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1. Introduction

It is known that the simple unitary group PSU(3,3^{2}) of order 6048 has
a representation as a primitive group of degree 36 with the stabilizer of a
point isomorphic to the projective special linear group PSL (3, 2) of order
168. This representation has rank 4 and subdegrees 1, 7, 7, 21=7\cdot 6/2, and
the orbitals of length 7 are paired with each other (for example, see Quirin
[6, P. 224] ).

The purpose of this note is to prove the following result, which is a
supplement of section 2 of [5].

THEOREM. Let (G, \Omega) be a finite primitive permutation group of rank
4 such that the subdegrees are 1, k, k, k(k-1)/2 and the orbitals of length
k are paired with each other. Then k=7 and (G, \Omega) is permutation-isomor-
phic to the simple unitary group PSU(3,3^{2}) acting by right multiplication
on the cosets of its subgroup PS^{v}L(3,2) .

REMARK. By Proposition 3. 6 of [5], if the stabilizer of a point acts
doubly transitively on an orbit of length k, the assumption that the orbitals
of length k are paired with each other is omitted.

The author is grateful to Mr. E. Bannai and Mr. H. Enomoto for their
valuable suggestions.

2. Notation and preliminaries

Our proof is quite elementary and only the familiarity with definitions
and basic properties of Higman’s intersection numbers ([4]) is assumed.
Notation follows [4] and [5], but for convenience we rewrite below. The
orbitals of length 1, k, k, l=k(k-1)/2 are denoted by \Gamma_{0} , \Gamma_{1}=\Delta, \Gamma_{3}=\Lambda , \Gamma_{2}=\Gamma,
respectively. Here we may take the orbitals so that \Gamma_{\alpha}(a)^{g}=\Gamma_{\alpha}(a^{g}) for all
q\in G and a\in\Omega . The intersection numbers relative to an orbital \Gamma_{a} are de-
fined by

\mu_{if}^{(a)}=|\Gamma_{\alpha}(b)\cap\Gamma_{i}(a)| for b\in\Gamma_{f}(a) .
The following are fundamental relations among the \mu_{if}^{(\alpha)} and k, l .
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\mu_{11}^{(1)}=\mu_{13}^{(1)}=\mu_{33}^{(^{y})}=\mu_{1}(\begin{array}{l}31\end{array})=\mu_{31}^{(3)}=\mu_{33}^{(3)} (set \lambda),
\mu_{12}^{(1)}=\mu_{32}^{(3)} (set \mu),
\mu_{21}^{(1)}=\mu_{13}^{(?)}=\mu_{31}^{(2)}=\mu_{23}^{(3)} (set \nu_{1}),
\mu_{22}^{(1)}=\mu_{12}^{(2)}=\mu_{32}^{(2)}=\mu_{22}^{(3)} (set \mu_{1}),
\mu_{23}^{(1)}=\mu_{i1}^{(2)}=\mu_{33}^{(2)}=\mu_{21}^{(3)} (set \lambda_{!}), \mu_{31}^{(1)}=\mu_{13}^{(3)} (set \nu_{2}),
\mu_{32}^{(1)}=\mu_{\tau_{2}}^{(3)}. (set \mu_{2}), \mu_{21}^{(2)}=\mu_{23}^{(2)} (set \lambda’) and set \mu_{22}^{(2)}=\mu’ ;
1+2\lambda+\lambda_{1}=\mu+\mu_{1}+\mu_{2}=\lambda+\nu_{1}+\nu_{2}=k ,
\nu_{1}+\lambda’+\lambda_{1}=1+2\mu_{1}+\mu’=l ;
k\nu_{1}=l\mu_{2} , k\lambda’=l\mu_{1} , k\lambda_{1}=l\mu .
Intersection matrices M_{\alpha}=(\mu_{if}^{(\alpha)}) corresponding to \Gamma_{\alpha}(\alpha=1,2, 3) are

M_{1}=((00k0 0\lambda\nu_{2}\nu_{1}\mu\mu_{2}\mu_{1}0\lambda\lambda_{1})1\backslash \lambda , M_{2}=(\begin{array}{llll}0 0 1 00 \lambda_{1} \mu_{1} \nu_{1}l \lambda’ \mu’ \lambda’0 \nu_{1} \mu_{1} \lambda_{1}\end{array}) , M_{3}=(\begin{array}{llll}0 1 0 00 \lambda \mu_{2} \nu_{2}0 \lambda_{1} \mu_{1} \nu_{1}k \lambda \mu \lambda\end{array}\} .

