamma, \dots \leq m,$$

$$0 \leq \lambda, \mu, \nu, \dots \leq m-1$$

$$m+1 \leq P, Q, R, \dots \leq n.$$

We use the convention that repeated indices imply summation.

If we put

$$B^i_{\alpha}=\frac{\partial x^i}{\partial u^{\alpha}},$$

then $B_1^i, B_2^i, \dots, B_m^i$ are *m* linearly independent vectors tangent to V^m . The first fundamental tensor $g_{\alpha\beta}$ of V^m is given by

and $g^{\alpha\beta}$ is defined by $g^{\alpha\beta}g_{\beta\gamma} = \delta^{\alpha}_{\gamma}$, where δ^{α}_{γ} means the Kronecker deltas. We assume that *m* vectors $B^{i}_{1}, B^{i}_{2}, \dots, B^{i}_{m}$ give the positive orientation on V^{m} and we denote by n^{i} unit normal vectors of V^{m} such that $B^{i}_{1}, B^{i}_{2}, \dots, B^{i}_{m}, n^{i},$ \dots, n^{i} give the positive orientation in R^{n} . Denoting by "; α " the operation of D-symbol due to van der Waerden-Bortolotti ([13], p. 254), we have

$$(1.2) B^i_{\alpha;\beta} = H_{\alpha\beta}^{i},$$

where $H_{\alpha\beta}^{i}$ means the Euler-Schouten curvature tensor ([13], p. 256). Then putting $H_{\alpha\beta}^{i} n_{i} = b_{\alpha\beta}$, we have

(1.3)
$$H_{\alpha\beta}^{i} = \sum_{P=m+1}^{n} b_{\alpha\beta} n^{i},$$

(1.4)
$$n^i_{;a} = -b^i_p B^i_r,$$

where $b_{\mu}^{r} = g_{\mu}^{\beta \gamma} b_{\alpha \beta}$.

Let n^i_{E} be Euler-Schouten unit normal vector, that is, the unit vector of the same direction to the vector $g^{\alpha\beta}H_{\alpha\beta}^{\ \ i}$,

$$n^{i} = \frac{g^{\alpha\beta}H_{\alpha\beta}}{\|g^{\alpha\beta}H_{\alpha\beta}\|}$$

([7], p. 93, [8], p. 81).

We also have the equations of Gauss and Codazzi:

(1.5)
$$R_{\lambda i j k} B^{\lambda}_{\alpha} B^{j}_{\beta} B^{j}_{\gamma} B^{k}_{\delta} = R_{\alpha \beta \gamma \delta} - \sum_{P=m+1}^{n} (b_{\alpha \gamma} b_{\beta \delta} - b_{\beta \gamma} q_{\alpha \delta}),$$

Integral formulas for closed submanifolds in a Riemannian manifold

(1.6)
$$R_{hijk} \underset{P}{n^{h}} B^{i}_{\alpha} B^{j}_{\beta} B^{k}_{\gamma} = - (\underbrace{b}_{P} _{\alpha\beta;\gamma} - \underbrace{b}_{P} _{\alpha\tau;\beta})$$
$$= -2 \underbrace{b}_{P} _{\alpha[\beta;\gamma]}, \qquad ([13], p. 266)$$

where $R_{\alpha\beta\gamma\delta} = g_{\alpha\iota}R_{\beta\gamma\delta}^{\iota}$ is the curvature tensor of the submanifold V^{m} , and the symbol [] means alternating in 2 ([13], p. 14).

If we denote by k_1, k_2, \dots, k_m the principal curvatures of V^m for the normal vector n_i , that is the roots of the characteristic equation

$$(1.7) \qquad \qquad |b_{P}{}_{\alpha\beta}-kg_{\alpha\beta}|=0,$$

then the ν -th mean curvature H_{ν} is given by

(1.8)
$$\binom{m}{\nu}H_{\nu} = \sum_{\alpha_1 < \cdots < \alpha_{\nu}} k_{\alpha_1} \cdots k_{\alpha_{\nu}} = \sum_{\alpha_1, \cdots, \alpha_{\nu}} b_{[\alpha_1} \cdots b_{\alpha_{\nu}]}^{\alpha_{\nu}},$$

and $H_0=1$. From equation (1.7) and (1.8) it follows immediately

(1.9)
$$m \underset{P}{H_1} = \underset{P}{b_{\alpha}}^{\alpha}, \qquad H_m = \frac{b}{\frac{P}{g'}},$$

where b_{P} and g' are determinants of $b_{P}_{\alpha\beta}$ and $g_{\alpha\beta}$ respectively. Moreover we have

(1.10)
$$H_{P}H_{\nu}-H_{P}H_{\nu+1} = \frac{\nu!(m-\nu-1)!}{mm!} \sum_{\alpha_{1} < \cdots < \alpha_{\nu+1}} k_{\alpha_{1}} \cdots k_{\alpha_{\nu-1}} (k_{\alpha_{\nu}}-k_{\alpha_{\nu+1}})^{2}$$

