A characterization of $\operatorname{PSU}\left(3,3^{2}\right)$ as
 a permutation group of rank 4

By Shiro Iwasaki

1. Introduction

It is known that the simple unitary group $\operatorname{PSU}\left(3,3^{2}\right)$ of order 6048 has a representation as a primitive group of degree 36 with the stabilizer of a point isomorphic to the projective special linear group $\operatorname{PSL}(3,2)$ of order 168. This representation has rank 4 and subdegrees $1,7,7,21=7 \cdot 6 / 2$, and the orbitals of length 7 are paired with each other (for example, see Quirin [6, P. 224]).

The purpose of this note is to prove the following result, which is a supplement of section 2 of [5].

Theorem. Let (G, Ω) be a finite primitive permutation group of rank 4 such that the subdegrees are $1, k, k, k(k-1) / 2$ and the orbitals of length k are paired with each other. Then $k=7$ and (G, Ω) is permutation-isomorphic to the simple unitary group $\operatorname{PSU}\left(3,3^{2}\right)$ acting by right multiplication on the cosets of its subgroup PSL $(3,2)$.

Remark. By Proposition 3.6 of [5], if the stabilizer of a point acts doubly transitively on an orbit of length k, the assumption that the orbitals of length k are paired with each other is omitted.

The author is grateful to Mr. E. Bannai and Mr. H. Enomoto for their valuable suggestions.

2. Notation and preliminaries

Our proof is quite elementary and only the familiarity with definitions and basic properties of Higman's intersection numbers ([4]) is assumed. Notation follows [4] and [5], but for convenience we rewrite below. The orbitals of length $1, k, k, l=k(k-1) / 2$ are denoted by $\Gamma_{0}, \Gamma_{1}=\Lambda, \Gamma_{3}=\Lambda, \Gamma_{2}=\Gamma$, respectively. Here we may take the orbitals so that $\Gamma_{a}(a)^{g}=\Gamma_{\alpha}\left(a^{o}\right)$ for all $g \in G$ and $a \in \Omega$. The intersection numbers relative to an orbital Γ_{a} are defined by

$$
\mu_{i j}^{(\alpha)}=\left|\Gamma_{a}(b) \cap \Gamma_{i}(a)\right| \quad \text { for } \quad b \in \Gamma_{j}(a) .
$$

The following are fundamental relations among the $\mu_{i j}^{(a)}$ and k, l.

$$
\begin{aligned}
& \mu_{11}^{(1)}=\mu_{13}^{(1)}=\mu_{33}^{(1)}=\mu_{11}^{(3)}=\mu_{31}^{(3)}=\mu_{33}^{(3)} \quad(\text { set } \lambda), \\
& \mu_{12}^{(1)}=\mu_{32}^{(3)} \quad(\text { set } \mu), \\
& \mu_{21}^{(1)}=\mu_{13}^{(2)}=\mu_{31}^{(2)}=\mu_{23}^{(3)} \quad\left(\text { set } \nu_{1}\right), \\
& \mu_{22}^{(1)}=\mu_{12}^{(2)}=\mu_{32}^{(2)}=\mu_{22}^{(3)} \quad\left(\text { set } \mu_{1}\right), \\
& \mu_{23}^{(1)}=\mu_{11}^{(2)}=\mu_{33}^{(2)}=\mu_{21}^{(3)} \quad\left(\text { set } \lambda_{1}\right), \quad \mu_{31}^{(1)}=\mu_{13}^{(3)} \quad\left(\text { set } \nu_{2}\right), \\
& \mu_{32}^{(1)}=\mu_{12}^{(3)} \quad\left(\text { set } \mu_{2}\right), \quad \mu_{21}^{(2)}=\mu_{23}^{(2)} \quad\left(\text { set } \lambda^{\prime}\right) \text { and set } \mu_{22}^{(2)}=\mu^{\prime} ; \\
& 1+2 \lambda+\lambda_{1}=\mu+\mu_{1}+\mu_{2}=\lambda+\nu_{1}+\nu_{2}=k, \\
& \nu_{1}+\lambda^{\prime}+\lambda_{1}=1+2 \mu_{1}+\mu^{\prime}=l ; \\
& k \nu_{1}=l \mu_{2}, \quad k \lambda^{\prime}=l \mu_{1}, \quad k \lambda_{1}=l \mu .
\end{aligned}
$$

