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W is a given discrete valuation of a ring K[x, y] , where x and y are
algebraically independent over a field K and W induces a valuation V_{00} in K.
Then owing to Theorem 8. 2, a function V_{11} which is defined as follows for
a polynomial f(x, y) is a valuation of the ring K[x, y] , consequently it is
also a valuation of its quotient field K(x, y) ;

f(x, y)= \sum_{i,f}f_{if}x^{i}y^{J}

V_{11}f(x, y)=Mini,f[V_{00}f_{if}+i\mu_{1}+j\nu_{1}]

, where f_{if}\in K and \mu_{1}=Wx and \nu_{1}=Wy .
We begin with V_{11} and repeating x-simply augmented valuations, we

arrive at a valuation V_{s1} and next repeating y-simply augmented valuations,
we arrive at a valuation V_{st} which is decided uniquely by W and is called
the last simply augmented valuation of W. Next, furthermore repeating
xy-doubly augmented valuations, we arrive at W at last. The method was
explained in Part One of this paper.

V_{11}^{xsxsxsysysysxyxy}<V_{21}<\cdots<V_{s1}<V_{s2}<\cdots<V_{st}<\cdots<W

V_{pq} is an arbitrary valuation in the series. In this paper, I want to
study about these valuations, namely about value groups \Gamma_{pq} of V_{pq} in K[x, y] ,

structures of the residue-class ring \Delta_{pq} of V_{pq} in K[x, y] , factorizations of
polynomials f(x, y) into equivalence-irreducible factors in V_{pq} and about struc-
tures of the key polynomials which produce these valuations.

In this paper, I will often quote the Theorems, Corollaries and Defini-
tions which are printed as References at the end of this paper, with the
following notations;

Theorem 16. 8. or \S 18. These denote Theorem 16. 8, or \S 18. in “On
valuations of polynomial rings of many variables” by Hiroshi Inoue.

M. Theorem 12. 1. This denotes Theorem 12. 1. in “Construction for
absolute values in polynomial rings” by Saunders MacLane.
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\S 28. Conditions given in this paper.

In the beginning, we give the two following conditions to W in this
paper.

CONDITION 28. 1. F_{11} is the residue-class fifield of V_{00} in K and \Delta_{W} is
the residue-class ring of W in K[x, y] . Every residue-class in \Delta_{W} that is
algebraic over F_{11} is separable over F_{11} .

Next, V_{00} is a s0-called P-adic valuation, so there is such a prime number
P that V_{00}P>0 .

CONDITION 28. 2. \Gamma_{00} is the value group of V_{00} in K and \Gamma_{W} is the
value group of W in K[x, y] . [\Gamma_{W} : \Gamma_{00}] is not a multiple of P.

I shall state the case when we do not give these two conditions to W,
in \S 42.

Let W induce in K[x] such a series of x-augmented inductive valua-
tions that

V_{s0}=[V_{00}, V_{10}x=\mu_{1}, V_{20}\phi_{2}=\mu_{2}, \cdots, V_{s0}\phi_{s}=\mu_{s}]

, where \phi_{i}=\phi_{i}(x) is the x-key polynomial which produces an x-augmented
valuation V_{i0} of V_{i-1,0} in K[x] and we write it simply as follows;

V_{i0}=[V_{i-1,0}, V_{i0}\phi_{i}=\mu_{i}] for i=1,2, \cdots , s .
And W induces in K[y] such a series of y-augmented inductive valua-

tions that
V_{0t}=[V_{00}, V_{01}y=\nu_{1}, V_{02}\zeta_{2}=\nu_{2}, \cdots, V_{0t}\zeta_{t}=\nu_{t}]

where \zeta_{j}=\zeta_{f}(y) is the y-key polynomial which produces a y-augmented
valuation V_{0f} of V_{0,f-1} in K[y] .

V_{0f}=[V_{0,f-1}, V_{0f}\zeta_{f}=\nu_{f}] for j=1,2, \cdots , t .

\S 29. Residue-class ring of V_{11}

Many matters which hold in the case of 1_{11}^{\gamma} also hold in the same way
in the case of V_{pq} , in spite of the fact that their calculations become complex.

