On minimal points of Riemann surfaces, II.

By Zenjiro KurAMOCHI

Dedicated to Prof. Yukinari T6ki on his 60th birthday

This paper is the continuation of the paper with the same title [1] Defi-
nitions and terminologies in the previous paper will be used here also. Let
R be a Riemann surface with positive boundary and let G be a domain in
R. We suppose Martin’s topologies M and M’ are defined over R+4(R, M)
and G+ 4(G,M"), where 4(R, M) and 4(G, M') are sets of all Martin’s bound-
ary points of R and G respectively. Let All (R, M) (resp. 111 (G, M")) be the set

of all minimal points of 4(R, M) (resp. 4(G, M’)). Let G(z,p) and G'(2, p)
be Green’s functions of R and G respectively and let p* be a fixed point
1 — . G’(z’ P*)
in G. Put G;=1z2¢eG: Cleph >5}. Then

THEOREM 1. " (M. Brelot) [2]. Let p be a point on 0G. If p is irregular
for the Dirichlet problem in G, the set of points in 4(G, M') lying on p
consists of only one point which is minimal.

THEOREM 2. (M. Brelot) [3]. Let p€d(R, M). Then there exists a path
1
I' in R M-tending to p. '

THEOREM 3. (L. Naim) [4]. Let {p;} be a sequence in G,: 6>0 such that
M
p,-—apefl(R, M). Then {p;} M'-tends to a point q€d(G, M’).
1
We shall consider extensions of the above theorems. In this paper we
use I and E operations. Let A and B be two hyperbolic domains in R such
that ACB. Let U(z) be a positive harmonic function in B. We denote by

B
I[U(2)] the upper envelope of continuous subharmonic functions in A smaller
A

than U(z) and vanishing on 9A except a set of capacity zero. Let V(z) be
a positive harmonic function in A vanishing on dA except a set of capacity

B .
zero. We denote by E[V(z)] the lower envelope of continuous superharmonic
A

functions larger than V(z). Then I and E have following properties:
1). E and I are positive linear operators.
2). I E[V(2)]=V(2).
3). If Ul2) is minimal in G and I{U(2)]>0, EI[U(2)]=U(=z).
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4). If I[U(2)]>0, U(z) preserves minimality of U(z) and if E[V(z)]
< oo, E preserves minimality of V(2).

Assertions except 3) are clear. We shall show only 3). Clearly E I[U(z)]
<U(z). Hence EI[U(z)]=aU(z): 0<a<1l by 4). Hence EIEI[U(z)]=
a*U(z). On the other hand by 2) a U(2)=E({E)I[U(2)]=a* U(z), whence
a=1 and EI[U(2)]=U(2)

Let U(z) be a positive superharmonic function in R. Let F be a closed
set in R. We denote the lower envelope of superharmonic functions larger
than U(z) on F by zU(2). Then zU(z)=HS"(2) in CF, where H$"(2) is the
solution of Dirichlet problem in CF with boundary value U(z) on 9F and
=0 on the ideal boundary of R. If G(z, p)#ceG(2, p): pER, we say CG is
thin at p. For pedG, it is known that p is irregular for the Dirichlet
problem in G if and only if CG is thin at p.

1. The mapping f(p). Let K(z,p) and K'(z, p) be Martin’s kernels in
R+4(R, M) and G+ 4(G, M') respectively such that K(p, p*)=1=K'(p, p*).
Regard R—p as a Riemann surface, then we can deﬁneRI_ p[K(z, p)] for peR

. @-p
+4(R, M). Then we shall prove the following

ProprosITION 1. _

1). If peR—G or p€dG and p is regular,

: .
K(z, p)—ceK(z, p) =G{p [K(z,p)] =0.

2). If pedG and p is irregular, peGY for a const. §>0, where—M
means the closure relative to M-top.

R- .
If p€dG and p is irregular or peG, Ip[K(z,p)]>0.
G-

3). :j”[K(z, PI>0 for peG¥N4(R, M),
4) :f[K(z, P1=K(% p)—cK(z p) in G for peR+4(R, M).

Proor of 1). If p€dG and p is regular or pe R—G, CG is not thin at
p, i.e. Gz, p)=ceG(2, p)=Hg. ,(2) in G. Hence ¢(G(2,p) is quasibounded
in G(@if U(z) is a limit of a increasing sequence of bounded positive har-

Gz p)

monic functions, U(z) is called quasibounded). Now K(z, p)= = 2£7_ and

G(p*, p)
R
I [K(z, p)] is clearly a singular function in G or =0 (if a positive harmonic
G-p
function U(z) has no positive bounded harmonic function smaller than U(z),

U(z) is called singular). Evidently :f p[K(z, PI=K(z, p). Since K(z,p) is
-p
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. 3 R—p
quasibounded in G, I [K(z,p)]=0. We have
G-p

K(z, p)—coK (% )= 0= L [K(z, 2)].

ProOOF OF 2). Suppose p is irregular. Then we can find a sequence
{#s} and a const. 6>0 such that p,—p and lim G'(p,, p*)>0>0. Hence
P, .

= 0
p€G,, where ¢/ =-——.
G(p, p*)

Suppose p€dG and p is irregular. then K(z, p)—eK(z, p)>0 (because CG is

thin at p). Clearly K(z, p)=¢eK(z, p)=HE_ ,,(2) on 8G except a set of ca-
pacity zero. Hence we have at once

I’ [K(zp)] 2 K(z, p)—coK (2 £)>0.

G-p

Let €G. Then evidently K(z, p)—ceK (2, £)>0 and I [K(z, p)]>0.
G-p
Proor oF 3). Let p,€G,. Then

—_ G(zspz) G(z7pz) GI(P*’ P’i) / 5
K(z,p)— 2 gBK (2, ) n G
YT Gt p) = Glop) Glph ol P
M
Let {p:CG; be a sequence and {p;} be its subsequence such that p—p
MI
and p, —r€d(G, M’) respectively. Then

K(z, ) =lim K(z, p) Z 0K’ (2, 7)>0..

R—
Now K'(z,p)=0 on 9G except a set of capacity zero. Hence GI p[K(z, pl=
o0K'(z, r)>0. !
Proor oF 4). Since Rj p[K(z, PNI=K(z, p)—ceK(z, p), we have to prove
G

-p

the inverse inequality. Let v,(p) be a neighbourhood of p (if p¢& R put v,(p)
=0). Let U,(2) be a harmonic function in (GNR,)—v,(p) such that U,(2)=
K(z,p) on dGNR,—v,(p),=0 on dv,(p)+@R,NG). Then U,(2), " ceK(z, p)
as n—oo, where {R,} is an exhaustion of R. K(z, p)—U,(z) is superharmonic

in GNR,—v,(p) and =K(z, p) on dv,(p)+dR,NG, whence
R-p
7Kz 1S Ko p)—aK (5 5),

and we have 4).
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Let  G(M 4)= {peR—G+4(R, M); :1 [K (=, )] >0).

We shall define the mapping f(p): peG+G(M, 4) as follows: Since Rj
G-p
preserves the minimality in R—p of K(z, p), ij[K(z, £)1 >0 is minimal in
‘ Q-p
G—p and there exists a uniquely determined point f(p) in G+4(G, M’) and
a const. a(p)>0 depending on p such that

R-p

L [Kp)] =alp) K' (2. £(2).

where K'(z,p) is Martin’s kernel in G relative to M’-top.

-

If p€G, sup K(zp)<oo and Kls,p)=co at p. Hence "T'K(z p)] =
2€! G

a(p) K'(z,p) and f(p)=p in G. Hence f(p) is defined in G+_GP(M, 4) and

f(p) is continuous in G. Denote by f(G+G(M, 4)) the set of point g of

G+4(G, M) such that there exists at least a point peG+G(M, 4) with
1

g=f(p). Then we shall prove.

THEOREM 4.
1). f(p)=p in G and f(p) is univalent, i.e. f(p)#f(ps) for p#p..
Hence f(p) is one to one mapping from G+G(M, 4) onto f(G+G(M, 4)).

2). As for a(p): peG+G(M, 4) such that :?[K(z, pl=a(p) K'(z, f(p).
(

a). a(p) is continuous in G.
b). al(p) is upper semicontinuous in G+G(M, 4).
c. Let Gi={peG+G(M, 4): a(p)=6>0}. Then G; is M-closed in G+

G(M, 4)
and GfoG¥N (G+G(M, 4)).

M M
3). If pi——p in G¥, flp)—Ff(p)eG+4(G, M'). Hence f(p) is con-

tinuous at p in Gj.

4). By definition of G+G(M, 4) we have at once
G+GM, 4)=UG;.

>0
PrOOF OF 1). f(p)=p in G is clear. We show f(p,)# f(p.) for p,#p..
R-p,
Case 1. p,€G and p,€ G+G(M, 4). Then I [K(z,p)l=a(p)K'(z,p):

G-p,
a(p)>0 and I'[K(z p)l=co at p.. On the other hand, 1 [K(zp)] is
G-p, G-p,
harmonic at p,, whence K'(=2, f(p,)) and K'(2, f(p,)) are linearly independent
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and f(p))#f(p2)- ‘
CasE 2. p, and p,eG(M, 4. (z p1) and K(z, p,) are harmonic and linearly

independent in G. Hence by E [K'(z, f(p)]=a; K(z, p;)a;>0:i=1,2 K'(z,

f(py) and K'(z, f(p,)) are hnearly independent and f(p,)#f(p.). Hence we
have 1).
' M
Proor oF 2. Cast 1. peG. In this case, let p,—p. Then p,eG
for 124, and p,=f(p,)— f(p)=p. Now p,€G¥ for a const. §>0 for i=7, and
K(z, p;)=0K' (2, p;): i=1,. Hence

R—pi

I'[K(z p)] = Kz p)—ceK (2 p) = a(p) K2 p) - 2.

