On some 3-dimensional Riemannian manifolds

By Kouei Sekigawa

1. Introduction. The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

$$
(*) \quad R(\mathrm{X}, Y) \cdot R=0 \quad \text { for all tangent vectors } \mathrm{X} \text { and } Y
$$

where $R(\mathrm{X}, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition on the curvature tensor field R imply that $\nabla R=0$? K. Nomizu conjectured that the answer is positive in the case where (M, g) is complete irreducible and $\operatorname{dim} M \geqq 3$. But, recently, H. Takagi [9] gave an example of 3 -dimensional complete, irreducible real analytic Riemannian manifold (M, g) satisfying (*) and $\nabla R \neq 0$ as a hypersurface in a 4 -dimensional Euclidean space E^{4}. Furthermore, the present author proved that, in an $(m+1)$-dimensional Euclidean space $E^{m+1}(m \geqq 4)$, there exist some complete, irreducible real analytic hypersurfaces which satisfy (${ }^{*}$) and $\nabla R \neq 0$ ([6] in references). Let R_{1} be the Ricci tensor of (M, g). Then, $(*)$ implies in particular
(**) $\quad R(\mathrm{X}, Y) \cdot R_{1}=0 \quad$ for all tangent vectors X and Y.
In the present paper, with respect to this problem, we shall give an affirmative answer in the case where (M, g) is a certain 3-dimensional compact, irreducible real analytic Riemannian manifold, that is

Theorem. Let (M, g) be a 3-dimensional compact, irreducible real analytic Riemannian manifold satisfying the condition $\left(^{*}\right)$ (or equivalently $\left({ }^{(* *)}\right.$). If the Ricci form of (M, g) is non-zero, positive semi-definite on M, then (M, g) is a space of constant curvature.

I should like to express my hearty thanks to Prof. S. Tanno for his kind suggestions and many valuable criticisms.
2. Lemmas. Let (M, g) be a 3-dimensional real analytic Riemannian manifold. Let R^{1} be a field of symmetric endomorphism satisfying $R_{1}(\mathrm{X}, Y)$ $=g\left(R^{1} \mathrm{X}, Y\right)$. It is known that the curvature tensor of (M, g) is given by

$$
\begin{equation*}
R(\mathrm{X}, Y)=R^{1} \mathrm{X} \wedge Y+\mathrm{X} \wedge R^{1} Y-\frac{\text { trace } R^{1}}{2} \mathrm{X} \wedge Y \tag{2.1}
\end{equation*}
$$

for all tangent vectors X and Y.

At each point of M, we may choose an orthonormal basis $\left\{e_{i}\right\}$ such that $R^{1} e_{i}=K_{i} e_{i}, 1 \leqq i, j, k, h, \cdots \leqq 3$. Then, from (*) (or equivalently (**)) and (2.1), we see that essentially the following cases are possible;

$$
\begin{aligned}
& \text { (I) } K_{1}=K_{2}=K_{3}=K, \quad K \neq 0, \\
& \text { (II) } K_{1}=K_{2}=K, \quad K_{3}=0, \quad K \neq 0, \\
& \text { (III) } K_{1}=K_{2}=K_{3}=0,
\end{aligned}
$$

For (I), by [4], we have
Proposition 2.1. If the rank of the Ricci form R_{1} is 3 at least at one point of M, then (M, g) is a space of constant curvature.

With respect to our problem, without loss of generality, we may assume that M is orientable (if necessarily, consider the orientable double covering space of M). Next, we shall assume that the rank of R_{1} is at most 2 on M. Then, (III) or (III) is valid on M. If the rank of R_{1} is 2 at some point of M, then the rank of R_{1} is also 2 n ear the point. Thus, let $W=\{x \in M$; the rank of R_{1} is 2 at $\left.x\right\}$, which is an open set of M. For each point $x_{0} \in W$, let W_{0} be the connected component of x_{0} in W. Then, non-zero eigenvalue of R^{1}, say K, is a real analytic function on W_{0} and we can take two real analytic distributions T_{1} and T_{0} corresponding to K and 0 , respectively on W_{0}. Thus, for each point $x \in W_{0}$, we may choose a real analytic orthonormal frame field $\left\{E_{\}}\right\}$near x in such a way that $\left\{E_{a}\right\}$ and $\left\{E_{3}\right\}$ are bases for T_{1} and T_{0}, respectively. Here, $a, b, c, \cdots=1,2$. From (2.1) and (II), we have

Lemma 2.2. With respect to the above basis $\left\{E_{i}\right\}$,

$$
\begin{equation*}
R\left(E_{1}, E_{2}\right)=K E_{1} \wedge E_{2} \text { and otherwise being zero. } \tag{2.2}
\end{equation*}
$$

In general, for a local real analytic orthonormal frame field $\left\{E_{i}\right\}$ on an open set U in a real analytic Riemannian manifold (M, g), we may put

$$
\begin{equation*}
\nabla_{B_{k}} E_{j}=\sum_{k=1}^{m} B_{i j k} E_{k}, \tag{2.3}
\end{equation*}
$$

where $m=\operatorname{dim} M$ and $B_{i j k}(i, j, k=1,2, \cdots, m)$ are certain real analytic functions on U satisfying $B_{i j k}=-B_{i k j}$.