V_{11} induces a valuation V_{01} in K[y] , namely for a polynomial f(y)= \sum_{f}f_{f}y^{f}

V_{01}f(y)={\rm Min}[V_{00}f_{f}+j\nu_{1}]j

-, where f_{f}\in K and \nu_{1}=Wy=V_{11}y .
\sigma_{1} is the smallest natural number that \sigma_{1}\nu_{1}=V_{01}(y^{\sigma_{1}}) belongs to \Gamma_{00} and

d_{1} is such a number in K that V_{01}(d_{1y}^{\sigma_{1}})=0 . Then, by M. Theorem 10. 2,
\Delta_{01} , the residue-class ring of V_{01} in K[y] is isomorphic to a ring F_{11}[Y_{01}] ,
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where Y_{01}=H_{01}(d_{1y}^{\sigma_{1}}) is transcendental over F_{11} and H_{01} is the natural hom0-
morphism from K[y]^{+} to \Delta_{01} and K[y]^{+} is a set of all such polynomials
f(y) in K[y] that V_{01}f(y)\geqq 0 .

\Gamma_{11} , the value group of V_{11} in K[x, y] , consists of such real numbers
of the form e+m\mu_{1}+n\nu_{1} , where e\in\Gamma_{00} and m and n are integers.

Let \tau_{1} be the smallest natural number that \tau_{1}\mu_{1}=V_{11}(x^{\tau_{1}}) belongs to \Gamma_{01} ,
the value group of V_{01} in K[y] , then in K there exist such a number a_{1}

and such an integer \lambda_{1} that V_{11}(a_{1}x^{\tau_{1}}y^{\lambda_{1}})=0 , where 0\leqq\lambda_{1}\leqq\sigma_{1}-1 . Let be
X_{11}=H_{11}(a_{1}x^{\tau_{1}}y^{l_{1}}), where H_{11} is the natural homomorphism from K[x, y]^{+}

to \Delta_{11} .
Here we have the two following cases;

(1) \lambda_{1}=0 ,
(2) \lambda_{1}>0 .

In the case (1) when \lambda_{1}=0 , V_{11}(a_{1}x^{\tau}‘)=0 and X_{11}=H_{11}(ax^{r_{1}}) and \Delta_{11} is very
simple.

If V_{11}(gx^{\alpha}y^{\beta})=0 , where g\in K, then \alpha is a multiple \alpha_{1}\tau_{1} of \tau_{1} , so

0=V_{11}(gx^{\alpha_{1}\tau_{1}}y^{\beta})

=V_{11}(a_{1}x^{\tau_{1}})^{a_{1}}+V_{11}(ga_{1}^{-a_{1}}y^{\beta})

=V(ga_{1}^{-\alpha_{1}}y^{\beta}) .
Therefore, \beta is a multiple \beta_{1}\sigma_{1} of \sigma_{1} .

0=V_{11}(ga_{1}^{-a_{1}}y^{\beta_{1}\sigma_{1}})=V_{11}(d_{1}y)^{\beta_{1}}\sigma_{1}+V_{11}(ga_{1}^{-\alpha_{1}}d_{1}^{-\beta_{1}})

0=V_{11}(ga_{1}^{-\alpha_{1}}d^{-\beta_{1}})

. \cdot . H_{11}(ga_{1}^{-a}’ d_{1}^{-\beta_{1}})=\overline{k}\in F_{11} .. \cdot

ga_{1}^{-\alpha_{1}}d_{1}^{-\beta_{1}}\in K .
Thus, when V_{11}(gx^{\alpha_{1}\tau_{1}}y^{\beta_{1}\sigma_{1}})=0 ,

H_{11}(gx^{\alpha_{1}\tau_{1}}y^{\beta_{1}\sigma_{1}})=\overline{k}X_{11}^{\alpha}‘ Y_{11}^{\beta_{1}} , where Y_{11}=Y_{01} .
So, when V_{11}f(x, y)=V_{11}( \sum_{i,f}f_{if}x^{i}y^{j})=0 and V_{11}(f_{ij}x^{i}y^{j})=0 for every term of

f(x, y),

H_{11}f(x, y)= \sum_{i_{1},f_{1}}\overline{f}_{i_{1}j}‘ X_{11}^{i_{1}}Y_{11^{1}}^{f}

, where i=i_{1}\tau_{1} and j=j_{1}\sigma_{1} and \overline{f}_{i_{1}f_{1}}\in F_{11} .
Therefore, in the case when \lambda_{1}=0,