G—pi

Since K(z, p)<M< o on CG: iZis, coK(z p)=lim soK(z, p). Hence
=00
R-p
a(p)K'(z,p)= I [K(z p)| =lim (K(z p)~coK (= 7)

f=00
=lim a(p) K’ (z, p;) = lim a(p) K’ (z, p)
and a(p)=lim a(p,) and a(p) is continuous in G.
{=co
Cask 2. a). peG(M, 4) and Ti;n a(r)>0. In this case, we can find a

r—>p
7€(G+G(M,4))

M
sequence {p;} in G+G(M, d) such that p,—p and hm a(ps) = hm a(r)

rE(G'-r-G(M A))

Let {p.} be a subsequence of {p,} such that f(p,)—>reG+4(G, M'), since
G+4(G, M’) is compact. ,
Then 1" [K(z )] = K(z po)—coK (2 p0) = a(p)K (= f(p0).

v

Let #/—>o00. Then by K'(z, f(p:)—K'(z, 1) and coK(z, p)gilgn caK (2, pir),
IR (2, pll= K, £)—coK 2, p)2 lim K(z, pe) ~lim coK (2, po) =Tma(pe Kz )

/=0

>0. Now K(z, p) is minimal in R, whence K'(z, ;) is minimal and re=/f(p),

M M’
e flps)—f(p) Her}\f/:ﬁ f(p)—f(p).
As above by f(p,)—f(p) we have
alpK (= A(p) = I [Kiep)] 2l 1'[K e )]
=Tim (a(p)K' (= f(p)))) = im a(p) K’ (= £(8)).
Hence a(p) = TIME a(r).

r—>p
r6(G+6 (M, 4))
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CASE 2. b). peG(M, 4) and lim a(r)=0. In this case, by peG(M, 4)
- , | = re(@+@UI, )

Ip[K(z, £)]>0 and =a(p)K'(z, f(p).  Hence we have at once a(p)= lim a(r)
G-p '

rop
r€(G+G(M,4))

=0. Thus a(p) is upper semicontinuous in G+ G(M, 4) with respect to M-
top. Since K(z, p)=0K'(z, f(p)) for peG;F N(G+G(M, 4)), a(p)=d. By the
upper semicontinuity of a(p) we have a(p)=é in Gy'N(G+G(M, 4)) and we
have c). -

ProoF oF 3. Without loss of generality we can suppose p,€ G+ G(M, 4).
peG; implies K(z p)2alp)K' (5 f(p)Z0K (2 fp) Let (pc) be a sub-

M :

sequence of {p,) such that f(p,)—r€d(G, M). Then

K(z ) =lim K (z, p)23 lim K (2, f(ps)) = 3K'(2,7)>0.

Since TK(zp)] (23K'(z, 7>0) is minimal in G, f(p)=r€4(G, M') and
G-p 1

by 2), b)
: R o
I [Kzp)]=alp)K'(z7): alp)z 0.
G-p
MI
Hence f(p:)—f(p)
ProOF OF 4). We have at once by 2) c) and the definition of G,.
Let red(R, M) and g be the canonical measure of K(z,7): K(z, )=
S( KM()z, p)dp(p,). Clearly =0 in R. If g has a measure ¢ (0<P<1) at
R+4(R,

1
ped(R, M), we say that r has activity @ at p. It is easily verified that r=p
1

if and only if 7 has activity #=1at p. Let 8=f(G+G(M, 4)) and &,=f(G5).
Then 8= U®, and f~'(g) is uniquely determined in & by the univalency of

>0

f(p). We shall prove the following.

Ml
THEOREM 5. 1). Let {q;} be a sequence in &, such that q,— q€(G+
M
A(G, M")). Then f~'(q) is defined. If f(q)—r€R+4(R, M), then f(r)=q.
1 1
M

2). Let {q;} be a sequence in »1). If fYq)—re(dR, M)—4(R, M)),

there exists £1(q) in G+G(M, 4) with the following properties: f ' (q)#7,
0

% at fUq), where
gy @7 wher

K(z,7) is non minimal and r has activity =
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a(f'(q) is the const. such that I[K(z, f(q)]=a(f(q) K'(z, q).
3). ®, is M'-closed in G+4(G, M') and f(G+G(M, 4)) is an F, set in

G+4(G, M),

4). Let {q;} be a sequence in 1). Let F be the set of limiting points
of {f Mas)}. Put A=FN(AR, M)—4(R, M)) (A may be empty). Then

1

FcfYg+A and

any point s in A is not so far from fq) that s has activity = d

~ a(f'(g)
at f7'(g).

5). Let {q;} be a sequence in 1) and let A be in 4). Then if A+,
FrgEAR, M)
M
5). Let {q,} be a sequence of 1). If f(q)€R, A=0, i.e. fg,)—Ff(q)
and f7(q) is continuous at q in &, (6>0) relative to M'-top.
6). Under what condition f(q,)—f'(q)? As a sufficient condition

MI
we have the following: Let {q;} be a sequence in & such that q,— qe®
v M
and lim a(f(q))=a(f'(q). Then f(g)—f(q).

=00

PrOOF OF 1). By definition, f!(g,) is in Gf. Let p,=f"'(¢;). Then
R—-p,
Kzp)z I [K(zp)] 20K (2 ).

Let i—>oco. Then K(z, r=0dK'(z,¢)>0. Since K(z,7) is minimal in R—r,
R-r

I [K(z, )]=0'K'(2,q): 8=06>0. Hence g=f(r) and we have 1).

G-r :

PrOOF OF 2). Similarly as 1)
K(z, = 0K'(z, q). (1)

Now since K(z, r) is harmonic in R, ﬁ [K'(z, 9)] (<oo by (1)) is harmonic and
G

minimal in R. Hence there exists a uniquely determined point p (=f"!(q)) in
G+ 4(R, M) such that
1

R-p

I [K(zp)] =a(p)K'z q). | (2)

11K (5 p]

By (1) and (2) we have K(z, )= 27

and since K(z, p) is minimal,
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R-p R—p
o0 E I [K(z,p)]
K(z )z 62 9=» ~K=p) - (3)
a(p) a(p)
Let ¢ be the canonical measure of K(z,7). Then by (3) # has measure
= 0 _ 4 p.
a(p)

M’
Proor oF 3). Let {g;} be a sequence in ®, such that ¢,—q€(G+
4(G, M)). Let p;=f'q). Since (R+4(R, M)) is compact, there exists a
1

M
subsequence {p,} of {p;} and a point re(R+4(R, M)) such that p,—7.

Then two cases occur: CASE 1. ré(R+4(R, M)) and Case 2. re(d(R, M)
—4(R, M)). 1

1 Case 1. In this case, by 1) »=£(q) and K(z, 7)=6K'(z, q) and ¢€@,.

Case 2. In this case by 2), there exists a point peG +ZII(R, M) and

red(R, M)—d(R, M) and f(p)=q and K(z, r)z_ili(é)ﬂ_
' a
On the other hand, K(p*, r)=1=K(p*, p). Hence a(p)=6. Thus peG;

and f(p)=q. Hence ®, is M’'-closed in G+4(G, M'). Next by
4,2) 8=f(G+G(M, 4)) is an F, set in G+A(1G, M)

By 1) and 2) we have at once 4) 1

ProOF OF 5). Assume f'(g)¢R and A#0. Then there exists a sub-

M
sequence {g,} of {g;} such that f(qg,)—red(R, M)—4(R, M). Then by
1
3) r has activity ;——?—1—— at f(qg). Since K(z, r) is harmonic, the ca-
a(f~q)

nonical measure of K(z,7) has no measure in R. This is a contradiction.
Hence A=0 and we have 5). Next we have 5) by 5) at once.

ProoF OF 6). If geG, M and M'-top. s are homeomorphic to the original
M’ M
topology in G and ¢=f(p) in G. Hence g—¢q€G implies f'(g,)—f'(q).
We can suppose without loss of generality ged(G, M') by (G + 4(G, M)).
1 1
Ml
Let ¢;—q and a(f Y q)—a(f*(g). Assume f '(g;) does not M-tend to
fYq). Then since R+4(R, M) is compact, we can find a subsequence {g,}

M
of {g;) such that f(g,)—7r#f""'(g) Then
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K(z,r)=lm K (2, fYg.) Zlima (fg.) K'(z ¢)  (4)

3! =co 2’ =00

=a(f(g) K'(z 9>0.

Hence if reR+4(R, M), f(r)=q: r=f"'q). This contradicts the assump-
1
tion. Whence re4(R, M)—
both K(z, 7) and K(z, f~!(q)) are harmonic in R. Since K’(z, q) is minimal
R 1

in G, EIK'(z g1=+ L A0 Hence by (1) Kiz /2K (s f(q). Now
K(p* n=1=K(p* fq) implies K(z, r)/=K(z, f(gq)) and r=f(qg). This is
also a contradiction. Hence f(q,)— f(q).

Let G be a domain in R and let U(z) be a positive superharmonic func-
tion in R or in G. Let F be a closed set in G. We denote by $U(z) the
lower envelope of superharmonic functions in G larger than U(z) on F.
Let v be a domain in R (resp. in G). If ,,K(z, p)<K(z,p): peR+4(R, M)

1
(resp. £K'(z, 9)<K'(2,q): geG+4(G, M")), v is called a fine neighbourhood
1
of p (resp of q). Let v,(p) and v,(g) be neighbourhoods of p and g such that
U, (p) = {z: M-dist (2, p)< —1—}, v,(q) = {z: M'dist (2, )< —1—}
n

n

4(R, M) and K(z, r) is non minimal. We remark
1
)
(g

respectively. Then it is well known , (,,K(z, p)=K (=, p), cv,,(nK (2, p)<K(2, p)
[5] (i-e. v.(p) is a fine neighbourhood) and lim ,, (,)(cs,.( K (2, ))=0. Consider

G as a Riemann surface, then we have the same facts about v,(q) and K'(z, g).
Then we shall prove the following

THEOREM 6. 1). By Theorem 4.3). we have: For any v,(f(p)) there
exists a v,(p) such that v, (p)NGyCv,(f(p)NG,NG.
2). By Theorem 5. 2), if f(p)e®

M
N v f(PHNG,NGcp+A,

n

0
tp.

alp) 7

3). GNu.(p) is a fine neighbourhood of f(p) and v,(f(p) is a fine
neighbourhood of p, where peG+G(M, 4) and f(p)¢®. Hence {v,(p)} and
{v.(f(p)} are almost equivalent.

Since 1) and 2) are proved at once by and 5, we have to
prove only 3).