Intersection matrices $M_{\alpha}=\left(\mu_{i j}^{(\alpha)}\right)$ corresponding to $\Gamma_{\alpha}(\alpha=1,2,3)$ are

$$
M_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
k & \lambda & \mu & \lambda \\
0 & \nu_{1} & \mu_{1} & \lambda_{1} \\
0 & \nu_{2} & \mu_{2} & \lambda
\end{array}\right), \quad M_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & \lambda_{1} & \mu_{1} & \nu_{1} \\
l & \lambda^{\prime} & \mu^{\prime} & \lambda^{\prime} \\
0 & \nu_{1} & \mu_{1} & \lambda_{1}
\end{array}\right), \quad M_{3}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & \lambda & \mu_{2} & \nu_{2} \\
0 & \lambda_{1} & \mu_{1} & \nu_{1} \\
k & \lambda & \mu & \lambda
\end{array}\right) .
$$

By (4.10) of Higman [4], any two intersection matrices commute with each other. In particular, $(3,4)$-entries of $M_{1} M_{2}=M_{2} M_{1}$ gives an additional relation

$$
\begin{equation*}
\nu_{1}^{2}+\mu_{1} \lambda^{\prime}+\lambda_{1}^{2}=l+\mu^{\prime} \lambda_{1}+2 \lambda \lambda^{\prime} . \tag{*}
\end{equation*}
$$

3. Proof of Theorem

To begin with, as in [5], we shall determine the value of k. Since $k \lambda_{1}=l \mu$ and $\lambda_{1} \leqq k-1$, we have $\mu \leqq 2$. Similarly, $k \nu_{1}=l \mu_{2}$ and $\nu_{1} \leqq k$ imply $\mu_{2} \leqq 2$ (in case $\mu_{2}=3$, we have $k=2$ or 3 and these are easily excluded). Since $\mu+\mu_{1}+\mu_{2}=k$ and $k \lambda^{\prime}=l \mu_{1}$, if $\mu=0$ and $\mu_{2}=0$, then $\lambda^{\prime}=l$, which contradicts the primitivity of G by Lemma 1.3 of [5]. Hence we have the possibilities listed in the table of the next page.

In Cases (1), (3), (4), (6) and (8), by the equality $\left(^{*}\right)$ we have a contradiction. In Case (2), $\lambda+\nu_{1}+\nu_{2}=k$ yields $(k-1) / 2+(k-1) \leqq k$, that is, $k \leqq 3$, which is impossible. Similarly, in Case (5), it follows that $(k-1) / 4+(k-1)$ $\leqq k$, that is, $k \leqq 5$. Since $\lambda=(k-1) / 4$ must be an integer, $k=5$. Thus, in Case (5) we have $k=5$. In Case (7), by the equality (${ }^{*}$), $k=7$ follows necessarily.

Next, we examine the both Cases (5) and (7).
Case (5): Firstly we show that $\Gamma_{2}(a)$ is identified with the set of all unordered pairs of $\Gamma_{1}(a)$. In fact, since $\mu_{32}^{(1)}=\mu_{2}=2$, for every point x in

Case	μ	$\lambda_{1}=l \mu / k$	$\lambda=\left(k-1-\lambda_{1}\right) / 2$	μ_{2}	$\nu_{1}=l \mu_{2} / k$	$\mu_{1}=k-\left(\mu+\mu_{2}\right)$	$\lambda^{\prime}=l \mu_{1} / k$	$\mu^{\prime}=l-1-2 \mu_{1}$
(1)	0	0	$(k-1) / 2$	1	(k-1)/2	$k-1$	$(k-1)^{2} / 2$	(k-1) $(k-4) / 2-1$
(2)				2	$k-1$	$k-2$	($k-1$)(k-2)/2	$(k-2)(k-3) / 2$
(3)	1	(k-1)/2	$(k-1) / 4$	0	0	$k-1$	$(k-1)^{2} / 2$	$(k-1)(k-4) / 2-1$
(4)				1	($k-1$)/2	$k-2$	$(k-1)(k-2) / 2$	$(k-2)(k-3) / 2$
(5)				2	$k-1$	$k-3$	(k-1)(k-3)/2	$\left(k^{2}-5 k+10\right) / 2$
(6)	2	$k-1$	0	0	0	$k-2$	$(k-1)(k-2) / 2$	$(k-2)(k-3) / 2$
(7)				1	$(k-1) / 2$	$k-3$	$(k-1)(k-3) / 2$	$\left(k^{2}-5 k+10\right) / 2$
(8)				2	$k-1$	$k-4$	(k-1)(k-4)/2	$\left(k^{2}-5 k+14\right) / 2$