\Delta_{11}\cong F_{11}[X_{11}, Y_{11}]

By M. Theorem 10. 2, Y_{11}=Y_{01}=H_{01}(d_{1y}^{\sigma_{1}}) is transcendental over F_{11} .
And again by M. Theorem 10. 2, X_{11}=H_{11}(a_{1}x^{\tau_{1}}) is transcendental over the
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field F_{11}(Y_{01}). Consequently X_{11} and Y_{11} are algebraically independent over F_{11} .
Generally when \lambda_{1}\geqq 0, V_{11}(a_{1}x^{\tau_{1}}y^{\lambda_{1}})=0 and H_{11}(a_{1}x^{\tau_{1}}y^{l_{1}})=X_{11} .

If V_{11}(gx^{\alpha}y^{\beta})=0 , then \alpha is a multiple \alpha_{1}\tau_{1} of \tau_{1} ,

0=V_{11}(gx^{\alpha\tau_{1}}‘ y^{\beta})=V_{11}(a_{1}x^{\tau_{1}}y^{i_{1}})^{\alpha_{1}}+V_{11}(ga_{1}^{-\alpha_{1}}y^{\beta-l_{1^{d}1}})

0=V_{11}(ga_{1}^{-\alpha_{1}}y^{\beta-\lambda_{1}\alpha_{1}}) .
According to the definition of \sigma_{1} , \beta-\lambda_{1}\alpha_{1} is a multiple \beta_{1}\sigma_{1} of \sigma_{1} , but

in this case \beta_{1} is only an integer, namely \beta_{1} may be positive, or negative,
or zero.

0=V_{11}(ga_{1}^{-\alpha_{1}}y^{\beta_{1}\sigma_{1}})=V_{11}(d_{1}y)^{\beta_{1}}\sigma_{1}+V_{11}(ga_{1}^{-\alpha_{1}}d_{1}^{-\beta_{1}})

0=V_{11}(ga_{1}^{-\alpha_{1}}d_{1}^{-\beta_{1}}) .
Thus, when V_{11}(gx^{\alpha}y^{\beta})=0,

H_{11}(gx^{\alpha}y^{\beta})=\overline{k}X_{11^{1}}^{\alpha}Y_{11}^{\beta_{1}} , where \overline{k}\in F_{11}

and \alpha_{1} is a non-negative integer and \beta_{1} is an integer.
However, here \beta-\alpha_{1}\lambda_{1}=\beta_{1}\sigma_{1}

\frac{\lambda_{1}}{\sigma_{1}}\alpha_{1}+\beta_{1}=\frac{\beta}{\sigma_{1}}\geqq 0 .

\frac{\lambda_{1}}{\sigma_{1}}=R_{1} is a fixed non-negative number which is independent of both \alpha and \beta .
Therefore, when H_{11}(gx^{\alpha}y^{\beta})=\overline{k}X_{11^{1}}^{a}Y_{11^{1}}^{\beta} , \alpha_{1}\geqq 0 and R_{1}\alpha_{1}+\beta_{1}\geqq 0 .
So, if V_{11}f(x, y)=V_{11}( \sum f_{if}x^{i}y^{f})=0 and V_{11}(f_{if}x^{i}y^{f})=0 for every term

i,f
of f(x, y), H_{11}f(x, y)= \sum_{i_{1},f_{1}}\overline{f}_{i_{1}f_{1}}X_{11}^{i_{1}}Y_{11}^{f_{1}} , where \overline{f}_{i_{1}f_{1}}\in F_{11} and R_{1}i_{1}+j_{1}\geqq 0 and i_{1}

are non-negative integers and R_{1} is a fixed non-negative number for every
term of H_{11}f(x, y) .

Therefore, here we give a definition to such polynomials.
DEFINITION 29. 1. Such a polynomial f(X, Y)=_{i,f} \sum f_{if}X^{i}Y^{f} is called a

RY-quotimt polynomial of X, where i are non-negative integers and j are
integers and for every term off(X, Y) there exists such a fifixed non-negative
number R that Ri+j\geqq 0 .

THEOREM 29. 2. A set S_{R} of all RY-quotimt polynmids of X is a
subring of the ring K_{Y}[X] , where K_{Y}=K(Y) is the coeffiffifficient fifield of the
ring K_{Y}[X] .