Case 1). p€eG. In this case since M and M’-top.s are homeomorphic

where A is a set of non minimal points with activity =
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to the original topology in R, our assertion is trivial.
Case 2). peG(M, 4). Suppose pcdGNG(M, d). Then p is irregular
and there exists no continuum component of dG containing p and there

exists only one point 7 of G+4(G, M’) and r€G+4(G, M’) on p by The-
1

orem 1 and K(z,p) is harmonic in R except p, whence r must coincides
with f(p). On the other hand, M-top. is homeomorphic to the original
topology, hence

{'vn(p)ﬂG} and {*v,, ( f(p))} are equivalent. (5)
Let peG(M, 4) and g=f(p). Then

R

I'[K (= p)] = Kl p)—coK (5, 9) = a(p)K'(z, @) in G: al(p)>0. (6)

a

We show v,(p)NG is a fine neighbourhood of ¢. Assume v,(p) is not
so. Then ¢,%,,K'(z, q)=K’(z,q). Since ,%,K'(z, q)=K’(z, q) for any 7, and
since GCR we have by (6)

K(z, p)Z anvolconmneK (2, 0) Za(p) (o % conin K (2, @))=a(p)( 0K (2, )=
a(p)K'(z, )>0.

Let n—>c0. Then v,(g)—ideal boundary of R or to p by (5) according
as pezIJ(R, M) or pedGNG(M, 4). Put U(z)=limgn, ofcon»K(2, p). Then

K(z, p)=U(2) and K(z, p) and U(z) are positive harmonic in R or R—p and
K(z, p) is minimal in R or R—p. Hence

Kz, p)=2U(z)=aK(2,p)>0: 1=Za>0. (7)
And

lim ., Ulz) = aK (2, 9).
On the other hand,
0= llg.} oo Com(m K (2, P))%Liglo on@ Commnak (2, P))—Z-Lig o mU(2)>0.

This is a contradiction. Hence v,(p)NG is a fine neighbourhood of f(p).
Next we show v,(g) is a fine neighbourhood of p. By (6) we have

Cvn(q)K(zy P) = C”n((I) (CGK (.2’, p)) + a(P) (Cvf(q)K, (z’ Q)) in Up (Q) .

Since v,(g) is a fine neighbourhood of g, there exists a uniquely determined
component vy (g) of v,(q) such that ;,%,K'(2, 9)<K’(z, g) in v;(g). Hence
by ceK(2, p)Zev,lceK(2, p)) we have ¢, K(z, p)<K(z,p) in vi(g). Hence
v,(q) is a fine neighbourhood of p and we have 3).
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2. Let R be a Riemann surface with null or positive boundary. If a
non compact domain G has a compact relative boundary 9G consisting of a
finite number of analytic curves, we call G an end. G has not necessarily
one ideal boundary component. In the following we denote by Ge&, Ge&,
or Ge&, according as G is an end of a Riemann surface, a Riemann surface
with null or positive boundary. We suppose Kerékjarté-Stoilow’s topology
is defined on R+ B(R), where B(R) is the set of all boundary components.
Let B(G) be the set of all points of B(R) such that G is a neighbourhood
of relative to K-top. (Kerékjartd’s top.). Let F; (i=1,2,---) be a compact
continuum in G such that 1). G—F is connected, where F=}F,. 2). F;NF;
=0 for i#j. 3). 0GNF=0. 4. {F};} clusters at only B(G). 5). There exists
a determining sequence {L,(p)} of p such that

0 Gz %)

ceomntny Gz, p¥)

where B, (p) has a compact relative boundary 9%8,(p) in G, Gz, p*) and

G'(z,p*): p*€G—F are Green’s functions of G and G'=G—F respectively.
Then we say that F is thin at a boundary component b.

It is easily seen that the thiness of F' does not depend on p*. If B, (p)
is conformally equivalent to 0<|z|<1, F is thin at p if and only if z=0
is irregular for the Dirichlet problem in {0<|2|<1}—F. Let {8,(p)} be a
determining sequence of p, i.e. a decreasing sequence of K-neighbourhoods
relative to K-top. over G such that 88,(p))NF=0 for any n. Since F; is
compact, we can choose such {8,(p)}. LB,(p)N G’ consists of at most a finite
number of components: B, BZ, -+, BE™, because IB. 8B, (p). A decreasing
sequence B} DBDVfs--- determines a boundary component q of f(G’). In
this case we say that q lies over p. We denote by &'(p) all points of B(G’)
lying over p. ©&'(p) consists of many points generally. But if there exists
a number 7, such that B, (p))N G’ is connected and of planar character,
B,(P)NG' consists of only one component for n=7, and &'(p) consists of
only one point p'€B(G’). Suppose Martin’s topologies M and M’ are defined
on G+4(G, M) and G'+4(G', M) respectively. If there exists a sequence

M K ? _
{ps} such that p,——p and p,——p (relative to Kerékjartd’s top.), we say

p lies over p. Let V (p, G, M) be the set of points of G+4(G, M) (clearly

of 4(G, M)) lying over p and let V(&' (p), G', M’) be the set of points of

4(G', M) lying over &'(p). Suppose F is thin at p. Then there exists a
sequence {B,(p)} and a const. §,>0 such that :

Gy

=8, G(z, p¥)

=6>0 for any n,

= 0o for n=n,.
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Put (1) = L #%.() and let G, = {zeG’: %’((zz_:_;i))gao} Then {1} CG,,.

Let pel(p, G, M)N4(G, M) (resp. V(& (p), G', M')N4(G', M")). Then by
1 1
there exists a path I" in G (resp. G') M (resp. M')-tending to p.
I intersects {7} and peGYN4(G, M). Hence the mapping f(p) is defined
1

in 7(p, G, M)N 4(G, M) and f(p)eV &' (v), G', M')N (G +4(G, M")C®, . Till

now we discussed the behaviour of f(p). 5, 6 are valied for
V(p, G, M)N4(G, M). It is not necessary to quote them. In the following
' 1

we consider only distinctive properties of FV (p, G, M). Then we have by
5 and 6 following

THEOREM 7.

Suppose F is thin with const. &, Then

1). There exists a one to one mapping f(p) from V(p, G, M)N4(G, M)
1

onto V(&' (p), G, M"\N4(G', M").
2). For any given v,(f(p)): peV(p, G, M)NA(G, M), there exists a

Un(p) such that (v, (p)N TN C.(f(P)N{T}), where v, (p) and v, (f(p)) are
neighbourhoods relative to M and M'-top.s. Let I’ be a path M-terminating
at p. Then any sequence {p;} on I' M-tending to &S(p) M'-tends to f(p).
M
3). Let qeV(&(p), G, M')n.?(G', M"). Then Nv,(@N{}Cf g +A,

where ACA(R, M)—A4(R, M) and any point of A has activity = (jc"( 3
1 a q
at f~1(q). Let I" be a path M'-tending q. Let {q;} be a sequence on I' N {1}

tending to & (p). Then {f '(q.)} M-tends to f'(q) or A.
Proor. 1) is clear 2) and 3) are direct consequences of
and 6.

ReEMARK. If F is thin at p, by removing F from G may be divided
into some components in 3(G’), though any point p in V(p, G, M)N 4(G, M)
1

is not divided into points in V(&' (p), G', M')N 4(G’, M"). In the other words,
‘ ‘

F may change superficial structure of p (relative to Kerékjarté’s top.) but
not potential theoretic structure so much. If p can be decomposed by
removing a thin set, p consists of some points in the sense of potential
theory by nature.

Let Ge& and let J; (i=1,2,---) be a simple closed Jordan curve in G
such that J; divides G into two components. One of them which has not
3G in its relative boundary is denoted by K,, i.e. dK,=J,, where K, may
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be compact or non compact. Let Ge&, and let K, (:=1,2,-+) be a simply
connected domain in G and F; ({=1,2,---) be a continuum such that K+ F
(K=2XK, and F=}F,) is thin at a component peB(G). Put G'=G—- Y K,,
k2 ¢ k3
G'=G—K and G"=G'—F. Suppose there exists a conformal mapping from

G’ onto G’ so that dG<>aG, 0K, 3K,. Identify G’ and G'. Then we
can consider that G’ is prolonged to G by YK, through YK, and we have
(3 [3

g 3 G'=G-K>G"=G-K-F.
Let {8, (p)} be a determining sequence of peB(G) such that 3B, (p)N(K+ F)=0
for any n. Consider a8,(p) in G. Then 3B, (p) divides G into two com-
ponents, because dK; is a dividing cut in G. One of the components not
containing G in its relative boundary is denoted by B,. Let B,=3,p)NG
and B"=B,(p)NG"”. Then B, and B, consist of only one component respec-
tively. B may consist of some components.

{8,), (8.} and {8} determine HeB(G), p'€B(G’) and a set of boundary com-
ponents &"(p) respectively. Let M, M, M’ and M" be Martin’s top.s over
G, G, G’ and G” respectively. In the following, if there exists a one to one
mapping f between A and B, we denote it by A=B. Then we have

CoROLLARY 1. Let Geé&, and F+K is thin at peB(G), where K, is a
simply connected domain in G. Then

r®, G, M)n 4G, M)=r©, G, M) 4G, M)
%V(P, M, G)N {(G, My=r(@"(p), G", M")N fI(G", M").
Proor. Since F+K is thin at p, there exists a determining sequence
{8, (p)} such _that
min & B 5550 preGr—Bi(p), (7)

zéﬂ‘B;l(p) G (z’ P*)

where G (z, p*) and G(z, p*) are Green’s functions of G” and G respectively.
Without loss of generality we can suppose B,(p)=D.(p). Let G'(z,p) be
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a Green’s function of G'. Then G'(z,p*)=G"(z, p*). Hence F is thin at
p in G and F+K is thin at p, whence by Theorem 7.1) we have

Vb, G, M)NAG, M)=F (', G, M)NA(G', M)
%V(@"(p), Gl), M”) n A(G”, M") .

Since Ge&,, inf G(z, p*)= min G(z, p*)=N>0, we have by (7) min G"(z,

2€8,(p) zGB 1(2) 2€33,,(p) ~
$%)>6,>0 for any n. Let G(z, p*) be a Green’s function of G, then s%p Gz,
z€,;

p¥)SM< oo and we have

. G(z,p%) o 4
BB S M0 e

Hence Y K, is thin at ﬁ in G and by 1)
Vg, G, M)ndG, M)=r(y, G, M"\n4(G', M').
1 1

Thus we have the corollary.

REMARK. This corollary means, under the condition that F+K is so
small that F+ K may be thin at p, that the structure of V(p, G, M )ﬂA (G, M)

of G does not change, however much G may increase to G or decrease to

G’ through Z@K by ZK or ) F;.