From (2.2) and (2.3), by considering the second Bianchi identity, we have

$$
\begin{gather*}
B_{33 \alpha}=0, \tag{2.4}\\
E_{3} K+K\left(B_{131}+B_{232}\right)=0 . \tag{2.5}
\end{gather*}
$$

From (2.4), we see that each trajectory of E_{3} is a geodesic. For each point $x \in W_{0}$, let L_{x}^{3} be the geodesic whose initial point is x and initial direction
is $\left(E_{3}\right)_{x}$. And let s denote its arc-length parameter. Using the same symbol for convenience, we shall assume that L_{x}^{3} denotes also the set of the points on L_{x}^{3} and $x(s)$ denotes the point on L_{x}^{3} corresponding to the value s of the parameter. For each point $x \in W_{0}$, we may choose a real analytic orthonormal frame field $\left\{E_{i}\right\}$ on a neighborhood $U_{x}\left(\subset W_{0}\right)$ of x in such a way that
(i) $\left\{E_{a}\right\}$ and $\left\{E_{3}\right\}$ are bases for T_{1} and T_{0}, respectively,
(ii) $\nabla_{E_{3}} E_{i}=0, \quad i=1,2,3$.

From (2.3) and (ii), we have

$$
\begin{equation*}
B_{3 i j}=0 \quad \text { on } \quad U_{x} \tag{2.6}
\end{equation*}
$$

From (2.2), (2.3) and (2.6), we have

$$
\begin{aligned}
R\left(E_{a}, E_{3}\right) E_{3} & =\nabla_{E_{a}} \nabla_{E_{3}} E_{3}-\nabla_{E_{3}} \nabla_{E_{a}} E_{3}-\nabla_{\left[E_{a}, E_{3}\right]} E_{3} \\
& =-\sum_{i=1}^{3}\left(E_{3} B_{a 3 i}+\sum_{k=1}^{3} B_{a 3 k} B_{k 3 i}\right) E_{i} \\
& =-\sum_{j=1}^{3}\left(E_{3} B_{a 3 i}+\sum_{b=1}^{2} B_{a 3 b} B_{b 3 i}\right) E_{i}=0 .
\end{aligned}
$$

Thus, from the above equation and (2.5), we have

$$
\begin{gather*}
E_{3} B_{131}+\left(B_{131}\right)^{2}+B_{132} B_{231}=0, \tag{2.7}\\
E_{3} B_{232}+\left(B_{232}\right)^{2}+B_{231} B_{132}=0, \\
B_{132}=C_{1} K, \quad B_{231}=C_{2} K, \tag{2.8}\\
B_{132}-B_{232}=D K,
\end{gather*}
$$

where C_{1}, C_{2} and D are certain real analytic functions on U_{x} satisfying $E_{3} C_{1}=E_{3} C_{2}=E_{3} D=0$.
From (2.5) and (2.8), we have

$$
\begin{align*}
& B_{131}=\frac{1}{2}\left(D K-E_{3} K / K\right) \tag{2.9}\\
& B_{232}=-\frac{1}{2}\left(D K+E_{3} K / K\right) .
\end{align*}
$$

Thus, from (2.5), (2.7), (2.8) and (2.9), putting $E_{3}=d / d s$ or $-d / d s$ along L_{x}^{3}, we have if $K>0$, then

$$
\begin{equation*}
\frac{d^{2}}{d s^{2}}(1 / \sqrt{K})=-H(\sqrt{K})^{3} \tag{2.10}
\end{equation*}
$$

if $K<0$, then

$$
\begin{equation*}
\frac{d^{2}}{d s^{2}}(1 / \sqrt{-K})=-H(\sqrt{-K})^{3} \tag{2.11}
\end{equation*}
$$

where $H=D^{2} / 4+C_{1} C_{2}$.
Solving (2.10) ((2.11), resp.), we have

$$
\begin{gather*}
1 / \sqrt{K}=\sqrt{(\alpha s-\beta)^{2}-H / \alpha^{2}} \tag{2.12}\\
\left(1 / \sqrt{-K}=\sqrt{(\alpha s-\beta)^{2}-H / \alpha^{2}}, \text { resp. }\right)
\end{gather*}
$$

where α and β are certain real numbers.
Now, for each point $x \in W_{0}$, let $\left\{E_{i}\right\}$ be a real analytic orthonormal frame field on a neighborhood U_{x} satisfying (i) and (ii). Then, $\left\{U_{x}\right\}_{x t W_{0}}$ is an open covering of W_{0}.