PROOF. This proof can be done very easily by the definition of R Y-
quotient polynomials of X.

Therefore, \Delta_{11} is isomorphic to a ring S_{R_{1}} of all R_{1}Y_{11}-quotient poly-
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nomials of X_{11} .
THEOREM 29. 3. \Lambda_{11} , the residue-class fifield of V_{11} in the fifidd K(x, y)

is ismorphic to F_{11}(X, Y), where F_{11} is the residue-class fifield of V_{00} in K
and X and Y are algebraically ind\varphi mdmt over F_{11} .

PROOF. \Lambda_{11} is a quotient field of the ring \Delta_{11} , so this theorem holds,
both in the case when \lambda_{1}=0 and in the case when \lambda_{1}>0 .

\S 30. Factorizations in F[X, Y]

Now we must consider factorizations of polynomials of two variables
X and Y whose coefficients are in a field F.

We define that a term X^{m_{1}}Y^{n_{1}} is the term of higher order than another
term X^{m_{2}}Y^{n_{2}} when m_{1}>m_{2} or m_{1}=m_{2} and n_{1}>n_{2} . In this paper we pre-
scribe that the leading coefficient, namely the coefficient of the term of the
highest order, of every irreducible polynomial P(X, Y) is always 1. Then
there is a famous theorem which is called as a theorem of uniqueness of
factorization.

Every polynomial f(X, Y) can be resolved uniquely into irreducible
factors in F[X, Y] ;

f(X, Y)=k \prod_{i}p_{i}(X, Y)

-, where k\in F.
THEOREM 30. 1. Whm a polynomial f(X) is irreducible in a r\dot{\tau}ng

F[X], f(X) is also irreducible in a ring F_{Y}[X] whose coeffiffifficimt fifield F_{Y} is
F(Y) and X and Y are algebraically in&pmdmt over F.

PROOF. Assumed that f(X) is reducible in F_{Y}[X] ,

f(X)= \prod_{b}b_{Y}(X)

,\cdot then multiply both sides by the least common multiple g(Y) of denomi-
nators of all irreducible factors b_{Y}(X), then

f(X)g(Y)= \prod_{b}b(X, Y) .

All polynomials b(Y, X) include X. It contradicts the theorem of uniqueness
of factorization.

COROLLARY 30. 2. In the ring S_{R} of all RY-quotimt polynomids of
X with coeffiffifficimts in a fifield F, every polynomial is uniquely resolved into
irreducible RY-quotimt polynomials of X in S_{R} .

PROOF. Assumed that a RY-quotient polynomial f(Y, X) of X has
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two factorizations f_{1} and f_{2} into irreducible RY-quotient polynomials of X
in S_{R} , multiply f_{1} and f_{2} by the least common multiple Y^{n} of denominators
of f_{1} and f_{2} . Then, by the theorem of uniqueness of factorization, we find
that these two factorizations coincide with each other.

COROLLARY 30. 3. If a polynomial f(X) is irreducible in F[X] and
another polynomial g(Y) is irreducible in F[Y], thm both f(X) and g(Y)
are irreducible in the ring S_{R} of all RY-quotimt polynomials of X with
coeffiffifficimts in F.

PROOF. This is self-evident by Theorem 30. 1.

\S 31. Factorizations in V_{11}

THEOREM 31. 1. Every residue-class in \Delta_{11} is uniquely resolved into
irreducible factors in \Delta_{11} .

PROOF. In the case when \lambda_{1}=0 , \Delta_{11}\cong F_{11}[X_{11}, Y_{11}] . So, in this case this
theorem is evident by the theorem of uniqueness of factorization. Generally
when \lambda_{1}\geqq 0, \Delta_{11} is isomorphic to the ring S_{R_{1}} of all R_{1}Y_{11}-quotient polyn0-
mials of X_{11} , so in this case, this theorem is evident by Corollary 30. 2.

Now we select only one polynomial respectively as a representative of
all such polynomials that are equivalent to each other in V_{11} and we define
a canon \cdot class in \Delta_{11} , a canon polynomial in V_{11} and its key part in the same
way as in \S 16.

DEFINITION 31. 2.