If a compact set F with 0F consisting of at most a finite number of
analytic curves, we call F a regular set. Let Ge&, and F=}F; thin at
(4

peB(G) such that F; is regular. Let G’ be the doubled surface of G’ relative
to ZBF,, ie. G'=G +G'+0F, where G’ is the symmetric image of G'=

G— F relative to 9F. Then &' €&, [6]. In G we can find a determining

sequence {%B,(p)} such that 9%8,(p) N F=0 and min —GLL)—>5>O for any
8,0 G(2, p*)

n, where G(z, p*) and G'(z, p*) are Green’s functions of G and G'=G—F:
p*eG'—B,(p). Now Ge&,, whence
min G'(z, p*)=6,>0 for any 7.

2€3%8,,(p)

Let B, be the set obtained from B, (p)N G’ and B, (p)N G’ by identifying J0F,
and Y'0F,, where the summation is over F; contained in B,(p)NG. Then
{B,) determines a &(p), set of boundary components of B(G) lying over p.
Analogously {8, ( )ﬂG’} and {B,N G’} determine &' (p) and &' (p) respectively.
Let M, M’ and M be Martin’s top.s over G, G’ and G’ respectively. Then

we have
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COROLLARY 2. Let Ge&, and F be thin at pef(G). Then

r(&p), &', M)NA(G, M)= A'+ A2, ANA*=0,
1 .
A=V @ D), G, M"\NAG, M\=V (p, G, M)NA(G, M) and A? is the sym-
1 1
metric image of A'.
Proor. Let G°=G’'—Y.(0F,+0F,). Then G° is obtained from G’ and

22

G’ by identifying only 9F, and 9f,. Without loss of generality we can
suppose B,(p)NF,=0. Then

B.NG=B,p)NG'+B,NG' and (B.p)NG)N(B.NG)=0.
Whence &(p)=&'(p)+&'(p). Let M° be Martin’s top. over G°. Then
7). G, MONAG, M) = A+ A%, A*nA™=0,  (8)
1

where A =7 (&'(p), G°, M)N4(G°, M°) and A>° is symmetric to A
1

The structure of 4(G*, M°) does not change in a neighbourhood of &(p)
by removing a compact set F,+9F,. Extract oF,+af, from G°, then G°
is decomposed into G’ and G'. Hence

AV =7 (B(p), G, M)N 4G, M").
1
By [Corollary 1
A=V (@), G, M"\N 4G, M=V (p, G, M)N 4G, M).
1

Next consider G’ and G°. Let G°(2, p*): p*eG'— B, (p) be a Green’s function
of G°. Then

G5 MG (5p*) in G. (9)

Let G'(2, $*) be a Green’s function of G', then G' (3, p)=G'(z, p*), where
P* and 2 are symmetric to p* and z respectively. Consider G'(z, p*) in G
Let v(3*) be a neighbourhood of #* in G'—%B,. Then G'(z, $*)=6>0 and
G'(z, P¥)<M,< oo on ov(p*). Hence

G, p*);_]%_@(z, ) in B, (10)

1

Let G'(z, p*) be a Green’s function of G’. Then &' (z, pX)SM,< oo in B,.
Hence by (9) and min G'(z, p*)=6, and (10) we have

2€38,,(p)
: Go(z,P*) > min (G’ * éo(z,P*> > 99, 0 oB
(e o) = (7(4? ) and Z 52 My~ O o

(11)
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Hence ZaF¢+8F‘¢ is a thin set in G’ at any boundary component in &(p).
Hence F(&(p), &, M)N A&, My=p&(p), G, M)NAG°, M%) and by (8) we
1 . 1

have the corollary.

Let Ge&, and F be thin at peB(G) such that min Gz %) =0, where
2€38 ,(p) G(z P*)

G'(z. p*) is a Green’s function of G'=G—F. If there exists a number 7,
such that B, ()N G’ is connected and is of planar character (for instance,
if B, (p) is of planar character, B, ()N G’ is also of planar character), &'(p)
consists of only one component p’. Map B, (p) NG’ conformally by £=g¢(2)
onto a domain £ in |£|<1 so that 7—|§|=1, where 7 is a component of
0%, (HNG'. Let A=Ng(B,.(p)NG'). Assume A is a continuum. Then

G'(z, p*)—0 as z—p. This contradicts the thiness of . Hence A=one

point & and &, is an irregular point for £. Otherwise, G'(z, p*)—0 as z—p.

Consider K'(z, p): peV (¢, G, M"\N4(G', M'). Assume sup K'(z, p)<oo.
1 2€G

Then K'(z, p)=0 by K’(z,p)=0 on dG+0F and Ge&,. Hence sup K'(z, p)

€6
1

=oc0. By p€G, clearly K'(z,p)= —(S—K(z,f‘l(p)): f(p)el b, G, M)N
zlt(G, M). Since sup K(z,f'(g)<oco for any B,(p),

G—B,,(p)

lim K'(z, ) = o0

2P

Since 8B, (p) is compact, max K'(z, p)=M< co and since K'(z, p) is minimal

2€3B 74 (p)
in G,
B T [K '(2, P)] =K'(z,p)—H(2)>0 and is minimal in B, (p)NG’,
7y (p)NG’

where H(z) is the solution of Dirichlet problem in B, (p))NG’ with the
boundary value K'(z,p) and H(z)< M.

By [Theorem 1| there exists only one positive harmonic functlon U(z) in
G’
2 vanishing on 02—§&, except its multiples. Hence I [K'(z,p)l=aU(2):

Br,(p)NG’

a>0. Now U(z) is expressed by lim G"(z, q;), where {g;} is a sequence in

2 tending to & such that {G"{z, ¢,)} converges to a positive harmonic func-

tion in 2 and G” (2, ¢;) in a Green’s function of G'N%B, (p). Such sequence can
G’
be chosen by the irregularity of &. By K'(z,p)= E I [K'(z, p)]
' Bruy(P)NG’ Brg(p)NG”

there exists only one point in F(y/, G, M )ﬂA(G' M’). Hence by [Theoreml
7 V(p, G, M)N4(G, M) consists of only one point. Let qel(p, G, M)N
1
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4(G, M). Then K(z, q)=K(z, p.)du(p.), r is a positive measure on F(p, G,
M)ﬂzlt(G, M). Hence g=p and FV(p, G, M)N4(G, M)=F (p, G, M)ﬂzli(G, M)
=one point. Similarly V' (', G, M)N4(G’, M")=F (y', G', M")N 4(G’ M')=one
1

point. Hence we have

COROLLARY 3. Let Ge&, and F be thin at peB(G). If there exists a
number ny such that B, (p)N G’ is connected and is of planar character, then

Py, G, MYNAG' M) =V (y, G’ M"Y A(G' M) = one point,

1
Vp, G, M)N4(G, M)=F(p, G, M)N A(G, M) = one point.
1

This means the following: Let {p;} be a sequence tending to P (res. p’).
M M
Then p,—— one point (resp p;—— one point) which is minimal.

As a special case of we have similarly as
COROLLARY 4. Let Ge&) and F+K be thin at peB(G). If there exists
a number n, such that B, (p)NG" is connected and is of planar character,

r§, G, Myn4(G, M)="r §, G, M) ml!(f'?, M) = one point,

7 (p G, M)NAG, M)=F(p, G, M)N 4(G, M) = one point,

ry, G, M"\N4(G, M) =P, G, M"\N 4(G', M) = one point,
7", G", M")NA(G", M) =T (p", G", M")N 4(G", M") = one point.

As a special case of we have

COoROLLARY 5. Let Ge&, and F be thin at peB(G). Let G' be the
doubled surface. If there exists a number n, such that B, (p)NG': G' =
G—F is connected and is of planar character, and B, (p)NF+#0 for any n,
then &(p) consists of one component  and ¥ ® G, M )ﬂzll (G, M) consists of

two points p, and p, and any point g€V (§, G', MYN4(G', M) is expressed by
K(z, 9)=aK(z, p\)+ Kz, p,), where a=0, =0 and a+p=1.

3. Let Q€& and let F be a closed set in 2 such that FNd2=0 and
§=0—F is connected. Let U(z) be a positive continuous superharmonic
function in 2’ such that U(z)=0 on 82 and D(min(M, U(2)))<c for any
M<oo. Let D be a regular compact set in 2. Let ;U(z) be a function
such that ;U(2)=U(z) in D and 3U(z)=W(z) in 2'—D, where W(z) has
M. D. L (minimal Dirichlet integral) over 2'—D. If for any regular compact
set D, U(2)SU(2), Ulz) is called a fullsuperharmonic function in 2. Let
U(z) be a full superharmonic function in 2. If V(2)=aU(z) for any full
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superharmonic function V(z) such that both U(z)—V(z) and V(z) are full
superharmonic in @', U(z) is called N-minimal in Q'

Let Ge&, and let F, (i=1,2,---) be a regular compact set such that
F,NF;=0 for i#j and F= 1 F, cluster only at 8(G). Let G=G—F. Let

L(z, p): p€G’ be an N-Green’s function of G’ such that L(z,p)=0 on
G, L(z,p) has a logarithmic singularity at p and L(z, p) has M. D. I over

G—Vy(p): Valp)=[2€G': L(z, p)>M). Then clearly .é‘lL(z, £)=0 on 9F,
" .

and
Lep) =1 (Cap+Cap) i G,

where G(z,p) is a Green’s function of the doubled surface G’ of G’ with
respect to ).0F, and » is the symmetric point of p.

Let 4(G’, L) be the boundary points of G’ relative to N-Martin’s to-
pology L. If there exists a sequence {p;} in G’ tending to p€B(G) such

L
that p;——p, i.e. L(z,p,)—> L(2,p), we say p lies over p, we demote by

7(p, G’, L) be the set of all points lying over p. Let pel(p,G', L). Then
we see easily the following '

Lemma 1. Let pel(p, G'L). Then aiL(z, $)=0 on oF and Lz, p)
n

can be continued harmonically into G’ across dF so that L(z, p)=L(%, p),
where 2 is the symmetric point of z.
We shall prove

LEMMA 2. . Let H(z) be a positive harmonic function in G'C GEE, such

that H(z)=0 on 0G, H(z) is continuous on dF and —aa—H (2)=0 on 0F. Then
n
H(z) is full superharmonic in G'.