Since M is orientable, if $U_{x} \cap U_{\bar{x}} \neq \emptyset,\left\{E_{i}\right\}$ and $\left\{\bar{E}_{i}\right\}$ are defined on U_{x} and $U_{\bar{x}}$, respectively, then we may put

$$
\begin{align*}
& \bar{E}_{1}=(\cos \theta) E_{1}+(-\sin \theta) E_{2}, \\
& \bar{E}_{2}=(\sin \theta) E_{1}+(\cos \theta) E_{2}, \tag{2.13}\\
& \bar{E}_{3}=E_{3}, \quad \text { on } U_{x} \cap U_{\bar{x}},
\end{align*}
$$

or

$$
\begin{align*}
& \bar{E}_{1}=(\cos \theta) E_{1}+(\sin \theta) E_{2}, \\
& \bar{E}_{2}=(\sin \theta) E_{1}+(-\cos \theta) E_{2}, \tag{2.14}\\
& \bar{E}_{3}=-E_{3}, \quad \text { on } U_{x} \cap U_{\bar{x}},
\end{align*}
$$

where $\cos \theta$ and $\sin \theta$ are certain real analytic functions on $U_{x} \cap U_{\bar{x}}$ satisfying $E_{3} \cos \theta=E_{3} \sin \theta=0$.

Let $C_{1}(E), C_{2}(E), D(E)$ and $H(E)$ denote the ones defined as in (2.8) with respect to $\left\{E_{i}\right\}$ on $U_{x}\left(\subset W_{0}\right)$. Then, from (2.13) and (2.14), by direct computation, we have for (2.13)

$$
\begin{align*}
& \left.C_{1}(\bar{E})=C_{1}(E) \cos ^{2} \theta-C_{2}(E) \sin ^{2} \theta+D(E) / 2\right) \sin 2 \theta, \\
& C_{2}(\bar{E})=C_{2}(E) \cos ^{2} \theta-C_{1}(E) \sin ^{2} \theta+(D(E) / 2) \sin 2 \theta, \tag{2.15}\\
& D(\bar{E})=D(E) \cos 2 \theta-\left(C_{1}(E)+C_{2}(E)\right) \sin 2 \theta, \quad \text { on } \quad U_{x} \cap U_{\bar{x}},
\end{align*}
$$

for (2.14)

$$
\begin{align*}
& C_{1}(\bar{E})=C_{1}(E) \cos ^{2} \theta-C_{2}(E) \sin ^{2} \theta-(D(E) / 2) \sin 2 \theta, \\
& C_{2}(\bar{E})=C_{2}(E) \cos ^{2} \theta-C_{1}(E) \sin ^{2} \theta-(D(E) / 2) \sin 2 \theta, \tag{2.16}\\
& D(\bar{E})=-D(E) \cos 2 \theta-\left(C_{1}(E)+C_{2}(E)\right) \sin 2 \theta, \quad \text { on } \quad U_{x} \cap U_{\bar{x}} .
\end{align*}
$$

From (2.15) and (2.16), we have

$$
\begin{equation*}
C_{1}(\bar{E})-C_{2}(\bar{E})=C_{1}(E)-C_{2}(E) \tag{2.17}
\end{equation*}
$$

$$
\begin{align*}
H(\bar{E}) & =D(\bar{E})^{2} / 4+C_{1}(\bar{E}) C_{2}(\bar{E}) \tag{2.18}\\
& =D(E)^{2} / 4+C_{1}(E) C_{2}(E)=H(E), \quad \text { on } \quad U_{x} \cap U_{\bar{x}}
\end{align*}
$$

From (2.17), we see that $f=\left(C_{1}(E)-C_{2}(E)\right) K$ for some $\left\{E_{i}\right\}$ on $U_{x}, x \varepsilon W_{0}$, is a real analytic functionon W_{0}.
3. Some results. In this section, furthermore, we shall assume that (M, g) is complete. Then, by (2.12) and (2.18), we have

Lemma 3.1. For each point $x \in W_{0}, L_{x}^{3}$ is infinitely extendible in W_{0}.
By lemma 3.1, we see that $\left.(1 / K)\right|_{L_{x}^{3}}=(\alpha s-\beta)^{2}-H / \alpha^{2}$ must be defined for all real numbers s along L_{x}^{3}.

Proposition 3.2. If the distribution T_{1} is involutive on W_{0}, then (M, g) is reducible.