If \overline{f}(X_{11}, Y_{11})=X_{11}^{m}Y_{11}^{n}+\cdots

is a polynomial in \Delta_{11} and m^{2}+n^{2}\geqq 1 and the leading coeffiffifficient is 1, then
\overline{f}(X_{11}, Y_{11}) is called a canon class in \Delta_{11} . And when H_{11}(f(x, y)) is a canon
class in \Delta_{11} , f(x, y) is called a canon polynomial in V_{11} . And let k be the
leading coeffiffifficient of f(x, y), then \frac{1}{k}f(x, y) is called a key part of f(x, y).

H_{11} is the natural homomorphism from K[x, y]^{+} to \Delta_{11} , therefore we
have the following theorem.

THEOREM 31. 3. A necessary and suffiffifficimt condition that a canon class
H_{11}f(x, y) is irreducible in \Delta_{11} is that f_{11}(x, y) is equivalence-irreducible in
V_{11} in K[x, y] .

COROLLARY 31.4. Every polynomial f(x, y), for which V_{11}f(x, y)=0,
is uniquely resolved into equivalence-irreducible factors in V_{11} in K[x, y] .

This corollary is self-evident by Theorem 31. 3.
I explained about \Delta_{11} pretty minutely, because a residue-class ring of a
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valuation in a ring is very important in theory of valuation. But, after we
prove Corollary 31. 4, we have a more simple method to carry it out. The
method like this will often be used below in this paper. Now I will explain
the method.

Let \overline{\Gamma}_{11} be an intersection of \Gamma_{01} and \Gamma_{10} , where \Gamma_{10} is the value group
of V_{10} in K[x] and \Gamma_{01} is the value group of V_{01} in K[y] . a_{1} is the smallest
natural number that a_{1}\mu_{1}=V_{11}(x^{a_{1}}) belongs to \overline{\Gamma}_{11} and b_{1} is the smallest natural
number that b_{1}\nu_{1}=V_{11}(y^{b_{1}}) belongs to \overline{\Gamma}_{11} .

If V_{11}(gx^{i}y^{f})=0, then V_{00}g+i\mu_{1}=-j\nu_{1} , both i\mu_{1} and j\nu_{1} must belong to
\overline{\Gamma}_{11} and i and j are respectively multiples i_{1}a_{1} and j_{1}b_{1} of a_{1} and b_{1} .

0=V_{11}(gx^{i}y^{f})=V_{11}(gx^{i_{1}a_{1}}y^{f_{1}b_{1}}) .
Therefore, every equivalence-irreducible factor in Corollary 31. 4. is a poly-
nomial of a ring K[x^{a_{1}}, y^{b_{1}}] .

\S 32. The valuation V_{s1} in K[x, y]
V_{i0}=[V_{i-1,0}, V_{i0}\phi_{i}=\mu_{i}] is a valuation in K[x] . The field K_{x}=K(x) has

valuations V_{i0}(i=1,2, \cdots, s), so, by M. Theorem 3. 1, the function V_{i1} which
are defined as follows for a polynomial f(x, y)= \sum_{f}f_{f}(x)y^{f} are valuations of

the ring K_{x}[y] for i=1,2, \cdots , s ;

V_{i1}f(x, y)={\rm Min}[V_{i0}f_{f}(x)+j\nu_{1}]f

-, where V_{i1}\phi_{i}(x)=V_{i1}\phi_{i}>V_{i-1,0}\phi_{i}=V_{i-1,1}\phi_{i} .
Therefore V_{i1} is an x-simply augmented valuation of V_{i-1,1} ,

V_{11}^{xsxsxsxsxsxs}<V_{21}<\cdots<V_{i-1,1}<V_{i1}<\cdots<V_{s1} .
All that I state hence in \S 32 hold for every valuation V_{i1} between V_{11} and
V_{s1} , however here I will state only V_{s1} that is the most important, because
I fear that this paper becomes too long.

Let be f_{f}(x)= \sum_{f}f_{fi}(x)\phi_{s}^{i} an expansion of f_{f}(x) by \phi_{s}(x), namely 0\leqq

\deg_{x}f_{fi}(x)<\deg_{x}\phi_{s} for each term,

then V_{s0}=[V_{s-1,0}, V_{s0}\phi_{s}=\mu_{s}]

V_{s1}f(x, y)=V_{s1}( \sum_{i,f}f_{fi}(x)\phi_{s}^{i}y^{f})

={\rm Min}[V_{s-1,0}f_{fi}(x)+i\mu_{s}+j\nu_{1}]j,i .