(cf. [3], p. 292). We note here that

(1.11)
$$H_{p}^{2} - H_{p}^{2} = \frac{1}{(m-1)} \left(b_{\beta}^{\alpha} b_{\alpha}^{\beta} - \frac{1}{m} b_{\beta}^{\alpha} b_{\beta}^{\beta} \right) = \frac{1}{m^{2}(m-1)} \sum_{\beta < \alpha} (k_{\beta} - k_{\alpha})^{2} \ge 0$$

and consequently, if

$$H_{1}^{2} - H_{2} = 0$$
,

then

$$k_1 = k_2 \cdots k_m = k ,$$

that is

$$b_{P} = k g_{\alpha\beta}.$$

A point of a submanifold V^m at which all principal curvatures k_1, k_2, \dots, k_m

are equal, is called an umcilical point for the normal vector n^i .

For any ν , if we put

(1.12)
$$H_{P}^{\alpha\beta} = \frac{1}{(m-1)!} \varepsilon^{\alpha}_{\alpha_{1}\cdots\alpha_{\nu}\beta_{\nu+1}\cdots\beta_{m-1}} \varepsilon^{\beta\beta_{1}\cdots\beta_{m-1}} b^{\alpha_{1}}_{\beta_{1}}\cdots b^{\alpha_{\nu}}_{\beta_{\nu}},$$

(1.13)
$$H_{P}^{(\nu)\beta} = \frac{1}{m!} \varepsilon^{\alpha_{1}\cdots\alpha_{\nu+1}\tau_{\nu+2}\cdots\tau_{m}} \varepsilon_{\beta\beta_{2}\cdots\beta_{\nu+1}\tau_{\nu+2}\cdots\tau_{m}} b_{\beta_{1};\alpha_{2}}^{\beta_{2}} b_{\alpha_{3}}^{\beta_{3}}\cdots b_{p}^{\beta_{\nu+1}} \\ = \frac{1}{\binom{m}{\nu+1}} b_{P}^{\alpha_{1}} b_{\beta_{1};\alpha_{1}}^{\alpha_{1}} b_{\alpha_{2}}^{\alpha_{2}}\cdots b_{p}^{\alpha_{\nu}},$$

then we have the following relations

(1.14)
$$g_{\alpha\beta} H_{(\nu)}^{\alpha\beta} = m H_{\nu}, \quad b_{\alpha\beta} H_{(\nu)}^{\alpha\beta} = m H_{\nu+1},$$

and

(1. 15)
$$H_{P}^{\alpha\beta}(\nu); = -\nu m H_{P}(\nu) \sigma g^{\alpha\beta},$$

where $\varepsilon_{\alpha_1\cdots\alpha_m}$ denotes the ε -symbol of V^m and the symbol [] means alternating in $\nu+1$. In particular we have

(1.16)
$$H_{(0)}^{\alpha\beta} = g^{\alpha\beta}, \quad H_{(0)\nu} = 0,$$

(1.17)
$$H_{P^{(1)\alpha}} = \frac{1}{\binom{m}{2}} b_{[\alpha;\beta]}^{\beta}.$$

§2. Generalized Minkowski formulas for a closed submanifold.

We suppose that R^n admits a one-parameter continuous group G of transformations generated by an infinitesimal transformation

$$(2.1) \qquad \qquad \bar{x}^i = x^i + \xi^i \,\delta\tau \,,$$

where ξ^i are the components of a contravariant vector and $\delta \tau$ is an infinitesimal. In \mathbb{R}^n , we consider a domain U. If the domain U is simply covered by the orbits of transformations generated by ξ^i , and ξ^i is everywhere of class C^3 and $\neq 0$ in U, then we call U a regular domain with respect to the vector field (cf. [4], p. 448). If ξ^i is a Killing vector, a homothetic Killing vector, a conformal Killing vector, then the group G is called isometric, homothetic and conformal respectively.

The vector field ξ^i is said to be conformal, homothetic, or Killing when it satisfies

(2.2)
$$\pounds_{\xi} g^{ij} = \xi_{i;j} + \xi_{j;i} = 2\phi(x)g_{ij}, \quad \pounds_{\xi} g_{ij} = 2cg_{ij}, \quad \pounds_{\xi} g_{ij} = 0$$

respectively, where $\underset{\epsilon}{\pounds} g_{ij}$ denotes the Lie derivative of g_{ij} with respect to the infinitesimal transformation (2.1), $\phi(x)$ is a scalar function, c is a constant and $\xi_i = g_{ij} \xi^j$ (cf. [14]). When the generating vector ξ^i is a conformal Killing vector, it satisfies

(2.3)
$$\mathcal{L}\left\{ \begin{array}{l} h\\ ij \end{array} \right\} = \xi^{h}{}_{;i;j} + R^{h}{}_{ijk}\xi^{k}$$
$$= \delta^{h}_{i}\phi_{j} + \delta^{h}_{j}\phi_{i} - \phi^{h}g_{ij}$$

where $\phi_i = \phi_{;i}, \phi^h = \phi_i g^{ih}$.

