On almost complex structures on the products and connected sums of the quaternion projective spaces

By Inaho Sato and Haruo Suzuki

1. Introduction and results

It is known by F. Hirzebruch [3] and by T. Heaps [2]*) that the quaternion projective space $P_{n}(Q)$ of quaternion dimension n has no almost complex structure for $n \neq 3$.

In this note, we consider whether almost complex structures exist or not on the product spaces $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)$ of quaternion projective spaces, and the connected sums

$$
\begin{aligned}
& \alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right) \\
& \quad=\underbrace{P_{n}(Q) \# \cdots \# P_{n}(Q) \#(\underbrace{\left.-P_{n}(Q)\right) \# \cdots\left(-P_{n}(Q)\right.}_{\beta \text { copies }}),}_{\alpha \text { copies }},
\end{aligned}
$$

where the sign-denotes the reversed orientation.
Theorem A. The product spaces $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)$ for $r \geqq 2$ admit no almost complex structures if $n_{i} \neq 2$, 3 for an integer $i, 1 \leqq i \leqq r$.

Theorem B. The connected sums

$$
\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right), \quad \text { where } n \leqq 10 \text {, }
$$

admit no almost complex structures if $n=1,2,4,5, \cdots, 10$ or $n=3, \alpha \neq 3 \beta+1$.
2. The product spaces $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)$.

Let $P_{n}(Q)$ be the quaternion projective space of quaternion dimension n. Let $p_{i} \in H^{4 i}\left(P_{n}(Q) ; Z\right)$ be the i th Pontrjagin class. Let $c_{i} \in H^{2 t}\left(P_{n}(Q) ; Z\right)$ be the i th Chern class if $P_{n}(Q)$ has an almost complex structure. Let $u \in H^{4}\left(P_{n}(Q) ; Z\right)$ be the canonical generator. By F. Hirzebruch [3] or A. Borel and F. Hirzebruch [1], we have the total Pontrjagin class of $P_{n}(Q)$,

$$
p=\sum_{i=0}^{\infty} p_{i}=(1+u)^{2 n+2}(1+4 u)^{-1} .
$$

[^0]If $P_{n}(Q)$ has an almost complex structure, by the relation $\sum_{i=0}^{\infty}(-1)^{i} p_{i}=$ $\left(\sum_{i=0}^{\infty} c_{i}\right)\left(\sum_{i=0}^{\infty}(-1)^{i} c_{i}\right)$, we obtain

$$
(1-u)^{2 n+2}(1-4 u)^{-1}=c^{2},
$$

where $c=\sum_{i=0}^{\infty} c_{i}=\sum_{j=0}^{\infty} c_{2 j}$ is the total Chern class of $P_{n}(Q)$.
Let s_{n} be the coefficient of x_{n} in the power series expansion of $(1-x)^{n+1}(1-4 x)^{-\frac{1}{2}}$ and set $a_{n}=s_{n} /(n+1)$. By F. Hirzebruch [2], a_{n} are nonnegative integers,

$$
a_{n+1} \geqq 2 a_{n}-1,
$$

and

$$
a_{n}>1 \text { for } n \geqq 4 \text {. }
$$

By this result, Hirzebruch proved that the quaternion projective spaces $P_{n}(Q)$ with the natural differentiable structure have no almost complex structures for $n \neq 2$, 3 .

We consider almost complex structures of product spaces of quaternion projective spaces,

$$
P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q),
$$

and obtain the following theorem:
Theorem A. The product spaces $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)$ with the natural differentiable structures have no almost complex structures if $n_{i} \neq 2,3$ for an integer $i, 1 \leqq i \leqq r$ and $r \geqq 2$.