We want to study about \Gamma_{s1} , the value group of V_{s1} in K[x, y] and
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about \Delta_{s1} , the residue-class ring of V_{s1} in K[x, y] . We can do it in the
same way when we did in V_{11} , after we define units in V_{s1} in K[x, y] .

DEFINITION 32. 1. V_{Q} is a valuation of K[x, y] and if a(x, y)b(x, y)
\sim 1 in V_{Q} , thm the potynomials a(x, y) and b(x, y) are \iota.alled equivalmt-
units in V_{Q} , or shortly units in V_{Q} .

This definition is an extension of the definition of a unit in V_{s} in K[x]
which I gave in \S 15. A set U_{Q} of all units in V_{Q} in K[x, y] is a group
with respect to multiplication.

THEOREM 32. 2. Every unit in V in K[x, y] is dso a unit in an aug-
mmted valuation D of V in K[x, y] .

PROOF. a(x, y)b(x, y)\sim 1 in V, then
D(a(x, y)b(x, y)-1)\geqq V(a(x, y)b(x, y)-1)>V(1)=D(1)=0.

This inverse statement is not true generally. In \S 15, I used a notion
“effective degree” and in the same way as in \S 15, we can easily prove that
every unit in V_{s1} in K[x, y] is equivalent to a polynomial which does not
include y and whose degree with respect to x is less than that of \phi_{s}(x).
Namely every unit in V_{s1} in K[x, y] is equivalent to a unit in V_{s0} in K[x] .
Therefore we can obtain the following Corollary 32. 4. immediately after
we have Theorem 32. 3.

THEOREM 32. 3. In \Delta_{s0} , the residue-class ring of V_{s0} in K[x] , a set N
of all such classes that include units in V_{s0} in K[x] is a fifield F_{s1} in \Delta_{s0}

and \Delta_{s0}\cong F_{s1}[X] , where F_{s1} is a fifinite-dimmsional extmsion of F_{11} and X
is transcmdmtal over F_{s1} .

PROOF. This theorem is a part of M. Theorem 12. 1.
COROLLARY 32. 4. In \Delta_{s1} , the residue-class ring of V_{s1} in K[x, y], a

set of all such classes that include units in V_{s1} in K[x, y] is isomorphic to
N in Theorem 32. 3.

After we obtain these theorems, we can establish \Delta_{s1} in the same way
as we establish \Delta_{11} , using U_{s1} , a set of all units in V_{s1} in K[x, y] which is
correspondent to K in the case of V_{11} in K[x, y] .

Every unit in V_{s0} in K[x] is equivalent to a polynomial whose degree
with respect to x is less than that of \phi_{s}(x). Therefore the value group of
V_{s1} in U_{s1} is equal to the value group \Gamma_{s-1,0} of V_{s-1,0} in K[x] .

\Gamma_{s1} , the value group of V_{s1} in K[x, y] consists of such real numbers
of the form k+m\mu_{s}+n\nu_{1} , where k\in\Gamma_{s-1,0} and m and n are integers. \sigma_{s} is
the smallest natural number that \sigma_{s}\nu_{1}=V_{s1}(y^{\sigma}s) belongs to \Gamma_{s-1,0} which is equal
to the value group of V_{s1} in U_{s1} . Then there exists such a unit d_{s} in V_{s1}

that V_{s1}(d_{s}ys)\sigma=0 . Let be H_{s1}(d_{s}ys)\sigma=Y_{s1} , where H_{s1} is the natural hom0-
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morphism of K[x, y]^{+} to \Delta_{s1} .
A set L_{s1} of all such real numbers of the form k+n\nu_{1} , where k\in\Gamma_{s-1,0}

and n are integers, is a subgroup of a cyclic group \Gamma_{s1} . \tau_{s} is the smallest
natural number that \tau_{s}\mu_{s}=V_{s1}(\phi_{s^{\theta}}^{\tau}) belongs to L_{s1} and there exist such a unit
a_{s} in V_{s1} and such an integer \lambda_{s} that V_{s1}(a_{s}\phi_{s^{s}}^{\tau}y^{\lambda_{s}})=0, where 0\leqq\lambda_{s}\leqq\sigma_{s}-1 .
Here we have the two following cases;

(1) \lambda_{s}=0 and V_{s1}(a_{s}\phi_{s^{s}}^{\tau})=0

(2) \lambda_{s}>0 and V_{s1}(a_{s}\phi_{s^{s}}^{\tau}y^{\lambda}s)=0 .
In the case (1) when \lambda_{s}=0, H_{s1}(a_{s}\phi_{s^{S}}^{-})=X_{s1} and \Delta_{s1} is isomorphic to F_{s1}[Y_{s1}, X_{s1}] ,
where X_{s1} and Y_{s1} are algebraically independent over F_{s1} which is a coefficient
field of the residue-class ring of V_{s0} in K[x] and is a finite-dimensional ex-
tension of F_{11} , owing to M. Theorem 12. 1.