Now, we shall consider n^i_E as one of the unit normal vectors of V^m , that is $n^i_{E=1} = n^i$ and assume that at each point on V^m the generating vector ξ^i is contained in the vector space $\mathscr{V}(B^i_1, B^i_2, \dots, B^i_m, n^i)$ spanned by m+1independent vectors $B^i_1, B^i_2, \dots, B^i_m$ and n^i . This assumption is always satisfies for the case m=n-1, that is, V^m is a hypersurface in R^n ([7], p. 94, [8], p. 83). Then we may put

(2.4)
$$\xi^i = \varphi^r B^i_r + p_E^{n^i},$$

where $p = n_i \xi^i$.

Hereafter we denote by V^m an *m*-dimensional closed orientable submanifold of class C^3 imbedded in a regular domain U with respect to the vector ξ^i . We assume that at any point P on V^m , the vector ξ^i is not on its tangent space.

Let us consider a differential form of (m-1)-degree at a point P of V^m , defined by

$$((n, n, \dots, n, f\xi, \delta_n, \dots, \delta_n, dx, \dots, dx))$$

$$(2.5) = \sqrt{g} (n, n, \dots, n, f\xi, \delta_n, \dots, \delta_n, dx, \dots, dx)$$

$$= \sqrt{g} (n, n, \dots, n, f\xi, n, \dots, \delta_E, dx, \dots, dx)$$

$$= \sqrt{g} (n, n, \dots, n, f\xi, n, \dots, n, f\xi, n, \dots, \delta_E, dx, \dots, dx)$$

$$\dots \wedge du^{a_{m-1}},$$

where the symbol () means a determinant of order n whose columns are the components of respective vectors or vector-valued differential forms, \wedge denotes the exterior multiplication, and dx^i be a displacement along V^m ,

i.e., $dx^i = B^i_{\alpha} du^{\alpha}$, g the determinant of the metric tensor g_{ij} of R^n and f a differentiable scalae function on V^m .

Differentiating exteriorly, we have

$$d((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n}_{n}, f\xi, \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx))$$

$$= ((\underbrace{\delta n, n}_{E, m+2}, \cdots, \underbrace{n}_{n}, f\xi, \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx)) +$$

$$\sum_{\substack{Q=m+2\\ E}}^{n} ((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{\delta n}_{Q}, \cdots, \underbrace{n}_{n}, f\xi, \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx)) +$$

$$((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n}_{n}, df\xi, \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx)) +$$

$$((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n}_{n}, f\delta\xi, \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx)) +$$

$$\nu((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n}_{n}, f\xi, \delta(\underbrace{\delta n}_{E}), \underbrace{\delta n}_{E}, \cdots, \underbrace{\delta n}_{E}, dx, \cdots, dx)).$$

On substituting (1.4) into the first term of the right-hand member of (2.6), we obtain

(2.7)
$$((\underbrace{\delta n, n}_{E}, \underbrace{m+2}_{m+2}, \cdots, \underbrace{n, f\xi, \delta n, \cdots, \delta n}_{E}, dx, \cdots, dx)) = m! (-1)^{(n-1)(n-m)-\nu} H_{\nu+1} p dA,$$

where $\underset{E}{H_{\nu+1}}$ denotes the $(\nu+1)$ -th mean curvature of V^m for the normal direction n^i and dA means the volume element of V^m .

By virtue of (1.4) we can see that the vectors

$$\underset{E}{\overset{n \times m}{\underset{m+2}{\times}} \cdots \times \underset{Q}{\overset{\delta n}{\underset{n}{\times}}} \cdots \times \underset{n}{\overset{n \times}{\underset{\nu}{\times}}} \underbrace{\underbrace{\delta n \times \cdots \times \delta n}_{E} \times \underbrace{dx \times \cdots \times dx}_{m-\nu-1}}_{\nu} (Q = m+2, \cdots, n)$$

have the same direction to the covariant vector n. Then we obtain

$$((\underbrace{n, n}_{E \ m+2}, \cdots, \underbrace{\delta n}_{Q}, \cdots, \underbrace{n}_{n}, f\xi, \underbrace{\delta n}_{E}, dx, \cdots, dx)) = 0.$$

$$(Q = m+2, \cdots, n)$$

Since the vector

$$\underset{E}{\overset{n \times n}{\underset{m+2}{\times}} \times \cdots \times \overset{n \times}{\underset{n}{\times}} \underbrace{\underbrace{\delta n \times \cdots \times \delta n}_{E} \times \underbrace{dx \times \cdots \times dx}_{m-\nu-1}}_{\nu}$$

is orthogonal to the vectors n, n, \dots, n and n and $\delta n^i = -b^{\beta}_{\alpha} B^i_{\beta} du^{\alpha}$, we have