Proof. Assume that T_{1} is involutive. Then, it follows that $\left[E_{1}, E_{2}\right] \in T_{1}$, that is

$$
\begin{equation*}
B_{132}-B_{231}=0 \tag{3.1}
\end{equation*}
$$

Thus, from (3.1), we have $H=H(E)=D(E)^{2} / 4+C_{1}(E)^{2} \geqq 0$. Thus, from lemma 3.1. and (2.12), by the similar arguments as in [7], we can show that $H=0$ and furthermore K is constant along $L_{x}^{3}, x \in W_{0}$. Therefore, from (2.9), (3.1) and the fact $H=H(E)=0$, we have $B_{131}=B_{132}=B_{231}=B_{232}=0$. Thus, we see that T_{1} and T_{0} are parallel on W_{0}, that is to say, the open subspace $\left(W_{0},\left.g\right|_{W_{0}}\right)$ is reducible. Since (M, g) is real analytic, we can conclude that (M, g) is reducible. Q.E. D.

Next, furthermore, we shall assume that M is compact and the rank of the Ricci form R_{1} is different from 0 everywhere on M. Then, it follows that $W_{0}=M$. Then, α can not be 0 in (2.12). Since $1 / K$ is continuous on M, it must be bounded on M. But, since $1 / K$ coincides with $(\alpha s-\beta)^{2}-H / \alpha^{2}$ or $-\left((\alpha s-\beta)^{2}-H / \alpha^{2}\right)$ along $L_{x}^{3}, x \in M$, it can not be bounded on $L_{x}^{3} \subset M$. This is a contradiction. Thus, we see that $H=H(E)=0$ at every point $x \in M$ with respect to any $\left\{E_{i}\right\}$ on U_{x}. Thus, from (2.10) and (2.11), by the similar arguments as in [5], we can see that K is constant along each $L_{x}^{3}, x \in M$. That is

Proposition 3.3. If M is compact and the rank of the Ricci form R_{1} is different from 0 everywhere on M, then K is constant along each L_{x}^{3}, $x \in M$.
4. Proof of the main theorem. In the sequel, we shall assume that M is compact and the rank of R_{1} is different from 0 everywhere on M.

The purpose of this section is to prove the reducibility of (M, g) under these circumstances. Now, we assume that there exists a point $z \in M$ such that $f(z) \neq 0$. Let $V=\{x \in M ; f(x) \neq 0\}$, which is an open set of M. For any point $x_{0} \in V$, let V_{0} be the connected component of x_{0} in V. Now, since $H=H(E)=0$ for any $\left\{E_{i}\right\}$ on sufficiently small $U_{x}\left(\subset V_{0}\right)$, we see that $\wedge(E)$ $=\sqrt{D(E)^{2}+\left(C_{1}(E)+C_{2}(E)\right)^{2}}>0$. Thus, we can define a real analytic orthonormal frame field $\left\{E_{i}^{*}(E)\right\}$ on U_{x} in such a way that

$$
\begin{align*}
& E_{1}^{*}(E)=(\cos \xi) E_{1}+(-\sin \xi) E_{2}, \\
& E_{2}^{*}(E)=(\sin \xi) E_{1}+(\cos \xi) E_{2}, \tag{4.1}\\
& E_{3}^{*}(E)=E_{3},
\end{align*}
$$

where ξ is a certain real analytic function on U_{x} satisfying $\cos 2 \xi=\left(C_{1}(E)\right.$ $\left.+C_{2}(E)\right) / \wedge(E)$ and $\sin 2 \xi=D(E) / \wedge(E)$.

Next, if $U_{x} \cap U_{\bar{x}} \neq \emptyset,\left\{E_{i}\right\}$ and $\left\{\bar{E}_{i}\right\}$ are defined on U_{x} and $U_{\bar{x}}$, respectively, then, by the similar way as in (4.1), we may obtain an orthonormal frame field $\left\{E_{\dot{i}}^{*}(\bar{E})\right\}$ with respect to $\left\{\bar{E}_{i}\right\}$ on $U_{\bar{x}}\left(\subset V_{0}\right)$. Then we have

Lemma 4.1. On $U_{x} \cap U_{\bar{x}}$, we have

$$
E_{i}^{*}(\bar{E})= \pm E_{i}^{*}(E), \quad i=1,2,3,
$$

where the plus sign or minus sign in (4.2) is determined by the orientation of M.

Proof. By the definition of $\left\{E_{i}^{*}(\bar{E})\right\}$, we have

$$
\begin{align*}
& E_{1}^{*}(\bar{E})=(\cos \bar{\xi}) \widetilde{E}_{1}+(-\sin \bar{\xi}) \bar{E}_{2}, \\
& E_{2}^{*}(\bar{E})=(\sin \bar{\xi}) \bar{E}_{1}+(\cos \bar{\xi}) \bar{E}_{2}, \tag{4.3}\\
& E_{3}^{*}(\bar{E})=\bar{E}_{3},
\end{align*}
$$

where $\bar{\xi}$ is a certain real analytic function on $U_{\overline{\bar{x}}}$ satisfying $\cos 2 \bar{\xi}=\left(C_{1}(\bar{E})\right.$ $+C_{2}(\bar{E}) / / \wedge(\bar{E})$ and $\sin 2 \bar{\xi}=D(\bar{E}) / \wedge(\bar{E})$.