ProoF. H(z) can be continued into G’ across dF and F(z) is harmonic
in G’ by putting H(2)=H(z). Suppose G is an end of a Riemann surface
R and let {R,} be its exhaustion and let R, be the symmetric image of R,
relative to 0F, where R,=R,—F. Put R,=R.+R.+ Y'9F,, where the sum-
mation is over F; contained in R,. Let w,(2) be a harmonic function in
G'NR, such that w,(2)=0 on 0G=0G+3G=1 on R, +0k,. Since Ge&,,
G'e&y and limw,(2)=0. Let 2={zeG: H(z)>M). Put 2=02+Q+30F,

where @ is the symmetric image of Q2. Let H,(z), H,(2) and H,’ (z) be
harmonic functions in G’ NR,—& such that H.(2)=H,(2)=H,(2)=0 on oG,
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H(z)=H,()=H. (2)=M on a3NR, and H!(z H,(2)=0, H/'()=M

)=
Then H.(2)<H,(2)<H, (2), H)(2)< < >g <z> and 0= H'(2)
—H,(2)=M ,(z). Let n—>oc. Then lim H,(2)=H(2) in G—%£. Hence

G on

D (min (M, H(z))) < lim D (H,(z)) = %MS aiH(z)a!s<oo .

Let D be a regularly compact set in G, then there exists a const. M such
that H(z)<M on D. Let H,(z), H,(z) and H, () be harmonic function in
G'NR,—D:D=D+D such that H.(z)=H,z)=H ()= H(z) on 3G+aD,
H,{(z)=%Hn(z)=0, H,(z)=M on 'aTen—D. Then 1~,H(z)=7111=13 H,(2)=
}Li:n: H,:’(z)zlgirolo H,(2)<H(z). Hence H(z) is full superharmonic in G

LEmMma 3. Let L(2) be a positive harmonic function in G' such that
L(2)=0 on G and L(z)=L(2). Then by Lemma L(z) is full superharmonic
in G'. Let L'(z) be a positive harmonic and full superharmonic function
in G' such that L(z)=L'(2), L(z)—L'(2) is full superharmonic in G'. Then

aiL' (2)=0 on OF and L'(2) can be continued harmonically into G' across
n
oF by putting L'(2)=L'(=2). _
ProoF. Since L(z) is harmonic on 9F, —aQ—L(z)=0 on dF. Let v(F,)
n

be a neighbourhood of F; with compact relative boundary dv(F,. Then we
see at once L(2) has M.D.I over v(F,) among all harmonic functions in
v(F;) with the same value as L(z) on dv(F,. Hence ¢—,L(2)=L(z), where
L(z) is regarded as a function only in G’. Also by the full superharmo-
nicity o= L (S L (2), amaLiz)—L(2)SLz)—L'(z) in o(F). Hence

¢l (2)=L'(z). This implies —aa— L'(2)=0 on aF and L’ (2) can be con-
n
tinued into G’ by putting L'(8)=L'(z).

THEOREM 8. Let Ge&, and let F; (i=1,2,---) be a compact regular
set such that F=3F,; is thin at a boundary component peB(G). Then N-
2

Green’s function: pel (p, G!, L) is N-minimal if and only if
L(zp)=a(K (2 9+ K (2,9)),
where q and GeV (&(p), &', M)n Z(G’; M), G is symmetric to g, ge A* and G A?
1

i

of Corollary 2 of Theorem 7 and a is given by 2x / S —aa—K (2, q)ds. Hence
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by the same corollary
4(&'(p) G, L) N4(G, L)=T (p, G, M)N 4(G, M).

ProOF. Let G(z,p*) and G'(z, p*): p*€G' be Green’s functions of G
and G’ respectively. Then by Geé&,, iBn(f )G(z, $¥)>6,>0. Since F is thin
z€D (p

at p,

G'(zp") >
zeraxélr(xp) Gle o) 0,>0 for any =.

Whence min G'(z,p)=6,>0. Let {p;}CG’ be a sequence on za%,,(m such

260%B,,( )

MI
that p;——p in G’ and that G'(z, p;) converges uniformly to a harmonic
function G'(z, {ps}). Then G'(p*, {p})=d;, G'(2z, {$})=0 on 3G and G'(z,
{p:}) is a positive harmonic function in G'. Let L(z,p): pel (& (p), G, L)
ﬂfl (G, L). Then L(z,p) is N-minimal and by there exists an

L-tending path I in G'. I intersects 0%8,(p) for n=n(I"). Let {p;} be a
sequence on I'N X;0%B, (p) such that p,—p and G'(z, p;) converges to a positive

harmonic function G'(z, {ps}). Then by L(z, p;)=G'(2, ps).
Lizp)z G (= {p)) >0. (12)

By Lemma 1 L(z, ) can be continued harmonically into G’ so that L( 2, p)
= L(z, p) In the followmg we suppose L(z,p) is defined in G’. Let I =1
G’ (¢

=], E E and E E Then by (12) and by the symmetry of L(z,p) w
G’

q’'

r@N@

ave
I[L=p]>0 and  I[L(zp)]>0
Put U(z)=EI[L(z,$)}. Then 0<U(z)<L(z ) By G'NG'=0 we have
I [Uz)] =o0. (13)
Put V(2)=L(z p)—Ulz) (20). Then by I[Ul=)]=1EI[L(z p)l=I[L(z )

we have
I [L(z$)-U(z)] =1 [V(z)] =o0. (14)
Let V*(2) =éE £,[ V(2)]. ‘Then
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VHz)< V(z). (15)
We shall show V(2)=V*(z). Now by (13)
V¥2)=EI[V(@)] =EI [L(z p)-Ulz)]
G é G G

=E1[L(zp)]-EI [UR)] =EI [L(zp)],

@ & @ G

Hence by the structure of V*(z), V*(2) is symmetric to U(2), whence by (13)
I[V*@z)] =o0. (16)

@

Since Ulz)=V*(8) _a@n_(U(zH V*(2)= .ai(U(z)+ Viz) = ~a%L(z, £)=0 on
oF, whence

2 (Lizp)- (UR+V*@)) =0 on aF.

By U(2)+ V*(2) and L(z, p)—(U(z)+ V*(2)) are full superharmonic
in G'. By the N-minimality of L(z,p) we have by (15)

Ulz)+ V*(z)=aLl(z,p): 0<asl.

On the other hand, by (16) (.;T[U(z)] =a6][L(z, P)=a I[U(2)], whence a=1 and

. \ o

V*(2)= V() and

Lz p)= Ul®)+ Viz)= E1 [L(z, p)] + V*(2) (17)
G a
=§£[L(z,p)] +§£[L(z,p)] in G'. |
We shall show U(z)= GI,E G{ [L(z,p)] is a minimal function in G’. Let U'(2)
be a positive harmonic function in G’ such that 0<U'(2)SU(z). Put V'(z)
=U'(2). Then ai(U’ (2)+ V'(2))=0 on 9F. Since the function V(z) is sym-
” .
metric to U(z) by V*(2)= V(=2), %?—((U (2)+ V(2))=0 on 9F. Hence by Lemmal
n

2 UR)+V'(2), (UR)+V()—(U(2)+ V'(z) are full superharmonic in G.
By the N-minimality of L(z, p) we have

U'(2)+ V'(2) = aL(z, p) = a(U(z)+ V(2)): 0<a=1. (18)
By U(2)—U'(2)=0 we have U(z)—U" (z>;§£,[U(z)—Ul (2)], because EI are
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positive linear operators. Whence U(2)—E I[U(2)]=zU'(2)—E I[U'(z)]. By
G Q' G G
U(z)=E I[L(z, p)]=E I EI[L(2, p)l=E I[U(2)] we have -
G G Qe GG Q' q

U)=E1I [U(z)]. | (19)
On the other hand, by U'(2)<U(z) and (l;: g,[U (2)]=0 (by (13)) we have
EI[U(E]=0 and EI[V'(z)]=0. (20)

Hence by (19), (20), and (16) we have
U'(z)=EI[U(@)+ V(@] =a(E U+ V(2)]) = aUR).

Thus U(z) (V(2) is symmetric to U(2)) and V(z) are minimal in G’ and there
exists a uniquely determined point g€ 4(G’, M) such that U(z)=aK(z, q):
1
a>0. By G'e&, sup K(z,q)=00. Let q be a component €B(G") such that
2€G’
g lies over q. Then it is well known

TmK(z,q)=o0.

z—(
Let B, be the doubled open set of B,(H)NG’. Then {B,} determines &(p)
CB(G). At the top of the proof it was shown the following: for pel (&' (p),
G' L)n 411(G’, L)

L(z> P) = £1:IE L(z, Pé) : Pi € aQ;n(z’) (‘p) .

By L(z, pi) = s- e, L(z, p) for i=i(n) we have] sup L(z, p)< max L(z, p)
~ 2¢CT,, 2608, (p) NG’

<o for any n, because L(z,p) is symmetric relative to 0F. Assume
q¢ €(p). Then there exists B(q) such that B(q)c CB,,, where B(q) is a neigh-
bourhood of q relative to Kerékjarté’s top. over G’. Hence by aK(z, q)=

U(z)£L(z, p) lim K (z, g)<co. This is a contradiction. Hence qe&(p) and
Za ~, o~ - ~
qev (B(p), G, M)N4(G', M). By Vix)=U3), Viz)=aK(zq) and §e/(S(p),
G', M)N4(G, M) and ge A, ge A% Since S : —a——L(z,p)ds=4rc, a is given by
1

g on

~
oG

“Emd+KEd.
Let ¢ and geF(&(p), G, M)ﬂzll(G’, M) and K (&, §)=K (z,q). Put L(z)

=K(z,q)+K(z,4). We shall show L(2) is N-minimal. Let g€V S(p),

zn/S —;——K(z, g)ds. Thus, if Liz p): pel(@ ), G\, L)NAG, L), Liz, p)=
n 1
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G', M)NA(G', M). Then by there exists an M-tending path I
1

to g. I' intersects 98,: n=n(I"), hence we can find a sequence {g;} on

——

~ M
I'n 20%B,(p) or I'N 1%, such that gg——¢q. Without loss of generality we

can suppose {g}CI'N 1B, (p). Let {qz,} be a subsequence of {g;} such that

G(z, ¢,/) and G'(z, g;/) converge to positive harmonic functions G(z, {qs}) and
G’ (2, {gs}) respectively. Because F is thin at p and min G'(z, p*)=8>0 for

2€3%B,,(p)
n=n, and G(p* {g,})>0. Hence

oo O o Celad) .y 1Tk alon.
R0 =G g 2 B ) 0 HKEal>

Since K (2, q) is minimal in G’

EI[R(zq)]=K(zq). 21)

By G'NG'=0, 0=1E I[K (2, q)|=I[K (2,9)]=0. Since K (% 9)=K (2, q), we
G e a’

have

EI[Rd]=Rza ad I[Rma]=0. (2
Hence
Liz)=E1 [L&)]+ El [L)]. (23)

Clearly —58—— L(2)=0 on aF and by L(z) is full superharmonic in
n

G'. Let L'(z) be a positive harmonic function such that L(z)—L’(z) and
L'(z) are positive full superharmonic in G’. It is sufficient to show L'(2)=
cL(z): 0=c<1. By L'(2) can be continued harmonically into G
across 0F by putting L'(8)=L'(z). We denote the continued function in G’
also by L'(z). Now L(2)=L'(z) and

Le)-L'&)2El[LE~L'()]=EI[LE)]-EI[L')], whence
LE)-EI[LE]|2L@-EI[L(E]20.
Hence by (23) and (22)
R(z8)=L(z)—EI[L(2)] 2 L'()- E I[L'()].