Because, if V_{s1}(g\phi_{s}^{\alpha}y^{\beta})=0 , where g\in U_{s1} ,

\alpha is a multiple \alpha_{s}\tau_{s} of \tau_{s} and
0=V_{s1}(g\phi_{s^{ss}}^{\alpha\tau}y^{\beta})=V_{s1}(a_{s}\phi_{s^{S}}^{\tau})^{\alpha_{s}}+V_{s1}(ga_{\overline{s}}y^{\rho})\alpha_{s}

0=V_{s1}(ga_{s}^{-\alpha}sy^{\beta}) .
So, \beta is a multiple \beta_{s}\sigma_{s} of \sigma_{s} and

0=V_{s1}(ga_{s}^{-\alpha_{s}}y^{\beta_{s^{\sigma}s}})=V_{s1}(d_{s}^{\sigma_{l}}y)^{\beta_{S}}+V_{s1}(ga_{s}^{-\alpha_{\theta}}d_{s}^{-\beta}s)

0=V_{s1}(ga_{s}^{-\alpha_{S}}d_{s}^{-\beta_{s}}) .
ga_{s}^{-\alpha_{\delta}}d_{s}^{-\beta_{s}} is a unit in V_{s1} , so H_{s1}(ga_{s}^{-\alpha}sd_{s}^{-\beta_{8}})=\overline{k}_{s} belongs to F_{s1} . Namely, when
V_{s1}(g\phi_{s}^{\alpha}y^{\beta})=0 and g\in U_{s1} , H_{s1}(g\phi_{S}^{\alpha}y^{\beta})=\overline{k}_{s}X_{s1}^{\alpha_{s}}Y_{s1^{8}}^{\beta} and \overline{k}_{s}\in F_{s1} .

So, by Theorem 32. 4. in this case \Delta_{s1}\cong F_{s1}[Y_{s1}, X_{s1}] . Generally when
\lambda_{s}\geqq 0 , V_{s1}(a_{s}\phi_{s^{s}}^{\tau}y^{\lambda}s)=0 and \Delta_{s1} is isomorphic to a ring S_{R_{s}} of R_{s}Y_{s1}-quotient
polynomials of X_{s1} with coefficients in F_{s1} , where R_{s} is a fixed non-negative
number and X_{s1}=H_{s1}(a_{s}\phi_{s}^{\tau_{l}}y^{\lambda}s) and Y_{s1}=H_{s1}(d_{s}y)\sigma_{s}.

Because, if V_{s1}(g\phi_{s}^{\alpha}y^{\beta})=0 and g\in U_{s1} , then \alpha is a multiple \alpha_{s}\tau_{s} of \tau_{s} and

0=V_{s1}(g\phi_{s^{\theta S}}^{\alpha\tau}y^{\beta})=V_{s1}(a_{s}\phi_{s^{\delta}}^{-}y^{\lambda_{\theta}})^{\alpha}s+V_{s1}(ga_{s}^{-\alpha_{s}}y^{\beta-\lambda}s^{\alpha}s)

0=V_{s1}(ga_{s}^{-\alpha_{\delta}}y^{\beta-\lambda}s^{\alpha}s) .
So, \beta-\lambda_{s}\alpha_{s} must be a multiple \beta_{s}\sigma_{s} of \sigma_{s} and

0=V_{s1}(ga_{s}^{-\alpha}*y^{\rho_{s^{\sigma}s}})=V_{s1}(d_{s}y)^{\rho_{s}}\sigma_{s}+V_{s1}(ga_{s}^{-\alpha}sd_{s}^{-\rho_{s}})

0=V_{s1}(ga_{s}^{-\alpha}sd_{s}^{-\beta_{g}}) . (32. 1)