First, for the case (2.13), from (2.15), (4.1) and (4.3), we have $\wedge(\bar{E})$ $=\wedge(E)$ and furthermore

$$
\begin{aligned}
\cos 2 \bar{\xi}= & \left(C_{1}(\bar{E})+C_{2}(\bar{E})\right) / \wedge(\bar{E}) \\
= & (1 / \wedge(E))\left(\left(\cos ^{2} \theta\right) C_{1}(E)-\left(\sin ^{2} \theta\right) C_{2}(E)\right. \\
& +(\sin \theta \cos \theta) D(E)+\left(\cos ^{2} \theta\right) C_{2}(E)-\left(\sin ^{2} \theta\right) C_{1}(E) \\
& +(\sin \theta \cos \theta) D(E)) \\
= & (1 / \wedge(E))\left((\cos 2 \theta)\left(C_{1}(E)+C_{2}(E)\right)+(\sin 2 \theta) D(E)\right)=\cos 2(\xi-\theta),
\end{aligned}
$$

similarly

$$
\sin 2 \bar{\xi}=\sin 2(\xi-\theta)
$$

Thus, we have

$$
\begin{equation*}
\xi-\theta=\bar{\xi}+n \pi \quad(n=1,2, \cdots) \tag{4.4}
\end{equation*}
$$

Again, from (2.13), (2.15), (4.1) and (4.3), we have

$$
\begin{aligned}
E_{1}^{*}(\bar{E}) & =(\cos \bar{\xi})\left((\cos \theta) E_{1}+(-\sin \theta) E_{2}\right)+(-\sin \bar{\xi})\left((\sin \theta) E_{1}+(\cos \theta) E_{2}\right) \\
& =(\cos (\bar{\xi}+\theta)) E_{1}+(-\sin (\bar{\xi}+\theta)) E_{2}
\end{aligned}
$$

Thus, from (4.4), we see that $E_{1}^{*}(\bar{E})=E_{1}^{*}(E)$ or $E_{1}^{*}(\bar{E})=-E_{1}^{*}(E)$. Furthermore, we see that $E_{2}^{*}(\bar{E})=E_{2}^{*}(E)$ corresponding to $E_{1}^{*}(\bar{E})=E_{1}^{*}(E)$ or $E_{2}^{*}(\bar{E})$ $=-E_{2}^{*}(E)$ corresponding to $E_{1}^{*}(\bar{I})=-E_{1}^{*}(E)$. Similarly, considering the case (2.14), we see that (4.2) is valid. Q.E.D.

For each $\left\{E_{i}^{*}=E_{i}^{*}(E)\right\}$ on $U_{x}\left(\subset V_{0}\right)$, let $T_{i j}=\operatorname{span}\left\{E_{i}^{*}, E_{j}^{*}\right\}(i \leqq j)$. Then, by the definition of $\left\{E_{i}^{*}(E)\right\}$, we see that

$$
\begin{equation*}
C_{1}\left(E^{*}\right) C_{2}\left(E^{*}\right)=0 \quad \text { and } \quad D\left(E^{*}\right)=0 \tag{4.5}
\end{equation*}
$$

Thus, we may assume, for example

$$
\begin{equation*}
C_{1}\left(E^{*}\right) \neq 0, \quad C_{2}\left(E^{*}\right)=0, \quad D\left(E^{*}\right)=0, \quad \text { on } \quad V \tag{4.6}
\end{equation*}
$$

Thus, from (2.9) (4.6) and proposition 3.3, we have

$$
\begin{equation*}
B_{132}^{*} \neq 0, \quad B_{21}^{*}=B_{131}^{*}=B_{2}^{*}=0 \quad \text { on } \quad U_{x}, x \in V_{0}, \tag{4.7}
\end{equation*}
$$

where $B_{i j k}^{*}(i, j, k=1,2,3)$ denote the ones defined as before corresponding to $\left\{E_{i}^{*}\right\}$. Then, from (4.7), we have

Lemma 4.2. T_{23} is involutive on V_{0}.
Now, from (2.2), (2.3), (2.4), (2.6) and (4.7), we have

$$
\begin{aligned}
R\left(E_{1}^{*}, E_{2}^{*}\right) E_{3}^{*} & =\nabla_{E_{1}}^{*} \nabla_{E_{2}}^{*} E_{3}^{*}-\nabla_{E_{2}}^{*} \nabla_{E_{1}}^{*} E_{3}^{*}-\nabla_{\left[E_{1}^{*}, E_{2}^{*}\right]} E_{3}^{*} \\
& =-\left(\left(E_{2}^{*} B_{132}^{*}\right)+B_{121}^{*} B_{132}^{*}\right) E_{2}^{*}-\left(B_{232}^{*} B_{221}^{*}\right) E_{1}^{*}=0
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
B_{221}^{*}=0 \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
E_{2}^{*} B_{132}^{*}+B_{121}^{*} B_{132}^{*}=0 \tag{4.9}
\end{equation*}
$$