(2.8)

$$((n, n, \dots, n, df\xi, \delta_n, \dots, \delta_n, dx, \dots, dx)) = (m-1)! (-1)^{(n-1)(n-m)-\nu} H^{\alpha\beta}\xi_{\alpha}f_{\beta}dA,$$
(2.9)

$$((n, n, \dots, n, f\delta\xi, \delta_n, \dots, \delta_n, dx, \dots, dx))$$

$$(m-1)! \leftarrow therefore a constraints of the second s$$

$$=\frac{(m-1)!}{2}(-1)^{(n-1)(n-m)-\nu}f_{E(\nu)}H^{\alpha\beta}B^{i}_{\beta}B^{j}_{\beta}\mathcal{L}g_{ij}dA,$$

where $f_{\alpha} = \frac{\partial f}{\partial \alpha^{\alpha}}, \ \xi_{\alpha} = B^{i}_{\alpha}\xi_{i}.$

Since we have

(2.10)
$$\delta(\delta n^{i}) = \left(b^{r}_{a; \beta} B^{i}_{r} + b^{r}_{E} \sum_{P=m+1}^{n} b_{\gamma\beta} n^{i}_{P} \right) du^{\alpha} \wedge du^{\beta},$$

the last term of the-right hand member of (2.6) becomes

(2.11)
$$((\underset{E}{n},\underset{m+2}{n},\underset{n}{\dots},\underset{E}{n}, f\xi, \delta(\underbrace{\delta n}_{E}), \underbrace{\delta n}_{E}, \underbrace{\dots}_{E}, dx, \ldots, dx))$$
$$= m! (-1)^{(n-1)(n-m)-\nu-1} f\xi^{\alpha} \underset{E(\nu)\alpha}{H} dA .$$

Accordingly by means of (2.7), (2.8), (2.9) and (2.11) it follows that

$$(2.12) \qquad \frac{1}{m!} d((\underset{E}{n}, \underset{m+2}{n}, \ldots, \underset{n}{n}, f\xi, \underset{E}{\delta n}, \ldots, \underset{E}{\delta n}, dx, \ldots, dx)) \\ = (-1)^{(n-1)(n-m)-\nu} \left\{ \left(H_{\nu+1}p + \frac{1}{2m} H_{(\nu)}^{\alpha\beta} B_{\alpha}^{i} B_{\beta}^{j} \mathcal{L}g_{ij} - \nu\xi^{\alpha} H_{(\nu)\alpha} \right) f + \frac{1}{m} H_{(\nu)}^{\alpha\beta} \xi_{\alpha} f_{\beta} \right\} dA.$$

Integrating both members of (2.12) over the whole submanifold V^m and applying Stokes' theorem, we have

where ∂V^m means the boundary of V^m . Since the submanifold V^m is closed, it follows that

(I)
$$\int_{\mathcal{V}^m} f \underset{E}{H_{\nu+1}} p \, dA + \frac{1}{2m} \int_{\mathcal{V}^m} f \underset{E}{H_{(\nu)}} B^i_{\alpha} B^j_{\beta} \underset{\xi}{\mathcal{L}} g_{ij} dA - \nu \int_{\mathcal{V}^m} f \xi^{\alpha} \underset{E}{H_{(\nu)\alpha}} dA + \frac{1}{m} \int_{\mathcal{V}^m} \frac{H^{\alpha\beta}_{(\nu)}}{E} \xi_{\alpha} f_{\beta} dA = 0.$$

This formula is nothing but the generalization of the formula established by Y. Katsurada and H. Kôjyô [7] p. 96.

§ 3. Minkowski formulas concerning a conformal transformation.

In this section we shall discuss the formula (I) for a conformal Killing vector ξ^i .

Let G be a group of conformal transformations, then from equations (1.1), (1.14) and (2.2) we obtain

$$H^{\alpha\beta}_{\scriptscriptstyle (\nu)}B^i_{\alpha}B^j_{\beta} \mathcal{L}_{\xi}g_{ij} = 2\mathrm{m}\phi H_{\nu}.$$

Therefore (I) is rewritten in the following form:

(3.1)
$$\int_{\mathcal{V}^m} \left\{ \left(\frac{H_{\nu+1}p}{E} + \frac{H_{\nu}\phi}{E} - \nu \xi^{\alpha} \frac{H_{(\nu)\alpha}}{E} \right) f + \frac{1}{m} \frac{H_{(\nu)}^{\alpha\beta} \xi_{\alpha} f_{\beta}}{E} \right\} dA = 0.$$

On substituting f = const. into the formula (3.1), we obtain

(I)_c
$$\int_{\mathcal{V}^m} (H_{\nu+1}p + H_{\mathcal{L}}\phi - \nu \xi^{\alpha} H_{(\nu)\alpha}) dA = 0.$$

For $\nu = 0$, we have

(II)_c
$$\int_{\mathcal{V}^m} (H_1 \not p + \phi) dA = 0.$$

Formula $(II)_c$ is due to Y. Katsurada, H. Kôjyô and T. Nagai ([7], p. 94 and [8], p. 82).