Proof. Let $u_{i} \in H^{4}\left(P_{n_{i}}(Q) ; Z\right)$ be the canonical generator and π_{i}; $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q) \rightarrow P_{n_{i}}(Q)$, the natural projection. We denote the image $\pi_{i}^{*} u_{i}$ by the same letter u_{i}. Since $H^{*}\left(P_{n_{i}}(Q) ; Z\right)$ has no torsion, we have the total Pontrjagin class

$$
\begin{aligned}
& p\left(P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)\right) \\
& \quad=p\left(P_{n_{1}}(Q)\right) \cdots p\left(P_{n_{r}}(Q)\right) \\
& \quad=\left(1+u_{1}\right)^{2 n_{1}+2} \cdots\left(1+u_{r}\right)^{2 n_{r}+2}\left(1+4 u_{1}\right)^{-1} \cdots\left(1+4 u_{r}\right)^{-1}
\end{aligned}
$$

If $P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)$ has an almost complex structure, by the relation $\sum_{i=0}^{\infty}(-1)^{i} p_{i}=\left(\sum_{i=0}^{\infty} c_{i}\right)\left(\sum_{i=0}^{\infty}(-1)^{i} c_{i}\right)$, we obtain

$$
\left(1-u_{1}\right)^{2 n_{1}+2} \ldots\left(1-u_{r}\right)^{2 n_{r}+2}\left(1-4 u_{1}\right)^{-1} \cdots\left(1-4 u_{r}\right)^{-1}=\left(\sum_{j=0}^{\infty} c_{2 j}\right)^{2}=c^{2},
$$

since $H^{2 i}\left(P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q) ; Z\right)=0$ for odd i. It follows that

$$
c=\left(1-u_{1}\right)^{n_{1}+1} \ldots\left(1-u_{r}\right)^{n^{r+1}}\left(1-4 u_{1}\right)^{-\frac{1}{2}} \cdots\left(1-4 u_{r}\right)^{-\frac{1}{2}} .
$$

It is obvious that

$$
u_{1}^{n_{1}+1}=\cdots=u_{r}^{n_{r}+1}=0,
$$

and we have

$$
\begin{aligned}
c_{2\left(n_{1}+\cdots+n_{r}\right)} & =s_{n_{1}} \cdots s_{n_{r}} u_{1}^{n_{1} \cdots u_{r}^{n_{r}}} \\
& =\left(n_{1}+1\right) \cdots\left(n_{r}+1\right) a_{n_{1}} \cdots a_{n_{r}} u_{1}^{n_{1} \cdots u_{r}^{n_{r}}}
\end{aligned}
$$

If $n_{i} \neq 2,3$ for some $i, 1 \leqq i \leqq r$, we have $a_{n_{i}}>1$ or 0 by the result of F . Hirzebruch [2], and hence $a_{n_{1}} \cdots a_{n_{r}}$ is greater than 1 or 0 since $a_{n_{1}} \cdots a_{n_{i}-1} a_{n_{i}+1} \cdots a_{n_{r}}$ are integers $\geqq 0$.

On the other hand, the Euler characteristic $E\left(P_{n_{1}}(Q) \times \cdots \times P_{n_{r}}(Q)\right)$ is obviously

$$
\left(n_{1}+1\right) \cdots\left(n_{r}+1\right),
$$

and we have by [5, Theorem 1.1],

$$
\begin{aligned}
&\left(n_{1}+1\right) \cdots\left(n_{r}+1\right) a_{n_{1}} \cdots a_{n_{r}} u_{1}^{n_{1} \cdots u_{r}^{n_{r}}} \\
&= c_{2\left(n_{1}+\cdots+n_{r}\right)} \\
&=\left(n_{1}+1\right) \cdots\left(n_{r}+1\right) u_{1}^{n_{1} \cdots u_{r}^{n_{r}}} \\
& \quad \text { or }-\left(n_{1}+1\right) \cdots\left(n_{r}+1\right) u_{1}^{n_{1} \cdots u_{r}^{n_{r}},}
\end{aligned}
$$

which is impossible because $a_{n_{1}} \cdots a_{n_{r}}>1$ or 0 by the above arguments. Thus our theorem is proved.
3. The connected sums $\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)$.