From (4.8) and (4.9), we see that $\nabla_{E_{2}}{ }^{*} E_{2}^{*}=0$, that is, each trajectory of E_{2}^{*} is a geodesic. From (4.7), since $\nabla_{E_{2}^{*}} E_{3}^{*}=\nabla_{E_{3}^{*}} E_{2}^{*}=\nabla_{E_{3}^{*}} E_{3}^{*}=0$, consequently,
we have
Lemma 4.3. Let $M_{23}(x)$ be the maximal integral submanifold of T_{23} through $x \in V_{0}$. Then $M_{23}(x)$ becomes totally geodesic subspace with respect to the induced metric and hence locally flat.

Now, let L_{x}^{2} be the geodesic whose initial point is $x, x \in V_{0}$, and whose tangent vector is E_{2}^{*} or $-E_{2}^{*}$ at each point of L_{x}^{2}. And let t denote its arclength parameter. Using the same symbol for convenience, we shall assume that L_{x}^{2} denotes also the set of the points on L_{x}^{2} and $x(t)$ denotes the point on L_{x}^{2} corresponding to the value t of the parameter. Again, from (2.2), (2.3), (2.4), (2.6) and (4.7), we have

$$
\begin{aligned}
& R\left(E_{1}^{*}, E_{3}^{*}\right) E_{2}^{*} \\
& \quad=-\sum_{i=1}^{3} E_{3}^{*} B_{12 i}^{*} E_{i}^{*}=0 \\
& \begin{aligned}
R\left(E_{1}^{*}\right. & \left., E_{2}^{*}\right) E_{1}^{*} \\
& =-\left(\left(E_{2}^{*} B_{112}^{*}\right)+\left(B_{121}^{*} B_{112}^{*}\right)\right) E_{2}^{*} \\
& =-K E_{2}^{*}
\end{aligned}
\end{aligned}
$$

Thus, we have

$$
\begin{gather*}
E_{3}^{*} B_{121}^{*}=0 \tag{4.10}\\
E_{2}^{*} B_{121}^{*}+B\left({ }_{121}^{*}\right)^{2}=-K . \tag{4.11}
\end{gather*}
$$

From (4.9) and (4.11), we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(B_{132}^{*}\right)+\left(-K-2\left(B_{121}^{*}\right)^{2}\right) B_{132}^{*}=0 \quad \text { along } \quad L_{x}^{2} \tag{4.12}
\end{equation*}
$$

(4.12) is equivalent to

$$
\frac{d^{2} f}{d t^{2}}+\left(-K-2 G^{2}\right) f=0 \quad \text { along } \quad L_{x}^{2}
$$

where $G^{2}=\left(B_{121}^{*}\right)^{2}$.
Now, if we put $f^{*}=f^{2}$, then, from (4.9) and (4.11), we have

$$
\begin{equation*}
\frac{d^{2} f^{*}}{d t^{2}}+2\left(-K-3\left(G^{2}\right)\right) f^{*}=0 \quad \text { along } \quad L_{x}^{2} \tag{4.13}
\end{equation*}
$$

We can easily see that $f=0$ on the complement of V_{0} in M. Then we have

Lemma 4. 4. For each point $x \in V_{0}, L_{x}^{2}$ is infinitely extendible in V_{0}.
Proof. Since (M, g) is complete, as a geodesic in $(M, g), L_{x}^{2}$ is infinitely
extendible. If this geodesic does not lie in V_{0}, let t_{0} be a point such that $x(t) \in V_{0}$ for $t<t_{0}$ but $x\left(t_{0}\right) \notin V_{0}$. Then, we see that $f\left(x\left(t_{0}\right)\right)=0$. Now, we put $y=f(t)=f(x(t)), x(t) \in L_{x}^{2}$, where, using the same symbol for convenience, we shall assume that L_{x}^{2} denotes also the extention of L_{x}^{2}. Then, $f(t)$ is a real analytic function defined for all real numbers t. Since f is not identically 0 , we may put

$$
\begin{equation*}
y=f(t)=u^{n} f_{1}(u), \quad \text { for some integer } \quad n \geqq 1, \tag{4.14}
\end{equation*}
$$

where $u=t-t_{0},|u|<\varepsilon$ for sufficiently small $\varepsilon>0$, and f_{1} is a certain real analytic function defined for $|u|<\varepsilon$ satisfying $f_{1}(0) \neq 0$. We see that G^{2} is a real analytic function on V_{0}. Teen, from (4.9) and (4.14), we have