If our manifold R^n is a space of constant Riemann curvature, that is,

$$(3.2) R_{hijk} = \kappa (g_{hj}g_{ik} - g_{hk}g_{ij}),$$

we obtain $\underset{\mathbb{Z}}{H_{(\nu)\alpha}}=0$ from (1.6), (1.13) and (3.2), and consequently from (I)_c we obtain

(3.3)
$$\int_{V^m} (H_{\nu+1}p + H_{\nu}\phi) dA = 0.$$

This formula is due to Y. Katsurada H. Kôjyô ([7], p. 96).

Now, let us consider a differential form of (m-1)-degree at a point of the submanifold V^m , defined by

$$((\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n, \xi}_{i}, \underbrace{t}_{E}^{n^{i}}, \underbrace{dx, \cdots, dx}_{m-1})) \stackrel{\text{def}}{=} \sqrt{g} (\underbrace{n, n}_{E, m+2}, \cdots, \underbrace{n, \xi}_{i}, \underbrace{t}_{E}^{n^{i}}, dx, \cdots, dx).$$

Differentiating exteriorly, and applying the Stokes' theorem, we have

$$\frac{1}{(m-1)!} \int_{\partial V^m} \left(\left(\substack{n, n \\ E \ m+2}, \cdots, \substack{n, k} \atop \substack{n \\ E} dx, \cdots, dx \right) \right) \\= (-1)^{(n-1)(n-m)} \int_{V^m} \left(R_{hijk} \substack{n \\ E} B^i_a \xi^k B^k_\beta g^{a\beta} + mq \right) dA$$

by virtue of (2.3), where $q = n_i \phi^i$.

On making use of that the submonifold V^m is colsed, we have

(3.4)
$$\int_{\mathcal{V}^m} (R_{hijk} \underset{E}{n^h} B^i_a \xi^j B^k_\beta g^{a\beta} + mq) dA = 0.$$

Let G be the group of homothetic transformations, that is, $\phi \equiv \text{const.}$, then we have

(3.5)
$$\int_{\mathbb{V}^m} R_{hijk} \underset{E}{n^h} B^i_a \xi^j B^k_\beta g^{\alpha\beta} dA = 0.$$

Using the Green's theorem, K. Yano derived above formulas (3.4) rnd (3.5) ([16], pp. 382, 383).

§4. Integral formulas in \mathbb{R}^n admitting a scalar field such that $\rho_{;i;j} = h(\rho)g_{ij}$.

In this section we assume that the Riemannian manifold admits a nonconstant scalar field ρ such that

(4.1)
$$\rho_{;i;j} = h(\rho)g_{ij}, \quad \rho_i = \rho_{;i},$$

where $h(\rho)$ is a differentiable function of ρ , and assume that $\rho^i = g^{ij}\rho_j$ lies in the vector space $\mathscr{V}(B_1^i, \dots, B_m^i, n^i)$ spanned by the vectors B_1^i, \dots, B_m^i and n^i at each point of V^m . Then we may put

$$(4.2) \qquad \qquad \rho^i = \phi^r B^i_r + \alpha n^i_E$$

on the submanifold V^m .

We consider a differential form of (m-1)-degree at a point P of the submanifold V^m defined by

$$((\underbrace{n, n}_{E \ m+1}, \cdots, \underbrace{n, f\Phi}_{n}, \underbrace{\delta n, \cdots, \delta n}_{E}, \underbrace{dx, \cdots, dx}_{W}))$$

$$\underbrace{def}_{E \ \sqrt{g}}(\underbrace{n, n}_{E \ m+2}, \cdots, \underbrace{n, f\Phi}_{n}, \underbrace{\delta n, \cdots, \delta n}_{E}, dx, \cdots, dx),$$

where $\Phi = \rho^i \frac{\partial}{\partial x^i}$. Differentiating exteriorly and making use of calculations analogous to those of $\S2$, we have the following integral formula:

(4.3)
$$\int_{\mathcal{V}^m} \left\{ (H_{\nu+1}\alpha + H_{\nu}h - \nu \rho^{\alpha} H_{(\nu)\alpha})f + \frac{1}{m} H_{(\nu)}^{\alpha\beta} \rho_{\alpha} f_{\beta} \right\} dA = 0$$

where $\alpha = n^i \rho_{;i}$, $\rho_{\alpha} = \rho_{;i} B^i_{\alpha}$. On substituting f = const. into the formula (4.3), we obtain

(I')
$$\int_{V^m} (H_{\nu+1}\alpha + H_{\nu}h - \nu \rho^{\alpha} H_{(\nu)\alpha}) dA = 0,$$

in particular for $\nu = 0$ we have

(II')
$$\int_{\mathcal{V}^n} (H_1 \alpha + h) dA = 0.$$

Some properties of a closed orientable submanifold. § 5.