By the minimality of K (z, §)
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L'(z)~EI[L'(z)]=aK (2 ): 0<asl. (24)
Also by (22) and (21) !
R(zq)=EI1[K(zq)]

Since K (2, g) is minimal E I{L'(2)]
G’ G’

[L@)]zE I[L ).

=K1
[N G a
=a'K(z,q): 0Sa’<1. Hence by (24)
L(z)=dK(z,q)+aK(zq). ‘
Since L'(2)=L'(2), aK (2, 9)+ 'K (z,§)=a' K (2, g)+aK (z,§). Now §+#gq im-
plies a=«’. Hence L'(z)=alL(z). This means L(z) is N-minimal. Hence
there exists a uniquely determined point p€4(G’, L) such that L(2)=aL(z,p)
. 1
and a is given by Zn‘/ S %Kv (2, g)ds. Since sup K (2, ¢)=o0 and lim K(z,

5& 7n 2

g)< o for qeB(G) and p+q, peF (&' (p), G, L)ﬂAII(G’, L). Hence for any pair

g and §: g€A!, there exists a uniquely determined point p in V(&'(p), G,
L)N4(G’ L). Conversely for any point p in V(&' (p), G, L)N4(G’, L) there
1 1

exists a pair ¢ and §: g€ A'. Hence by |Corollary 2 of [Theorem 7
P(&'®p), G, L) NG, L)=F (b, G, M)N4(G, M).

Striclty thiness of F at peB(G). Let Ge& and let pef(G). Let F,
(i=1,2, ) be a compact set and let F=2F; such that G—F is connected,

{F)} clusters only at B(G). If there exists a determining sequence {%,(p)}
such that min G'(z, p*)>0>0: n=1,2,---, we say F is strictly thin at b,

2€dB,, (p)

where G'(z, p*) is a Green’s function of G'=G—F: p*eG'. Clearly if Geé&,
and F is thin at p, F is strictly thin at p. Suppose F, is regular compact
set. Then the doubled surface G’ of G’ relative to dF can be considered.
We see is valid for GEE not neccessarily Ge&,. Also we see
Lemma 2 and Lemma 3 hold not only for Ge&, but also for G’ such that
G’ (of G"e&,. We proved under the condition Ge&,. But the
proof of

U

7(®' (), G\, L) N4(G, L)

{

F(p, G, M)N4(G, M)

depends following two facts:

G’

a). Gg[L(z,p)] >0.

b). Any positive harmonic function U(z) with U(z)=0 on oG and
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aiU (2)=0 on OF is full superharmonic in G
n

Now we see at once a) is satisfied under the condition that F is strictly thin
at p and b) is satisfied under the condition that G’€&,. Hence we have the
following

COROLLARY 1. Let Ge& and F be strzctly thin at peB(G) and F,; be
regular compact. If G' (doubled surface of G'=G—F)e&,, then
4(&'), G, L)n4(G, D= (&), G, M') N 4(G', M
=V (p, G, M)N4(GM).

Let G'e€ and G’=G—F be of planar character. Suppose F is strictly thin
at peB(G). Map G’ conformally onto a domain 2 in |&|<1 by &=g(z).

Then similarly as [Corollary 3 of [Theorem 7 we can prove 1). Ng(B,H)NG =

one point, 2). &'(p), the set of boundary components of 8(G) lying over p
consists of only one component p’' and 3). F(p, G, M )ﬂA(G’ M') = one

point. Suppose F; is compact set. Then G’ can be con31dered If G'eé,,
then by Vo', G, L\n 4(G', L) consists of only one point. Now
1
L(z,p): peV(p',G’, L)N4(G', L) is represented by a canonical measure on
Vo', G, L)N4(G, L). Hence F(y, G, L\n4(G', Ly=F(p, G, L)\n4(G’, L).
1 1

Hence we have
CoOROLLARY 2. Let F; be a regular compact set and F= 2. F; be strictly

thin at peB(G) and G' be of planar character. If G'€é&,,
Vo', G, LN4(G, L)=F(p, G, L)N 4(G', L) = one point.

4. Applications to conformal mappings. Let Ge& and dG consists
of one component. Let F; be a compact set such that F= ZF¢ is strictly

thin at peB(G), G'=G—F is of planar character and min G’(z p¥)>6>0

z€3B,,(p)

for n=1,2,.-, where {8,(p)} is a determining sequence of p. Then &'(p)
consists of only one component §’. We shall prove

THEOREM 9. Let Ge& and let F be strictly thin at peB(G) such that
F; is a regular compact set, G consists of only one component, G'=G—F
is of planar character and G’ (doubled surface of G')€&,. Then we can
map G' conformally onto a domain Q in |w|<1 by w=g(2) such that F,
is mapped onto a radial slit, Ng(B,P)NG)=w, and 0G—|w|=1. Then
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such function g(2) is uniquely determined except roation and £ has the Gross's
property.
Proor. By [Corollary 2| of [Theorem 8§ F (¥, G, L)N4(G, L)=V (' G, L)
N4(G', L)=one point p. This means L(z, p;)—L(z2, p) for any sequence {p}
1

tending to p’. Hence {G’ NB,.(p)} and {v,(p)} are equivalent, where v,(p)
={z€G’ . L-dist(p, z)<—1—} Let v,(B) be a neighbourhood of B(G), i.e.
” ‘

G'—v,(B) is compact and vn(ﬂ)\‘O as n—>oo. Let o(7, 2, G’) be a harmonic
function in G’—T such that o(7T, 2, G')=0 on dG=1 on T and o(T, 2, ()
has M.D.I over G'—T, where T is a closed set with TNaG=0. Put

(4, 2, G’)—hm 0(v,(B)NG, 2, G') and w(p, 2, G')—hm o (p), 2z, G). Then

by G'€&, we have
O=wld 2, G)=0(p,z G).

Hence p is not singular [9], i.e. sup L(z, p)=o00. Let Vy(p)={2€G": L(z,
p)>M}. Then by ped(G', L), forzfny Vu(p) there exists a v,(p) such that
VM(p)D(vn(p)ﬂG') [101] Hence L(z,p)—>co as z—p. Next 75vL(z p)
= 5, mnaeL(2, p)=L(z, p) lmpheszegggpll(z RS rg;a}(cp)lz(z, p)<oo. Hence
1). L(z,p)=c0 at P and sup L(z, p)<oc in G'—B,(p’).
It is known L(z, p) has the following properties [11].
(

97 2, p)=0 on OdF.
on

3). S iL(z,j))ds=21r for almost M: 0<M< .

3V m(p) an

2).

G 371

4), S 9 Lz, p)ds=2x . '

5). Let 7 be a smooth Jordan curve in G'. Then S%L(z, p)ds=0

T
or 2r according as T encloses p or not.
Let H(z, p) be the conjugate harmonic function of L(z, p). Then exp (L(z, p)
+iH(z, p))=g(2) maps G’ onto @ satisfing the conditions of Theorem. We
shall show such ¢(2) is uniquely determined. Suppose an analytic function
F(2) such that 1). |F(z)]=1 on aG, 2). |F(2)|<1 in G’. 3). F(z) maps oF;
onto a radial slit. 4). inf |F(z)|>0 for any n. Then U(z)= —log |F(z)]

2€G@'—B,,(p)
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is positive harmonic in G’ and U(z)=0 on 8G. 3) implies Ea—U(z)=0 on

dF,. Hence by G'e&, (by of Theorem 7). U(z) is full super-

harmonic in G’. Then Ulz) =S )L(z, q)dp(q). Bgrl) j»d/,t(q)=1.‘ As-
26,1

sume # has a positive canonical measure on 4(G’, L) outside of B,(p). Since
1

©=0 on 0F; and since {F}} clusters at B(G), we can find a closed set A in
L
fl(G’, L)—%B,(p) such that Ac N(v,(A)NG’) and p>0 on A. By w(4, 2z, G')=0

A is a set of capacity zero, whence

00 = sup L(z,P)é sup L(z, p)>oo [12]

z€d 2€93B,,(p) NG’
This is a contradiction. Hence g>0 on only at F(y, G’ L)n4(G', L)=p.
1

Thus U (z)=L(2, p) and the uniqueness of ¢(z) is proved. o |
We show £ has the Gross’s property. Let F” be the image of 9F;:

FP={re": r.<r<r;, 0=6,}. Let Rn=1>|w|>—1— and 6, be the angular
n ,

. A
projection of 3} F,”, where the summation is over F;” s contained in R,.

We show mes 6,=0 for any n. Put 6%= max |g(2)|, 6Y= min |g(z)]. Then
2€98,,(») 2€9B,,(p)

0,20,>0 and lim ;=0 by N¢(B,(p)NG’')=one point {wv=0}. For any

given —1—, there exists a number 7z, such that ¢% < -1— We consider onl
n : ‘' n d

G'—%B, (p). Then any F; contained in G—%3, (p) is mapped onto a radial
slit in 1>|w|=d7. Let 6, =U{0: re?C Y F)}, where the summation. is

over F; contained in G—%B, (p). Then 6,ch,. By G'€&, [13] and by

Evans’s theorem there exists a positive harmonic function U(z) in G’ such

that U(z)=0 on oG, (U(z)—>o0 as z—B(G’) and S aiU(z)ds=2n-: Ty=
. ryy O

(2€G': U(z)=M). Consider U(z)in G ThenS 9 Ulx)ds<2r. Now

, on
rMNG
the area of 2<oco. By the length and area’s method we see that there

exists a sequence {M;}: [=1,2,---, such that 1). M,—~oo as [->co0. 2). the

length of ¢(7),)=¢;, &0 as [—>oco. Since max U(z)<oco, there exists a
2€8Bn,(p)

number /, such that 7,, does not touch %8, (p) for I=l,. Let 7y, (I=1;) be
the part of 7), in G'—%B, (p). Then ¢(7),) separates B(G)—B, (p) from
B, (P)NG' and ¢(T’y,) is contained in 1> |w|=6% and ¢(',,) separates the limit-
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ing points of 2 F” from |w|=1 and ¢(B, (p)NG’), where the summation
is over F” outside of ¢(%B,,(p))NG’). Because |g(z)|=05 for 2€G'—2B, ().
Since the angular measure of Y ¢(F,)=0, &= length of ¢(r},)=mesd, xd7 .
Let [-—>00. Then

mes 6, <mesf, =0.