$$
\begin{equation*}
G(u)=-(1 / u)\left(\left(u\left(d f_{1} / d u\right)+n f_{1}\right) / f\right) \quad \text { for } E_{2}^{*}=d \mid d t \tag{4.15}
\end{equation*}
$$

or

$$
\left.G(u)=(1 / u)\left(\left(u\left(d f_{1} / d u\right)+n f_{1}\right)\right) / f\right) \quad \text { for } \quad E_{2}^{*}=-d / d t \text { along } L_{x}^{2},
$$

where $-\varepsilon<u<0$, for sufficiently small $\varepsilon>0$.
From (4.11) and (4.15), by direct computing, we have

$$
\begin{equation*}
(1 / u)^{2} G_{1}(u)=-K(x(u)), \quad-\varepsilon<u<0, \quad \text { for sufficienfly } \tag{4.16}
\end{equation*}
$$

small $\varepsilon>0$, where G_{1} is a real analytic function defined for $-\varepsilon<u<\varepsilon$ such that

$$
\left.G_{1}(u)=\left(1 / f_{1}\right)^{2}\left(n+n^{2}\right) f_{1}^{2}+2 n u f_{1}\left(d f_{1} / d u\right)+2 u^{2}\left(d f_{1} / d u\right)^{2}-u^{2} f_{1}\left(d^{2} f_{1} / d u^{2}\right)\right),
$$

and hence $G_{1}(0)=n+n^{2}$.
Thus, for the left hand side of (4.16), we have $\lim _{u \rightarrow-0}(1 / u)^{2} G_{1}(u)=+\infty$, and for the right hand side of (4.16), we have $\lim _{u \rightarrow-0}-K(x(u))=-K\left(x\left(t_{0}\right)\right)$. This is a contradiction.
Q. E. D.

From (4.9) and (4.11), we have

$$
\begin{equation*}
d^{2}(1 / f) / d t^{2}+K(1 / f)=0, \quad \text { along } \quad L_{x}^{2} \tag{4.17}
\end{equation*}
$$

Next, we shall assume that $K>0$ on M. Since M is compact, there exists a point $x_{0} \in V \subset M$ such that $f^{*}\left(x_{0}\right)=\operatorname{Max}_{x \in M} f^{*}(x)>0$. Let V_{0} be the connected component of x_{0} in V. And consider $L_{x_{0}}^{2}$. Then, from (4.13), since $K>0$, we see that $d^{2} f^{*} / d t^{2}>0$ for all real numbers t. But, this is a contradiction. Thus, we can conclude that $f=0$ on M. Thus, by the same arguments as in the proof of proposition 3.2 , we can see that (M, g) is reducible. Therefore, we have the main theorem.
5. Some remarks. Let (M, g) be a 3-dimensional complete, irreducible real analytic Riemannian manifold satisfying the condition $\left(^{*}\right.$) (or equivalently $(* *)$). Now, we shall assume that the scalar curvature, S, of (M, g) is a nonzero constant. If the rank of the Ricci form R_{1} of (M, g) is 3 at some point of M, then (M, g) is a space of constant curvature, $S / 6$. In the sequel, we shall assume that the rank of the Ricci form R_{1} of (M, g) is 2 everywhere on M. Then, from the constancy of $K=S / 2$, we may apply the similar arguments to (M, g) in consideration which are independent on compactness of the manifold treated in the previous sections. First, we assume that $S>0$. Then, from (4.17), we have

$$
\begin{equation*}
1 / f(t)=c_{1} \sin (\sqrt{S / 2}) t+c_{2} \cos (\sqrt{S / 2}) t, \quad \text { along } \quad L_{x}^{2}, x \in V_{0} \tag{5.1}
\end{equation*}
$$

where c_{1} and c_{2} are certain real numbers.
Since (M, g) is complete, from lemma 4.4. and (5.1), we see that there exists a real number t_{0} such that $1 / f\left(t_{0}\right)=0$. But, this is a contradiction. Thus, we have

Proposition 5.1. Let (M, g) be a 3-dimensional complete, irreducible real analytic Riemannian manifold satisfying $\left(^{*}\right)$ (or equivalently $\left({ }^{* *}\right)$). If the scalar curvature S of (M, g) is constant and positive, then (M, g) is a space of constant curvature $S / 6$.

Next, we assume that $S<0$. From lemma 4.3, for each point $x \in V_{0}$, we may choose a local coordinate system $\left(U_{x} ;\left(u_{1}, u_{2}, u_{3}\right)\right)$ with origin x, $U_{x} \subset V_{0}$ such that

$$
\begin{align*}
& E_{1}^{*}=\lambda\left(\partial / \partial u_{1}\right), \\
& E_{2}^{*}=a_{22}\left(\partial / \partial u_{2}\right)+a_{23}\left(\partial / \partial u_{3}\right), \tag{5.2}\\
& E_{3}^{*}=a_{32}\left(\partial / \partial u_{2}\right)+a_{33}\left(\partial / \partial u_{3}\right), \quad-\varepsilon<u_{1}, u_{2}, u_{3}<\varepsilon .
\end{align*}
$$

where $\lambda, a_{22}, a_{23}, a_{32}$ and a_{33} are certain real analytic functions on $U_{x}, \lambda>0$, and $a_{22}=a_{33}=1, a_{23}=a_{32}=0$ along $M_{23}(x)$ in U_{x}.