$\Gamma_{2}(a)$ we may set $\Gamma_{1}(a) \cap \Gamma_{3}(x)=\left\{x_{1}, x_{2}\right\}$. Also, since $\mu_{11}^{(1)}=\mu_{13}^{(1)}=\lambda=1$ and $\mu_{12}^{(1)}=\mu=1$, it follows that $\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{1}\left(x_{2}\right)=\{x\}$. Hence we see easily that the mapping $x \mid \rightarrow\left\{x_{1}, x_{2}\right\}$ is a bijection from $\Gamma_{2}(a)$ onto the set of all unordered pairs of $\Gamma_{1}(a)$ and they are identified since $x^{g} \mid \rightarrow\left\{x_{1}^{g}, x_{2}^{o}\right\}$ for all $g \in G_{a}$. Next, let x_{1} be an element of $\Gamma_{1}(a)$. Since $\left|\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{1}(a)\right|=\mu_{11}^{(1)}=\lambda=1$ and $\mid \Gamma_{2}\left(x_{1}\right)$ $\cap \Gamma_{1}(a) \mid=\mu_{11}^{(2)}=\lambda_{1}=2$, we may take elements x_{2}, x_{3} of $\Gamma_{1}(a)$ such that $x_{2} \in \Gamma_{1}\left(x_{1}\right)$ and $x_{3} \in \Gamma_{2}\left(x_{1}\right)$. Let x, y be the elements of $\Gamma_{2}(a)$ corresponding to $\left\{x_{1}, x_{2}\right\}$, $\left\{x_{1}, x_{3}\right\}$, respectively, and let g be an element of G_{a} with $x^{g}=y$. Then $\left\{x_{1}^{q}, x_{2}^{g}\right\}=\left\{x_{1}, x_{3}\right\}$, which is a contradiction ${ }^{1}$ since $x_{2}^{g} \in \Gamma_{1}\left(x_{1}^{o}\right)$ and $x_{3} \in \Gamma_{2}\left(x_{1}\right)$. Thus Case (5) cannot occur.

Case (7): As in Case (5), $\Gamma_{2}(a)$ is identified with the set of all unordered pairs of $\Gamma_{1}(a)$. In fact, since $\mu_{12}^{(1)}=\mu=2$, for every $x \in \Gamma_{2}(a)$ we may set $\Gamma_{1}(x) \cap \Gamma_{1}(a)=\left\{x_{1}, x_{2}\right\}$. Also, since $\mu_{31}^{(3)}=\mu_{33}^{(3)}=\lambda=0$ and $\mu_{32}^{(3)}=\mu=2$, that is $\mu_{3 *}^{(3)} \leqq 2$, we have $\Gamma_{3}\left(x_{1}\right) \cap \Gamma_{3}\left(x_{2}\right)=\{a, x\}$ and the mapping $x \mapsto\left\{x_{1}, x_{2}\right\}$ gives a bijection from $\Gamma_{2}(a)$ onto the set of all unordered pairs of $\Gamma_{1}(a)$ and they are identified. Next, let g by any element of G_{a} fixing all the points of $\Gamma_{1}(a)$. From the above, g fixes $\Gamma_{2}(a)$ pointwise. Further, by Proposition 3.1. (a) of Quirin [7] g also fixes $\Gamma_{3}(a)$ pointwise. Thus G_{a} acts faithfully on $\Gamma_{1}(a)$. Hence the following hold.
I. If $G_{a^{2}}^{r^{1}(a)}$ is not doubly transitive, then $\left|G_{a}\right|=7,14$ or 21 .
II. If $G_{a}^{\Gamma^{1}(a)}$ is doubly transitive, then G_{a} is isomorphic to one of the following groups: (i) the Frobenius group of order 42, (ii) $\operatorname{PSL}(3,2)$, (iii) A_{7}, (iv) S_{7}.