Hence 2 has the Gross’s property.

ReEMARK. If Ge&, and F, is a regular set, then G’€&,. Since in the
case Ge&, F is thin if and only if F is strictly thin. Hence
is valid under the condition GE&, and F is thin at p instead of G’€&, and
F is strictly thin at p.

THEOREM 10. Let E be a closed set in |z|<1 of capacity zero with
E>z,. Let G={|z|<1}—E and let F=}F, (F, is a compact continuum in
' [

G) such that F clusters only at E, FN\{|z|=1}=0, 2, is irregular for the
Dirichlet problem in G'=G—F. Then there exists a uniquely determined
Junction w=g(z) mapping G’ onto a domain 2 in |w|<1 with radial slits
such that |z|=1—|w|=1, zy—>{w=0} except rotation and 2 has the Gross’s
property.

Map G’ conformally by é=h(z) onto a domain D’ with circular slits in
|| <1 such that {|z]|=1}—{|¢|=1}. Let v,(2) be a neighbourhood in G’ of
2 such that dv,(2)N F'=0 and v,(2,)—2, as n—>o0. Then since 2, is irregular,
N h(v,(z,)=one point &. Since 2, is irregular, we can fined a sequence of

curves {7} such that 7,, encloses 2, in G’ and 7,,—=2, as m—>cc and a const.
6>0 such that min G’(z, p*)=6>0, where G'(z, p*) is a Green’s function of

2€7m,

G'. Let B,(2) be a domain bounded by 7, containing 2, in its interior.
Then {%,.(z)} is a determining sequence of 2, and

NDB,.(2)C Nv,(20) = 2.

Let {G,} be an increasing sequence of domains such that G, G, 9G, con-
taines {|z|=1} for any [/, dG, consists of a finite number of analytic curves
and dG,NF=0. Since {F;} clusters at only E, G, containes a finite number

1
of F, in G,. F, is mapped onto a circular slit J;. Let D,=h(G,—F)+ X2, J,,
where the summation is over J; such that A !(J;) is contained in G,. Then

D, is a domain and D,— 3J,=h(G,—F). Put D,=D,—3J, and D= UD,.
4

Then D is a domain. Consider A(0%,(2) in D. Then A(9B,(z,)—& as

m—oo and min G'(§ h(p*))=0. Hence
£€n(08,,(2,))
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2J: s strictly thin at & in regarding D as a domain. (25)

Let ;(€) be a harmonic function in D; such that ;(€)=0 on {|&§]=1}, =1
on h(dG;) and ;(§) has M.D.L over D,. Let w;(2) be a harmonic function
in G; such that ,(2)=0 on {|z|=1} and w,(2)=1 on 3G,. Then

D<w§ (5)) < D(w, (z)) E=¢&(2).

Since Ge&,, lim D(w,(2))=0. Now J; is a regular set, the doubled surface
I=00

D} of D, can be considered. Consider w;(&) in D;. Then Ea——wﬁ(é)=0 on
n

Ji. Put 0,(8)=w,(¢) in D}, where D) is the symmetric image of D relative

to >.J;. Then
LlJfX €&, (26)

where D, is the doubled surface of D).
Put D'=UD'. Then D'=D—3J,=h(G"). By (25), (26) and by The-
l (3

orem 9 I is mapped conformally by a uniquely determined function onto
a domain with radial slits. Hence G’ is mapped uniquely determined function

9(2) onto a domain 2 with radial slits. Similarly as it is proved
that 2 has the Gross’s property.

5. Let R be a Riemann surface and let € be a subdomain in R such
that 02 consists of enumerably number of analytic curves clustering nowhere
in R. Let N(z,p) be an N-Green’s function of 2 with N(z, p)=0 on
082 (in case of L(z,p), L(z,p)=0 on a compact relative boundary). Then
N-Martin’s topology can be defined with following metric

o, ) = sup| —— N(z,p) 1+N(z,q)

where £, is a compact disk in 2 and 4(2, N) is the boundary of 2 obtained
by the compactification of £. |

Let 2cGe& and L and N be N-Martin’s top. s over G and 2 induced
by {L(z, p)} and {N(z, q)} respectively. Then clearly

: p and qe+4(2, N),

L(z, p)—&L(z, p) = N(z, p) for pef.
L N

If a sequence p,——p and p,——gq, we say q lies over p. Then it is known
if ped(G, L) and C® is thin at p, there exists a uniquely determined point
1

S (P)Elli(Q, N) [15] such that
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L(z, p)—aL(z p) = N(z, f(p)).

Condition K. Let Ge&,. 1f B(G) consists of only one component p and
Vp, G, M)N4(G, M)=F(p, G, M)N 4(G, M)=one point p, we say G satisfies
1 | .
the condition K. ‘
Problem. Suppose G satisfies the condition K. Then
lim G*(z, p*) =
=
for any analytic curve A tending to p, where G*(z, p*): p*€G—A is a Green’s
functzon of G—A.
Condition H. (M. Heins) [16]. Let Geé&, such that 8(G) consists of
only one component. If there exists a sequence of disjoint annuli A, (n=
1,2, ---) with analytic Jordan boundaries on G satisfying the condition that

for each n, A,,, separates A, from p and A, separates dG from p and
Y 1/M(A,)=0c0, then we say G satisfies the condition H, where M(A4,)=

1/D(U,(2)) and U,(z) is a harmonic function in A, with U,(2)=1 on 7 of
A, and U,(2)=0 on 7" of A,, 7 and 7’ are boundary components of dA,.

M. Heins proved [17], if G satisfies the condition H. FV(p, G, M)N4(G,

M) consists of one point. Suppose G satisfies the condition H. Then

D(g_o( Gz, p*))< 27 max G%(z, p*), where v(p*) is a neighbourhood of p*.
T ()

Hence there exists a number 7, and a const. M such that

Dy ,(Gi(z, p*)<M and T1/M,=co.

By the length and area’s method we see that there exists a sequence of
dividing cuts {r;}: i=1,2,--- such that 7; is contained in som Ay, 7;—p

and S d|GY(z, p*)] =¢,—0 as i—>oc0. Since 7, intersects 4, max Gi(z, p*)<¢;.
By Ge &, and by the maximum principle max Gz, p*)—-sup G*(z, p*) and

G(z, p*)—>0 as z—p, where G, is the domam d1v1ded by T; and containing
a neighbourhood B(p) of p. Hence the condition H is stronger than the
condition K for this problem. |

REMARK. We shall show that the condition K is necessary for the
problem. Let U(z) be a positive harmonic function in G with U(z)=0 on

3G. Then by Ge& D(min(M, U(z)))=MS -a—a——U(z)ds and ;U(2)=,U(z)<
' g 0N

U“(z) for any compact regular set D in G. Hence any positive harmonic
function with U(z)=0 on 9G is full superharmonic and U(z) is N-minimal
if and only if U(z) is minimal. Suppose there exist two points p; and p,
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in V(p, G, M)N4(G, M). Then there exitst two points ¢, and g, in F(p,
1
G, L)ﬂfl_(G, L). Let v(g;) be a neighbourhood of g; relative to L-top. such

that v(g;)Nv(¢,)=0 and dv(q;) consists of analytic curves clustering nowhere
in G. By @,€4(G, L) there exists an L-tending path 4 in v(g,) to ¢,. By
1
qleg(G, L), L(z, ¢1)— 65 L(2, 1)>0. Let N(z,7) be an N-Green’s function
of v(g;) and suppose N-Martin’s top. N is defined on v(q)+4(v(q,), N).
Then by ¢,€4(G, L), there exists a point flg;) in 4(v(g), N) and f(q,) lies
1 1

over ¢; such that

0< Lz ¢)= a7 Llz )= N(= f(g1).

Hence there exists a sequence {p;} in v(g) N-tending to ¢ such that
Li=m N(pi, 2)>0. On the other hand, by v(p,)CGe&,, N(z, 20)=G"(2, z0),

where G (2, z) is a Green’s function of v(g,). Then lim G(z, z)=lim G"(z,

z=q, 2—q,

%)>0. This implies p is not regular for G—A4. Hence the condition K is
necessary for the problem. The problem is plausible but difficult. As a
condition that G is almost of planar character we shall prove the following.

THEOREM 11. Let Ge&, satisfying the condition K. Let F be a thin
set at p such that G—F=G' is of planar character. Let A be a Jordan
curve in G' tending to p. Then p is regular for the domain G—A.

Proor. Since F is thin at p, there exists a sequence {p; tending to
p such that G(z,p;) and G'(z, p;) converge to positive harmonic functions
G(z, {ps}) and G'(z, {p;}), where G(z, p;) and G'(z, p;) are Green’s functions
of G and G’ respectively. Now since F(p, G, M) ﬂf’(G, M)=one point, G(z,

{p})=aK(z, p): a>0. By Hlim G(z, p,))<lim zG(z, p;) we have
i=co ey

G(z {pd) —#G (= {£d) 2 G' (2 {p4) >0.

Assume p is not regular for G—A4. Then there exists a sequence {p;} such
that lim G(z, p,)>0 and similarly as above we have
J=o '

G (z, {Pj}‘> —.G (z, {Pj}) >0.

By Ge&,, L(z, p)=G(z, p;) and G(z, {p;}) is not only minimal but also N-
minimal and V(p, G, L)N 4(G, L)=F (p, G, L)N 4(G, L)=one point (we denote it
1

by the same symbole p). Then L(z, p)=G(z, {p})=G(2, {p;}), #L(z, p)=
G2, {p), 1L(=z, p)=4G(z, {p.}). Since the sum of two thin sets is a thin set,
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N(z, () = Liz p)= il (2 p) = Gz, (p3) =G (2 {p}) >0,

where N(z, f(p)) is an N-Green’s function of G—A—F vanishing on G+
A+0F and f(p) lies on p.