Theorem B. The connected sums

$$
\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right), \quad \text { where } n \leqq 10,
$$

admit no almost complex structures if $n=1,2,4,5, \cdots, 10$ or $n=3, \alpha \neq 3 \beta+1$.
Proof. First of all, we have that homomorphism Φ :

$$
\begin{aligned}
& H^{i}\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right) ; Z\right) \longrightarrow \\
& \quad H^{i}\left(P_{n}(Q) / \check{D}_{1}^{4 n} ; Z\right) \oplus \cdots \oplus H^{i}\left(P_{n}(Q) / \grave{D}_{\alpha}^{4 \alpha} ; Z\right) \oplus \\
& \quad H^{i}\left(-P_{n}(Q) / \check{D}_{1}^{4 n} ; Z\right) \oplus \cdots \oplus H^{i}\left(-P_{n}(Q) / \check{L}_{\beta}^{4 n} ; Z\right)
\end{aligned}
$$

is isomorphism for $1 \leqq i \leqq 4 n-1$, where $\Phi(u)=\sum_{\lambda} \iota_{\lambda}^{*}(u)+\sum_{\mu} \iota_{\mu}^{*}(u)$

$$
\begin{array}{ll}
\iota_{\lambda}: & P_{n}(Q) / \check{D}_{\lambda}^{4 n} \longrightarrow \alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right) \\
\iota_{\mu}: & -P_{n}(Q) / \check{D}_{\mu}^{4 n}-\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right),
\end{array}
$$

denoting by $P_{n}(Q) / \check{D}_{\lambda}^{4 n}$ the complement of the open disk $\check{L}_{\lambda}^{4 n} G P_{n}(Q)$, and

$$
\begin{aligned}
& \Phi\left(p_{i}\left(\alpha P_{n}(Q)\right) \#\left(-\beta P_{n}(Q)\right)\right) \\
& \quad=\sum_{\lambda} \iota_{\lambda}^{*}\left(p_{i}\left(\alpha P_{n}(Q)\right) \#\left(-\beta P_{n}(Q)\right)\right)+\sum_{\mu} \bar{c}_{\mu}^{*}\left(p_{i}\left(\alpha P_{n}(Q)\right) \#\left(-\beta P_{n}(Q)\right)\right) \\
& \quad=\sum_{\lambda} \bar{i}_{\lambda}^{*}\left(p_{i}\left(P_{n}(Q)\right)\right)+\sum_{\mu} \bar{\imath}_{\mu}^{*}\left(p_{i}\left(-P_{n}(Q)\right)\right), \quad \text { for } i<n
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{\iota}_{\lambda}: P_{n}(Q) / \stackrel{D}{D}_{2}^{4 n} G P_{n}(Q) \\
& \bar{c}_{\mu}:-P_{n}(Q) / \stackrel{D}{D}_{\mu}^{4 n} G-P_{n}(Q)
\end{aligned}
$$

We also obtain the cohomology ring of $\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)$ to the following effect.

$$
\begin{aligned}
& H^{*}\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right) ; Z\right)=Z\left[u_{1}, \cdots, u_{\alpha}, v_{1}, \cdots, v_{\beta}\right] \\
& \begin{cases}\operatorname{dim} u_{i}=\operatorname{dim} \quad v_{j}=4 \\
u_{i}^{n}=-v_{j}^{n}, \quad u_{i}^{n+1}=v_{j}^{n+1}=0 \\
u_{i} \cdot u_{j}=0, & \text { for } i \neq j \\
v_{k} \cdot v_{l}=0, & \text { for } k \neq l \\
u_{i} \cdot v_{k}=0 .\end{cases}
\end{aligned}
$$

Moreover, we have the Euler-Poinearé characteristic

$$
\chi\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)\right)=(n-1)(\alpha+\beta)+2
$$

and index

$$
\sigma\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)\right)=\left\{\begin{array}{cl}
\alpha-\beta & n ; \text { even } \\
0 & n ; \text { odd } .
\end{array}\right.
$$

Setting $v=\sum_{i=1}^{\alpha} u_{i}+\sum_{j=1}^{\beta} v_{j}$, we obtain from the relation in the cohomology ring,

$$
v^{2}=\sum_{i=1}^{\alpha} u_{i}^{2}+\sum_{j=1}^{\beta} v_{j}^{2}, \quad v^{3}=\sum u_{i}^{3}+\sum v_{j}^{3}, \cdots
$$