By (4. 10) of Higman [4], any two intersection matrices commute with each
other. In particular, (3, 4)-entries of M_{1}M_{2}=M,M_{1} gives an additional
relation

\nu_{1}^{2}+\mu_{1}\lambda’+\lambda_{1}^{2}=l+\mu’\lambda_{1}+2\lambda\lambda’ (^{*})

3. Proof of Theorem
To begin with, as in [5], we shall determine the value of k. Since

k\lambda_{1}=l\mu and \lambda_{1}\leqq k-1 , we have \mu\leqq 2 . Similarly, k\nu_{1}=l\mu_{2} and \nu_{1}\leqq k imply
\mu_{2}\leqq 2 (in case \mu_{2}=3 , we have k=2 or 3 and these are easily excluded). Since
\mu\dagger\mu_{1}+\mu_{2}=k and k\lambda’=l\mu_{1} , if \mu=0 and \mu_{2}=0, then \lambda’=l, which contradicts
the primitivity of G by Lemma 1. 3 of [5]. Hence we have the possibilities
listed in the table of the next page.

In Cases (1), (3), (4), (6) and (8), by the equality (^{*}) we have a contra-
diction. In Case (2), \lambda+\nu_{1}+\nu_{2}=k yields (k-1)/2+(k-1)\leqq k, that is, k\leqq 3,
which is impossible. Similarly, in Case (5), it follows that (k-1)/4+(k-1)
\leqq k, that is, k\leqq 5 . Since \lambda=(k-1)/4 must be an integer, k=5. Thus, in
Case (5) we have k=5. In Case (7), by the equality (^{*}), k=7 follows
necessarily.

Next, we examine the both Cases (5) and (7).
Case (5): Firstly we show that \Gamma_{2}(a) is identified with the set of all

unordered pairs of \Gamma_{1}(a) . In fact, since \mu_{32}^{(1)}=\mu_{2}=2, for every point x in
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\overline{\overline{\frac{Case|\mu|\lambda_{1}=l\mu/k|\lambda=(k-1-\lambda_{1})/2|\mu_{2}|\nu_{1}=l\mu_{2}/k|\mu_{1}=k-(\mu+\mu_{2})|\lambda’=l\mu_{1}/k|\mu’=l-1-2\mu_{1}}{}\frac{\frac|((1)0|2)0|(k-1)/2|\frac{1}{2}|\frac{(k-1)/2}{k-1}|k-2|k-1\frac{(k-1)^{2}/2}{(k-1)(k-2)/2}|\frac{(k-1)(k-4)/2-1}{(k-2)(k-3)/2}}{\frac\frac(5)(4)|(3)1|(k-1)/2|(k-1)/4|_{\frac{}{2}}^{\frac{0}{1}}|_{\frac{}{k-1}}^{\frac{0}{(k-1)/2}}|kkk-2|_{\frac{}{(k-1)(k-3)/2}}^{\frac{(k-1)^{2}/2}{(k-1)(k-2)/2}}--1|_{\frac{}{(k^{2}-5k+10)/2}}^{\frac{(k-1)(k-4)/2-1}{(k-2)(k-3)/2}}3}}}

\underline{\underline{\frac{(6)}{}\frac{(7)}{(8)}|2}}0 |_{\frac{1}{2}}^{\frac{0}{}}|_{\frac{}{k-1}}^{\frac{0}{(k-1)/2}}| k-3k-4k-2 |_{\frac{}{(k-1)(k-4)/2}}^{\frac{(k-1)(k-2)/2}{(k-1)(k-3)/2}}|_{\frac{}{(k^{2}-5k+14)/2}}^{\frac{(k-2)^{(_{\backslash }}k-3)\overline{/2}}{(k^{2}-5k+10)/2}}

\Gamma_{2}(a) we may set \Gamma_{1}(a)\cap\Gamma_{3}(x)=\{x_{1}, x_{2}\} . Also, since \mu_{11}^{(1)}=\mu_{13}^{(1)}=\lambda=1 and
\mu_{12}^{(1)}=\mu=1 , it follows that \Gamma_{1}(x_{1})\cap\Gamma_{1}(x_{2})=\{x\} . Hence we see easily that the
mapping x|arrow\{x_{1}, x_{2}\} is a bijection from \Gamma_{2}(a) onto the set of all unordered
pairs of \Gamma_{1}(a) and they are identified since x^{g}|arrow\{x_{1}^{g}, x_{2}^{g}\} for all g\in G_{a} . Next,
let x_{1} be an element of \Gamma_{1}(a) . Since |\Gamma_{1}(x_{1})\cap\Gamma_{1}(a)|=\mu_{11}^{(1)}=\lambda=1 and |\Gamma_{2}(x_{1})

\cap\Gamma_{1}(a)|=\mu_{11}^{(2)}=\lambda_{1}=2, we may take elements x_{2} , x_{3} of \Gamma_{1}(a) such that x_{2}\in\Gamma_{1}(x_{1})

and x_{3}\in\Gamma_{2}(x_{1}) . Let x, y be the elements of \Gamma_{2}(a) corresponding to \{x_{1}, x_{2}\} ,
\{x_{1}, x_{3}\} , respectively, and let g be an element of G_{a} with x^{g}=y . Then
\{x_{1}^{g}, x_{2}^{g}\}=\{x_{1}, x_{3}\} , which is a contradiction1 since x_{2}^{g}\in\Gamma_{1}(x_{1}^{g}) and x_{3}\in\Gamma_{2}(x_{1}) .
Thus Case (5) cannot occur.