Hence there exists a sequence {s;} in G—A—F such that s,—~>p and

lim N(z, s;)=lim G**(2, s)>0, =2eG—=A—F, 27) -
g=00 g=oc0

where G***(z,s;) is. a Green’s function of G—A4—F. This means p is not
regular for the domain G—A4—F. Map G' conformally by w=g(z) onto a
domain 2 in |w|<1. Then ¢(2) maps p onto a point w,, because F is thin
‘at p. By the assumption 4,, the image of 4 is a continuum and 4, tends
to w, in the image of G. Because if 4 crosses F;, 4, may be divided into
many components, since two sides of 9F; (0F; may have one side) may be
generally mapped two components. Hence w, is a regular point for the
domain ¢(G—A—F). This contradicts (27). Hence we have the theorem.

6. Let Ge&, and F; be a compact continuum such that F,NF;=0 for

i#j, F=2F; clusters at only the ideal boundary of G, dGNF=0 and G'=

G—F is connected. If there exists a determining sequence {%,(p)} of p such
that 0%, (p) is a dividing cut and

min G'(z, p*)>0>0 for any =,

2€3%B ,,(p)

we say F is completely thin at p, where G'(z, p*): p*e(G’ is a Green’s function
of G

LEMMA 4. Let Ge&,, peB(G) and let F be a thin set at p. Put G'=
G—F. Let ©'(p) be the set of components €B(G’) lying over p. Let pe
7(&p),G,M)N fl (G, M") and v(p) be an M'-neighbourhood relative to M'-

top. over G'. Then there exists a path I' to p in v(p)NG' such that
lim G"(z, p*)>0: p*€v(p),

z—p
z€rl

where G'(z, p*) is a Green’s function of v(p).
ProOF. Since pel (&' (p), G', M'\N4(G’' M’), there exists a path I” in
1
v(p) M'-tending to p. I intersects 3B, (p) for n=n(I") such that G'(z, p*)
>6>0 on 38, (p), where G'(z,p*) is a Green’s function of G’. Hence we

can find an M'-tending sequence {p;} to p such that {G'(z, p;)} converges to
a positive harmonic function G'(z, {p;}) and

Mo p) = G'(z, {Pt}>
K= G o)
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Then K'(z, p)>cunK'(2, p). Hence there exists a uniquely determined com-
ponent v'(p) of v(p) in which

G' (z, {P¢}> — oG’ (z, {Pz}> >0. (28)

In the following we consider only v'(p) and denote it by v(p). Suppose G
is an end of a Riemann surface R. Let {R,} be its exhaustion such that
0R,NF=0. Then

G'(=z, ps) _Cv(p)ﬂRnﬂG’G’ (2, 20) = G (=, P4) s
where G, (z, ;) is a Green’s function of G'—R,+v(p).
Since G'(z, ps)=M for i=i, on dv(p)NR,+0R,, we have by letting i—>o0

. ll_m Co( )menna'G' (2, p0) = L’v(p)ﬂRnﬂG'G’ (2, {Pt}>- Hence

G'(2 (24) —cxmom,neG' (% (pd) = lim G (z, £,).

Let n—>co. Then ¢ nr,neG (2 {£4}) /comneG' (2, {p4}) as n—>oc0 and
G'(2 (4) —en G (5 (pd) = lim lim G} (2, 5, .

Now clearly D(min(M ,G, (2, p;)=2zM. Hence by Fatou’s lemma

D(min(M, Uz))) < 2zM: UR)=G'(2, {p}) —coomaG (2 (3})-
, (29)
Let D be a compact regular set in v(p). Then ;U(z) and ,U(2) in v(p)
can be considered, where ;U(2)=U(2)=,U(z) on D+0dv(p)+dF and ;U(2)

has M.D.I. over v(p)—D and ,U(z) is the least positive superharmonic func-
uon in v(p)—D. Then since v(p)CGe&,, ;U(z)=,U(z). Evidently 0<U(z2)

I [G'(z, {p:})] and I preserves the minimality of G'(z, {p;}), U(z) is minimal

1n v(p), whence Ul(z) is N-mlmmal in v(p). By (29) the function theoretic
mass of U(z)<1 [18]). Hence

U&= Nendut), [dutr=1

4((p), )
1
where N(z,7) is an N-Green’s function of v(p)+4(v(p), N) vanishing on
0v(p)+F and 4(v(p), N) is the set of N-minimal boundary points of v(p).
1
Now U(z) is N-minimal, and p is a point measure at qezll(v( p), N), i.e.

U(z)=aN(z, q): a>0. By v(p)cGe&,, sup Nz, g)=o and N(z, 9)<G'(z,
{ps})), q lies over b, because sup )G (z, {ps})< oo for any n. It is easily verified
p

2€C 8,
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that valied for the topology N over v(p). Hence there exists
a path I' tending to p in v(p) on which N(z, 5)—>N(z, g¢) as s—>p on I'. Also
by v(p)CGe&,, N(z, n=G"(2,7) in v(p) for rev(p), where G"(z, 1) is a
Green’s function of v(p). Hence |

lim G (z, 2*) = N(z*, ¢)>0 for z*ev(p).

2P
zel

Hence we have the lemma.

THEOREM 12. Let Ge&, and F be a completely thin at peB(G). Sup-
pose G'=G—F is represented as a covering surface over the w-sphere of at
most m, number of sheets by an analytic function g(z). Then V(p, G, M)N
fl (G, M) consists of at most m, number of points. '

Proor. Let G be an end of a Riemann surface R. Let {R,} be an
exhaustion of R. Since the spherical area of ¢(G)<4zm,, we can find a
number 7, such that the spherical area of g(R—R,)NG")<r for n=n,.
Also it is easily seen min)G*(z, p*)>0>0 by the completely thiness of F,

2€3B,.(p
where G*(z, p*) is a Green’s function of a component of (R—R,)NG’ con-

taining a neighbourhood of p. Hence without loss of generality we can
suppose
spherical area of ¢(G)<7 and min BG' (2, p¥)=0>0 for any .
2€38,,(p) :
(30)

By Evans’s theorem there exists a positive harmonic function U(z) in
G’ such that

1). U(z)=0 on 3G +dF, D(min(M, U(z))=2r M, S 53-U<z)ds=2 for

aay ON
almost all L, where 2;,={zeG": Ul(z)>L)}.
2). Ulz)—>o0 as z—B(G) in any G,={2eG": G'(z, p*)>0d}: p*eCG".
R, consists of at most enumerably number of domains. Let Q7 be one com-
ponent of 2;. Then by 2,CGe&,, sup U(z)=oco. Since spherical area of

zEQ'L
g(G)<r, by (1) we see by the length and area’s method there exists a se-
quence L,: i=1,2,--- such that
L; /oo and speherical length of ¢(82;,)=¢,—0 as i—oo.

Since 098, (p)—p as n—>oo, ‘ngi?)U(z)—wo as n—co by (2). Hence for any
2605, (p

given ; , there exists a number n(L;) such that

‘Qllz; 2 aEBn(L,,;) (p) .
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By Evans’s theorem there exists a harmonic function V(z) in G such that
1). V(z)=0 on 3G, D(min(M, V()= 2z M, S 2 Vi)ds=2x for
any M, where Dy={2€G: V()< M}. 7
2). V(z)—»oo as 2—B(G).
Similarly as U(z), there exists a sequence M, such that M,—~o and
spherical length of ¢(3Dy,NG))=e,>0 as j—>co.
Since .Q%:}i:ril (.QL?;ODMJ), there exists a number M, such that (22,0 Dy,)

D08, 1,(b). Now 2,0 Dy, is conipact in G’ and since 9%B,;,(p) is a con-
tinuum, there exists only one component 2, ; of 2 ;1 Dy, containing 8B,z (p).
By the theory of cluster sets

boundary of ¢(2,;)C boundary of ¢(32,,).
9(0%2;,,) divides the w-sphere into a number of domains G, G,, ---. Since the

spherical length of ¢(02;,,)=¢;+¢,< %, there exists only one domain with

(ec+e,)

=
(B1) 9(2:15)=Gisjs or g(2,,)NG'=0. On the other hand, spehreical area
of g(2;y)<z. Whence ¢(2,,,)NG'=0 and ¢(2,,,) is contained in a semi-
sphere. Hence we have spherical diameter of ¢(3%, zp(P)= spherical di-
ameter of ¢(2;,;)< speherical length of ¢(82,,,)=¢,+¢;. Hence we can
find a subsequence (B, (p)} of {8,(b)} such that the spherical diameter of

(0%, (p))=e,,—0 as n’'—>oco. Also we can find a subsequence {8, (p)} of
{8, (p)} such that :

spherical area =4r— We denote such domain by G’. Then by

g(@‘&,”(p))———» one point w, as n" ——00. (31)

In the following we consider {%..,,(p)} only.

Since the spherical area of ¢(G')<r, there exists a closed set .#Z of
positive capacity in the complementary set of ¢(G’). Assume there exist
P> % Pmy+1 Points in 7 (&' (p), G, M)N Z{ (G', M'"). Then there exist M'—neigh-
bourhoods v(p;) such that v(p,)Nv(p.)=0 for m#m’. Let p be of {p,).
v(p) consists of components but there exists only one component v*(p) of

v(p) such that
oK' (2, p)<K'(2,p) in v*(p).

Put v=g(v*(p). Then v is a domain, #N.# =0 and 7 is. a hyperbolic.
We shall show w,€? or is an irregular point for the' domain 7. By Lemma
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4 there exists a path I" in v*(p) tending to p along which lim G”(z, p*)>0,

z—p

where G''(z, p*): p*ev*(p) is a Green’s function of v*(p). I’ intersects
8%B,...(p) for n"">n(I'). Hence we can find a sequence {g;} on I'N 29T, (p)

such that G"(q;, p*)=6,>0 and ¢g(g;)>w, as j—>oco. Let G(w,g(p*))rbe a
Green’s function of ¥. Then

G(g (92); g(p*)) =G"(q;,p*)20>0 and
g(g;)— w, as j— 0.

Hence w, is an inner point of ¥ or an irregular point. By vCg(v(p)),
g(v(p)) covers a neighbourhood v(wy) of w, except at most a thin set at w,.
Sum of a finite number of thin sets is also a thin set. Hence ¢(G’) covers
a neighbourhood v'(wy) at least m,+1 times except a thin set. This is a
contradiction. Hence V7 (&'(p), G', M ’)ﬂfl(G’, M!') consists of at most m,

point. By Vp, G, M )ﬂﬁl(G, M) consists of at most m, points
and we have the Theorem.
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