In this section we shall show the following seven theorems for a closed orientable submanifold V^m in a Riemannian manifold R^n .

THEOREM 5.1. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group G of conformal transformations and V^m a closed orientable submanifold sucd that

- (i) $\underset{E}{H_{\nu}} = const. and \xi^{\alpha} \underset{E}{H_{(\nu)\alpha}} = 0 \quad for any \ \nu \quad (1 \le \nu \le m-1),$ (ii) $\underset{E}{k_1} > 0, \underset{E}{k_2} > 0, \cdots, \underset{E}{k_m} > 0 \quad for and \ \nu \quad (2 \le \nu \le m-1),$
- (iii) $\xi^i \in \mathscr{V} (B_1^i, B_2^i, \dots, B_m^i, n^i)$,
- (iv) the inner product $n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector n.

PROOF. On substituting the assumption $\xi^{\alpha} H_{\mu}(x) = 0$ into the formula (I). in $\S3$, we obtain

(III)_c
$$\int_{V^m} (H_{\nu+1}p + H_{\nu}\phi) dA = 0.$$

From $(III)_c$ and $(II)_c$ in §3, we obtain

$$\int_{\mathcal{V}^m} (\underbrace{H_{\nu+1}}_{E} p + \underbrace{H_{\nu}}_{E} \phi) dA = 0,$$
$$\int_{\mathcal{V}^m} (\underbrace{H_1}_{E} \underbrace{H_{\nu}}_{E} p + \underbrace{H_{\nu}}_{E} \phi) dA = 0$$

because of H_{μ} = constant. Therefore we have

(5.1)
$$\int_{\mathcal{V}^{m}} (H_{1}H_{\nu} - H_{\nu+1}) p \, dA = 0 \, .$$

Due to (1.10) and the assumption (ii) (iii) and (iv), the integrand on the left side of equation (5.1) keeps a constant sign; the relation is possible, only when the integrand vanishes identically, which in turn implies

$$H_{E}H_{\nu}-H_{\nu+1}=0,$$

that is,

$$k_1 = k_2 = \cdots = k_m$$

at all points of the submanifold V^m . Accordingly every point of V^m is umbilic with respect to Euler-Schouten vector n.

Theorem 5.1 has been obtained by T. Nagai ([10], p. 153) for $\nu = 1$. In the case where R^n admits a group G of proper homothetic transformations, Theorem 5.1 has been obtained by Y. Katsurada and T. Nagai for $\nu = 1$ i.e., Theorem A stated in the introduction. In the case where R^n is a space of constant curvature, Theorem 5.1 becomes Theorem B and Theorem C stated in the introduction.

THEOREM 5.2. Let \mathbb{R}^n be a Riemannian manifold which admits a nonconstant scalar field ρ such that $\rho_{;i;j} = h(\rho)g_{ij}$ and V^m a closed orientable submanifold such that

- (i) $H_{\nu} = const. and \ \rho^{\alpha} H_{E}_{\nu)\alpha} = 0$ for any ν $(1 \leq \nu \leq m-1)$, (ii) $k_{1} > 0, k_{2} > 0, \dots, k_{m} > 0$ for any ν $(2 \leq \nu \leq m-1)$,
- (iii) $\rho^i \in \mathscr{V} (B_1^i, B_2^i, \cdots, B_m^i, n^i)$,
- (iv) the inner product $\alpha = n_E^i \rho_i$ does not change the sign on V_m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector n.

PROOF. On substituting the assumption (i) into the formula (I') in §4, we have

(III')
$$\int_{\mathcal{V}^m} (H_{\nu+1}\alpha + H_{\nu}h) dA = 0.$$

From (III') and (II') in §4, we obtain

$$\int_{V^m} (H_{\nu+1}\alpha + H_{\nu}h) dA = 0 ,$$

$$\int_{V^m} (\underbrace{H_1}_E \underbrace{H_{\nu}}_E \alpha + \underbrace{H_{\nu}}_E h) dA = 0$$

because of H_{ν} = constant. Therefore we have

(5.2)
$$\int_{V^m} (H_1 H_{\nu} - H_{\nu+1}) \alpha \, dA = 0 ,$$

For $\nu = 1$, this theorem reduces to a result due to K. Yano ([15], p. 505).