It is almost obvious that for $i<n$, the coefficient t_{i} of v^{i} in $p_{i}\left(\alpha P_{n}(Q)\right) \#$ $\left(-\beta P_{n}(Q)\right)=t_{i} v^{i}$ equals that of u^{i} in $p_{i}\left(P_{n}(Q)\right)$. Then, we have from the
index theorem, that the coefficient t_{n} of v^{n} in

$$
\begin{aligned}
p_{n}\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)\right) & =t_{n} v^{n}=t_{n}\left(\sum u_{i}^{n}+\sum v_{j}^{n}\right) \\
& =t_{n}(\alpha-\beta) m
\end{aligned}
$$

equals that of u^{n} in $p_{n}\left(P_{n}(Q)\right)$, where m is the canonical generator of $H^{4 n}\left(\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right) ; Z\right)$.

Therefore, using $\sum_{i=0}^{\infty}(-1)^{i} p_{i}=\left(\sum_{j=1}^{\infty} c_{j}\right)^{2}$, we obtain

$$
\begin{aligned}
c_{2 n} & =(n+1) a_{n} v^{n} \\
& =(n+1) a_{n}(\alpha-\beta) m .
\end{aligned}
$$

Now, if the connected sum $\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)$ admits almost complex structure, we have from [5, Theorem 1.1]

$$
(n+1) a_{n}(\alpha-\beta)=(n-1)(\alpha+\beta)+2 .
$$

This equation is written in the form

$$
\begin{equation*}
\alpha\left\{(n+1) a_{n}-(n-1)\right\}=\beta\left\{(n+1) a_{n}+(n-1)\right\}+2 . \tag{*}
\end{equation*}
$$

When $n=1,4,5$, we have that the equation has no solution for α, β natural number. For $n=3$, we have that $\alpha=3 \beta+1$. For $n=2$, by the theorem of T. Heaps [2], $\alpha P_{2}(Q) \#\left(-\beta P_{2}(Q)\right)$ have no almost complex structures. For $n \geqq 6$, we obtain, for example, $a_{6}=5 \times 3, a_{7}=6 \times 6, a_{8}=7 \times 13, a_{9}=8 \times 29, a_{10}$ $=9 \times 67$. If a_{n} is divisible by $(n-1)$ for $n \geqq 6,(n-1)$ has to divide 2 in the equation $(*)$, therefore we have that the equation has also no solution and $\alpha P_{n}(Q) \#\left(-\beta P_{n}(Q)\right)$ does not admit almost complex structure. Q.E.D.

Now, as proposition, we consider the case that the quaternion projective space is replaced by the complex projective space.

Proposition. The connected sum $\alpha P_{n}(C) \#\left(-\beta P_{n}(C)\right)$ of complex projective space $P_{n}(C)$ admits almost complex structure if and only if

$$
\alpha=n \beta+1 .
$$

Proof. According to J. Kahn [4], the connected sum of manifolds which admit weakly complex structure also admit weakly complex structure. Therefore, we compute the cohomology ring of $\alpha P_{n}(C) \#\left(-\beta P_{n}(C)\right)$ and nth Chern class, similar to the above theorem, then we have that $\alpha=n \beta+1$. Q.E.D.

Bibliography

[1] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I. Amer. J. Math. 80 (1958), 458-538.
[2] T. HEAPS: Almost complex structures on eight and ten-dimensional manifolds. Topology 9 (1970), 111-119.
[3] F. Hirzebruch : Ueber die quaternionalen projectiven Räume, S. Ber. MathNaturw. KI. Bayer. Akad. Wiss. München, (1953), 301-312.
[4] P. KAHN: Obstruction to extending almost X-structures, Illinois J. of Math. 13 (1967), 336-357.
[5] W. A. Sutherland: A note on almost complex and weakly complex structures, Journal London Math. Soc. 40 (1965), 705-712.
(Received May 12, 1973)

[^0]: *) The authors thank M. Adachi for his advice on the Heaps' theorm.