By considering $B_{131}^{*}=B_{2}^{*}{ }_{31}=B_{2}^{*}{ }_{32}=B_{3}^{*}{ }_{i j}=0, i, j=1,2,3$, we see that a_{22}, a_{23}, a_{32} and a_{33} depend only on u_{1}. By (5.2), the Riemannian metric tensor g is represented by

$$
(g) ;\left(\begin{array}{ccc}
1 / \lambda^{2} & 0 & 0 \tag{5.3}\\
0 & g_{22} & g_{23} \\
0 & g_{32} & g_{33}
\end{array}\right) \text { on } U_{x}
$$

where $g_{p q}=g\left(\partial / \partial u_{p}, \partial / \partial u_{q}\right), p, q=2,3$.
Then we have

$$
\begin{equation*}
f=\lambda \Phi, \quad t=a_{22} u_{2}+a_{23} u_{3}, \tag{5.4}
\end{equation*}
$$

where $\Phi=a^{22}\left(\partial a_{32} / \partial u_{1}+\left\{\begin{array}{c}2 \\ 12\end{array}\right\} a_{32}+\left\{\begin{array}{c}2 \\ 1\end{array}\right\}\right.$
$\left(a^{p q}\right)$ denotes the inverse matrix of $\left(a_{p q}\right), p, q=2,3$ and $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ denote the Christoffel symbols formed with $g_{i j}=g\left(\partial / \partial u_{i}, \partial / \partial u_{j}\right), i, j, k=1,2,3$.

Then, by direct computing, we see that Φ depends only on u_{1}. Now, especially, we put $a_{22}=\cos u_{1}, a_{23}=-\sin u_{1}, a_{32}=\sin u_{1}, a_{33}=\cos u_{1}$ in (5.2). Then, frsm (5.4), we see that $\Phi=1$. Thus, the following Riemannian manifold (M, g) is an example of 3-dimensional complete, irreducible real analytic Riemannian manifolds satisfying $\left(^{*}\right)$ and $\nabla R \neq 0$:
$M=R^{3}$ (3-dimensional real number space),

$$
(g):\left(\begin{array}{ccc}
1 / \lambda^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text {, with respect to }
$$

a canonical coordinate system $\left(u_{1}, u_{2}, u_{3}\right)$ on R^{3}, where

$$
1 / \lambda=c_{1} e^{(\overline{\gamma-s / 2}) t}+c_{2} e^{-(\overline{r-S / 2}) t}, \quad t=\left(\cos u_{1}\right) u_{2}+\left(-\sin u_{1}\right) u_{3},
$$

c_{1}, c_{2}, S are certain real constant.
The above Riemannian manifold is of the form $E^{2} \times{ }_{f} E^{1}$, and the scalar curvature is S, where $f=1 / \lambda$, (see [5], [10]). Some results concerning $R(\mathrm{X}$, $Y) \cdot R=0$ may be founded inreferences.

References

[1] K. Abe: A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tōhoku Math. Journ., 23 (1971), 219-244.
[2] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tōhoku Math. Journ., 20 (1968), 46-59.
[3] A. Rosenthal: Riemannian manifolds of constant nullity, Michigan Math. Journ., 14 (1967), 469-480.
[4] K. Sekigawa: Notes on some 3- and 4-dimensional Riemannian manifolds, Kōdai Math. Sem. Rep., 24 (1972), 403-409.
[5] K. Sekigawa: On the Riemannian manifolds of the form $B \times{ }_{f} F$, to appear.
[6] K. Sekigawa: On some hypersurfaces satisfying $R(X, Y) \cdot R=0$, Tensor, N. S., 25 (1972), 133-136.
[7] K. Sekigawa and H. Takagi: Conformally flat spaces satisfying a certain con-
dition on the Ricci tensor, Tōhoku Math. Journ., 23 (1971), 1-11.
[8] K. SEKIGAWA and S. TANNO: Sufficient conditions for a Riemannian manifold to be locally symmetric, Pacific Journ. of Math., 34 (1970), 157-162.
[9] H. Takagi, An example of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$ but not $\nabla R=0$, Tōhoku Math. Journ., 24 (1972), 105-108.
[10] S. TANNO: A class of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, Nagoya Math. Journ., 42 (1971), 67-77.
[11] S. TANNO: A theorem on totally geodesic foliations and its applications, Tensor, N. S., 24 (1972), 116-122.
(Received February 22, 1973)