THEOREM 5.3. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group G of conformal transformations and V^m a closed orientable submanifold such that

- (i) $H_1 p + \phi \leq 0 \ (or \geq 0) \ and \ \xi^{\alpha} H_{E}(\nu)_{\alpha} = 0 \quad for \ any \ \nu \ (1 \leq \nu \leq m-1),$ (ii) $k_1 > 0, \ k_2 > 0, \dots, k_m > 0 \qquad for \ any \ \nu \ (2 \leq \nu \leq m-1),$
- (ii) $k_1 > 0, k_2 > 0, \dots, k_m > 0$
- (iii) $\xi^i \in \mathscr{V} (B_1^i, B_2^i, \cdots, B_m^i, n^i)$,
- (iv) the inner product $p = n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector n.

Proof. From our assumption (i) and (II)_c in §3 we have the relation $H_1 p = -\phi.$ (5.3)

Substituting (5.3) into the formula $(III)_c$, we obtain

$$\int_{V^n} (H_1 H_{\nu} - H_{\nu+1}) p \, dA = 0 \,,$$

which hold if and only if

$$H_{E}H_{\nu}-H_{\nu+1}=0.$$

Then we obtain the conclusion.

THEOREM 5.4. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group G of conformal transformations and V^m a closed orientable submanifold such that

(i)
$$H_{\nu+1}p + H_{\nu}\phi \leq 0 \ (or \geq 0) \ and \ \xi^{\alpha}H_{(\nu)\alpha} = 0 \quad for \ any \ \nu \ (1 \leq \nu \leq m-1),$$

(ii)
$$k_1 > 0, k_2 > 0, \dots, k_m > 0,$$

- (iii) $\xi^i \in \mathscr{V} (B_1^i, B_2^i, \dots, B_m^i, n^i),$
- (iv) the inner product $p = n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to the vector n.

PROOF. From our assumption (i) and (III)_c we have the relation (5.4) $H_{\nu+1} = -H_{\nu}\phi.$

Substituting (5.4) into the formula $(II)_c$ in §3, we obtain

(5.5)
$$\int_{V^m} \frac{1}{H_{\nu}} (H_1 H_{\nu} - H_{\nu+1}) p \, dA = 0 ,$$

which holds if and only if $H_1H_{\nu} - H_{\nu+1} = 0$. Thus we can see the conclusion.

THEOREM 5.5. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group G of conformal transformations and \mathbb{V}^m a closed orientable submanifold such that

- $(i) \quad -\frac{\phi}{H_1} \geq p \ (or \leq p) \ and \ \xi^{\alpha} H_{E}_{\nu)\alpha} = 0 \quad for \ any \ \nu \quad (1 \leq \nu \leq m-1),$
- (ii) $k_1 > 0, k_1 < 0, \dots, k_m > 0$ for any ν $(2 \le \nu \le m-1)$ and $H_1 > 0$ (or <0) for $\nu = 1$,

(iii)
$$\xi^i \in V (B_1^i, B_2^i, \dots, B_m^i, n^i),$$

(iv) the inner product $p = n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector \underline{n} .

PROOF. By virtue of our assumptions and $(II)_c$ in §3, we obtain the following relation

$$(5.6) p = -\frac{\phi}{H_1}.$$

Substituting (5.6) into $(III)_c$, we obtain

$$\int_{V^m} (H_1 H_{\nu} - H_{\nu+1}) p \, dA = 0 ,$$

which holds if and only if $H_{E}H_{\nu} - H_{\nu+1} = 0$. Then we obtain the conclusion.

In the case that \mathbb{R}^n is a space of constant curvature, Theorem 5.3 ond Theorem 5.5 have been obtained by Y. Katsurada and H. Kôjyô ([7]).

THEOREM 5.6. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group O of conformal transformations and \mathbb{V}^m a closed orientable submanifold such that

(i)
$$-\frac{H_{\nu}}{H_{\nu+1}}\phi \ge p \text{ (or } \le p) \text{ and } \xi^{\alpha}H_{E}(\nu)_{\alpha} = 0 \text{ for any } \nu \text{ (}1 \le \nu \le m-1\text{),}$$

(ii) $k_{1} > 0, k_{2} > 0, \cdots, k_{m} > 0, k_{m} > 0, k_{m} > 0$

(iii)
$$\xi^i \in \mathscr{V} (B_1^i, B_2^i, \cdots, B_m^i, n^i),$$

(iv) the inner product $p = n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector n.

PROOF. The formula (III)_c is rewritten as follows

$$\int_{\mathbb{V}^m} \underbrace{H_{\nu+1}}_{E} \left(p + \frac{H_{\nu}}{H_{\nu+1}} \phi \right) dA = 0 \; .$$

By virtue of our assumptions, we have the following relation

(5.7)
$$p = -\frac{H_{\nu}}{\frac{E}{H_{\nu+1}}}\phi.$$

Substituting (5.7) into $(II)_c$ in §3, we obtain

$$\int_{\mathbb{P}^m} \frac{1}{H_{\nu}} (H_1 H_{\nu} - H_{\nu+1}) p \, dA = 0 ,$$

which holds if and only if $H_{E}H_{\nu}-H_{\nu+1}=0$. Then we obtain the conclusion.