Case (7): As in Case (5), \Gamma_{2}(a) is identified with the set of all unordered
pairs of \Gamma_{1}(a) . In fact, since \mu_{12}^{(1)}=\mu=2 , for every x\in\Gamma_{2}(a) we may set
\Gamma_{1}(x)\cap\Gamma_{1}(a)=\{x_{1}, x_{2}\} . Also, since \mu_{31}^{(3)}=\mu_{33}^{(3)}=\lambda=0 and \mu_{32}^{(3)}=\mu=2 , that is
\mu_{3*}^{(3)}\leqq 2 , we have \Gamma_{3}(x_{1})\cap\Gamma_{3}(x_{2})=\{a, x\} and the mapping x|arrow\{x_{1}, x_{2}\} gives
a bijection from \Gamma_{2}(a) onto the set of all unordered pairs of \Gamma_{1}(a) and they
are identified. Next, let g by any element of G_{a} fixing all the points of
\Gamma_{1}(a). From the above, q fixes \Gamma_{2}(a) pointwise. Further, by Proposition
3. 1. (a) of Quirin [7] g also fixes \Gamma_{3}(a) pointwise. Thus G_{a} acts faithfully
on \Gamma_{1}(a) . Hence the following hold.

I. If G_{a}^{\Gamma_{1}(a)} is not doubly transitive, then |G_{a}|=7,14 or 21.
II. If G_{a}^{\Gamma_{1}(a)} is doubly transitive, then G_{a} is isomorphic to one of the

following groups: (i) the Frobenius group of order 42, (ii) PSL(3, 2), (iii)
A_{7} , (iv) S_{7} .

1 The author would like to thank Mr. H. Enomoto for pointing out this contradiction
and the improvement of his original statement.
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In Case I, clearly |G_{a}|=7 or 14 cannot occur since |\Gamma_{2}(a)|=21 must
divide |G_{a}| . In case |G_{a}|=21 , since |G|=(1+7+21+7)\cdot 21=36\cdot 21 , G is
not simple and let N be a minimal normal subgroup of G. Since 36 is not
a power of a prime, N is not solvable and |N|=36\cdot 7 . N is characteristically
simple and |N| contains the prime 7 to the first power only, N must be
simple. But this is impossible from the order of N. Thus Case I cannot
occur.

Subcase (i) of Case II may be eliminated as follows. By the same
reason as above, G is not simple and a minimal normal subgroup N of G
must be simple. Thus |N|=36\cdot 2\cdot 7 and N is isomorphic to PSL (2, 8).
Therefore we see that G is isomorphic to the automorphism group of
PSL (2, 8)=P\Gamma L(2, 8) . G=P\Gamma L(2,8) acts naturally on the projective line
L over the finite field GF(8) and let G_{a8} be the pointwise stabilizer of two
points \alpha, \beta of L. Up to conjugacy, there exists uniquely the subgroup of
G with index 36, which is the normalizer of G_{\alpha\beta} for some \alpha, \beta\in L. But, we
see that G acting by conjugation on \{G_{\alpha\beta} ; \alpha\neq\beta\in L\} has rank 3 and subdegrees
1, |\{G_{\alpha\beta} ;|\{\alpha, \beta\}\cap\{\alpha_{0}, \beta_{0}\}|=1\}|=14 and |\{G_{\alpha\beta} ;|\{\alpha, \beta\}\cap\{\alpha_{0}, \beta_{0}\}|=0\}|=21 (where
\alpha_{0} , \beta_{0} are the fixed two points of L). Thus subcase (i) cannot occur.

In subcase (ii), if G is not simple, a minimal normal subgroup of G is
of order 2d’\cdot 3^{2} and solvable, but 2^{2}\cdot 3^{2} is not a power of a prime. Thus G
is simple and |G|=2^{2}\cdot 3^{2}\cdot|PSL(3,2)|=|PSU(3,3^{2})| . Hence, by Brauer [2]
G is isomorphic to PSU(3,3^{2}) .

Subcases (iii) and (iv) cannot occur by Bannai [1] or by the fact that
there exist no simple groups of order 2^{2}\cdot 3^{2}\cdot|A_{7}| and 2^{2}\cdot 3^{2}\cdot|S_{7}| (e.g. , Hall [3]).

Thus the theorem is proved.
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