[^0]In Case I, clearly $\left|G_{a}\right|=7$ or 14 cannot occur since $\left|\Gamma_{2}(a)\right|=21$ must divide $\left|G_{a}\right|$. In case $\left|G_{a}\right|=21$, since $|G|=(1+7+21+7) \cdot 21=36 \cdot 21, G$ is not simple and let N be a minimal normal subgroup of G. Since 36 is not a power of a prime, N is not solvable and $|N|=36.7 . \quad N$ is characteristically simple and $|N|$ contains the prime 7 to the first power only, N must be simple. But this is impossible from the order of N. Thus Case I cannot occur.

Subcase (i) of Case II may be eliminated as follows. By the same reason as above, G is not simple and a minimal normal subgroup N of G must be simple. Thus $|N|=36 \cdot 2 \cdot 7$ and N is isomorphic to $\operatorname{PSL}(2,8)$. Therefore we see that G is isomorphic to the automorphism group of $P S L(2,8)=P \Gamma L(2,8) . \quad G=P \Gamma L(2,8)$ acts naturally on the projective line L over the finite field $G F(8)$ and let $G_{\alpha \beta}$ be the pointwise stabilizer of two points α, β of L. Up to conjugacy, there exists uniquely the subgroup of G with index 36 , which is the normalizer of $G_{a \beta}$ for some $\alpha, \beta \in L$. But, we see that G acting by conjugation on $\left\{G_{a \beta} ; \alpha \neq \beta \in L\right\}$ has rank 3 and subdegrees $1,\left|\left\{G_{a \beta} ;\left|\{\alpha, \beta\} \cap\left\{\alpha_{0}, \beta_{0}\right\}\right|=1\right\}\right|=14$ and $\left|\left\{G_{\alpha \beta} ;\left|\{\alpha, \beta\} \cap\left\{\alpha_{0}, \beta_{0}\right\}\right|=0\right\}\right|=21$ (where α_{0}, β_{0} are the fixed two points of L). Thus subcase (i) cannot occur.

In subcase (ii), if G is not simple, a minimal normal subgroup of G is of order $2^{2} \cdot 3^{2}$ and solvable, but $2^{2} \cdot 3^{2}$ is not a power of a prime. Thus G is simple and $|G|=2^{2} \cdot 3^{2} \cdot|P S L(3,2)|=\left|P S U\left(3,3^{2}\right)\right|$. Hence, by Brauer [2] G is isomorphic to $\operatorname{PSU}\left(3,3^{2}\right)$.

Subcases (iii) and (iv) cannot occur by Bannai [1] or by the fact that there exist no simple groups of order $2^{2} \cdot 3^{2} \cdot\left|A_{7}\right|$ and $2^{2} \cdot 3^{2} \cdot\left|S_{7}\right|$ (e.g., Hall [3]]. Thus the theorem is proved.

Department of Mathematics
 Hokkaido University

References

[1] E. BANNAI: Primitive extensions of rank 4 of multiply transitive permutation groups, II, J. Fac. Sci. Univ. Tokyo 19 (1972), 151-154.
[2] R. BRAUER: On groups whose order contains a prime number to the first power I, Am. J. Math. 64 (1942), 401-420.
[3] M. Hall, Jr: Simple groups of order less than one million, J. Alg. 20 (1972), 98-102.
[4] D. G. Higman: Intersection matrices for finite permutation groups, J. Alg. 6 (1967), 22-42.
[5] S. IWASAKI: On finite permutation groups of rank 4, to appear.
[6] W. L. Quirin: Extension of some results of Manning and Wielandt on primitive
permutation groups, Math. Z. 123 (1971), 223-230.
[7] W. L. QUIRIN: Primitive permutation groups with small orbitals, Math. Z. 122 (1971), 267-274.
(Received November 6, 1972)

[^0]: 1 The author would like to thank Mr. H. Enomoto for pointing out this contradiction and the improvement of his original statement.