THEOREM 5.7. Let \mathbb{R}^n be a Riemannian manifold which admits a continuous one-parameter group G of conformal transformations and \mathbb{V}^m a closed orientable submanifold such that

(i) $H_{\nu}^{\frac{1}{\nu}} p = -\phi$ for any ν $(2 \leq \nu \leq m-1)$,

(ii)
$$H_1 > 0, H_2 > 0, \dots, H_{\nu} > 0,$$

(iii) $\xi^i \in \mathscr{V} (B_1^i, B_2^i, \dots, B_m^i, n^i),$

(iv) the inner product $p = n_i \xi^i$ does not change the sign on V^m .

Then every point of V^m is umbilic with respect to Euler-Schouten vector n.

PROOF. The following lemma is well-known.

LEMMA. If H_1, H_2, \dots, H_{ν} $(2 \leq \nu \leq m-1)$ are positive, then we have

(5.8)
$$H_1 \ge H_2^{\frac{1}{2}} \ge \cdots \ge H_{\nu}^{\frac{1}{\nu}},$$

where the equality implies that V^m is umbilic with respect to the vector n, i. e., $k_1 = k_2 = \cdots = k_m$. (cf. [2], p. 52).

On substituting the assumption (i) into the formula $(II)_c$, we obtain

(5.9)
$$\int_{V^n} (H_1 - H_{\nu}^{\frac{1}{\nu}}) p \, dA = 0 \, .$$

Due to the inequality (5.8) the integrand in the left side of equation (5.9) keeps a constant sign, and therefore

$$H_{1} - H_{\nu}^{\frac{1}{\nu}} = 0,$$

which implies that V^m is umbilic with respect to the vector n.

REMARK. If R^n admits a special concircular scalar field ρ such that

$$\rho_{;i;j} = c \rho g_{ij}, \qquad c = \text{const.},$$

then we can prove that V^m in the preceding theorems is isometric to a sphere. (cf. [6], [10]).

Department of Mathematics, Hokkaido University

References

- B. Y. CHEN: Umbilical submanifolds associated with a given direction, Tamkang J. Math., (1971), 29-37.
- [2] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA: Inequalites, (Cambridge, 1934).
- [3] Y. KATSURADA: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. di Mat. p. appl., 57 (1962), 283-293.
- [4] Y. KATSURADA: On a piece of hypersurface in a Riemannian manifold with mean curvature bounded away from zero, Trans. Am. Math. Soc., 129 (1967), 447-457.
- [5] Y. KATSURADA: Closed submanifolds with constant ν-th mean curvature related with a vector field in a Riemannian manifold, J. Fac. Sbi. Hokkaido Univ., 20 (1969), 171-181.
- [6] Y. KATSURADA: Some characterizations of a submanifold which is isometric to a sphere, J. Fac. Sci. Hokkaido Univ., 21 (1970), 85-96.
- [7] Y. KATSURADA and H. KÔJYÔ: Some integral formulas for closed submanifolds in a Riemann space, J. Fac. Sci. Hokkaido Univ., 20 (1968), 90-100.
- [8] Y. KATSURADA and T. NAGAI: On some properties of a submanifold with constant mean curvature in a Riemann space, J. Fac. Sci. Hokkaido Univ., 20 (1968), 79-89.
- [9] T. MURAMORI: Generalized Minkowski formulas for closed hypersurfaces is a

Riemannian manifold, J. Fac. Sci. Hokkaido Univ., 22 (1972), 32-49.

- [10] T. NAGAI: On certain conditions for a submanifold in a Riemann space to be isometric to a sphere, J. Fac. Sci. Hokkaido Univ., 20 (1968), 135-159.
- [11] M. OKUMURA: Compact orientable submanifold of codimension 2 in an odd dimensional sphere, Tôhoku Math. J., 20 (1968), 8-20.
- [12] M. OKUMURA: Submanifolds of codimension 2 with certain properties, J. Differential Geometry, 4 (1970), 457-467.
- [13] J. S. SCHOUTEN: Ricci-Calculus, (Second edition) (Springer, Berlin 1954).
- [14] K. YANO: The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
- [15] K. YANO: Notes on submanifolds in a Riemannian manifold, Kōdai Math. Sem. Rep., 21 (1969), 496-509.
- [16] K. YANO: Integral formulas for submanifolds and their applications, Canad. J. Math., 22 (1970), 376-388.
- [17] K. YANO: Submanifolds with parallel mean curvature vector of a Euclidean space or a sphere, Ködai Math. Sem. Rep., 23 (1971), 144-159.
- [18] K. YANO and B. Y. CHEN: On the concurrent vector fields of immersed manifolds, Ködai Math. Sem. Rep., 23 (1971), 343-350.
- [19] K. YANO and M. OKUMURA: Integral formulas for submanifold of codimension 2 and their application, Ködai Math. Sem. Rep., 21 (1969), 463-471.

(Received August 2, 1972)