And ga_{s}^{-\alpha_{s}}d_{s}^{-\beta_{s}}\in U_{s1} .
However, here \beta-\lambda_{s}\alpha_{s}=\beta_{s}\sigma_{s}
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\frac{\lambda_{s}}{\sigma_{s}}\alpha_{s}+\beta_{s}=\frac{\beta}{\sigma_{s}}\geqq 0

\frac{\lambda_{s}}{\sigma_{s}}=R_{s} is a fixed non-negative number which is independent of \alpha and \beta .
We can prove that X_{s1} and Y_{s1} are algebraically independent over F_{s1} in

the same way as in M. Theorem 12. 1. Namely assumed that X_{s1} and Y_{s1}

are algebraically dependent with respect to F_{s1} , then such an equation holds,

\sum_{i,f}\overline{k}_{if}Y_{s1}^{f}X_{s1}^{i}=0 , where \overline{k}_{if}\in F_{s1} .

There are such polynomials k_{if}(x, y) in K[x, y] that H_{s1}(k_{if}(x, y))=\overline{\overline{k}}_{if}X_{s1}^{i}Y_{s1}^{f}

for every term of the above-mentioned equation. V_{s1}(k_{if}(x, y)) are all zero,
so according to the definition of V_{s1} ,

V_{s1}( \sum_{i,J}k_{i\dot{j}}(x, y))={\rm Min}[i,fV_{s1}(k_{if}(x, y))]=0\Gamma

While \sum_{i,f}\overline{k}_{if}X_{s1}^{i}Y_{s1}^{f}=0 , so the residue-class H_{s1}( \sum_{i,f}k_{ij}(x, y))=0 in \Delta_{s1} , namely
V_{s1}( \sum_{i,f}k_{if}(x, y)) must be positive. Thus a contradiction takes place, there-
fore X_{s1} and Y_{s1} are algebraically independent over F_{s1} .

THEOREM 32. 5. The residue-class fifield \Lambda_{s1} of V_{s1} in the fifield K(x, y)
is isomorphic to F_{s1}(X, Y), where F_{s1} is a fifinite-dimensional extmsion of F_{11}

and X and Y are algebraically ind\varphi endent of F_{s1} .
THEOREM 32. 6. Every polynomial f(x, y) for which V_{s1}f(x, y)=0 can

be uniquely resolved into equivalence-irreducible factors in V_{s1} in K[x, y] .
Theorem 32. 5 and 32. 6 can be verified completely in the same way as

we did in V_{11}

\S 33. Construction of V_{s2} in K[x, y]
After we find a series of x-augmented inductive valuations which W

induces in K[x] , the method to make a series of x-simply augmented in-
ductive valuations of K[x, y] which begins with V_{11} and ends at V_{s1} is not
so complex, as I made them in this paper already. But, after we find the
following series of y-augmented inductive valuations which W induces in
K[y] ;

[V_{00}, V_{01}y=\nu_{1}, V_{02}\zeta_{2}=\nu_{2}, \cdots, V_{0t}\zeta_{t}=\nu_{t}]

,\cdot it is pretty complex and troublesome to make a series of y-simply aug-
mented inductive valuations in K[x, y] that

V_{s1}^{ysysys}<V_{s2}<\cdots<V_{st}<\cdots
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where V_{sf}\zeta_{j}=W\zeta_{f}=V_{0j}\zeta_{f} for j=1,2, \cdots t . \zeta_{j}=\zeta_{f}(y) is the y-key poly-
nomial which produces the y-augmented valuation V_{0f} of V_{0,f-1} in K[y] .

The reason is as follows,

V_{i0}=[V_{i-1,0}, V_{i0}\phi_{i}=\mu_{i}]

V_{i1}=[V_{i-1,1}, V_{i1}\phi_{i}=\mu_{i}] .
Namely when we make an x-simply augmented valuation V_{i1} of V_{i-1,1} in
K[x, y], we can adopt \phi_{i}(x) itself as the x-key polynomiaL

V_{02}=[V_{01}, V_{01}\zeta_{2}(y)=\nu_{2}] .

But when we try to make such a y-simply augmented valuation V_{s2} of V_{s1}

in K[x, y] that V_{s2}\zeta_{2}=V_{02}\zeta_{2} , it happens often that we can not adopt \zeta_{2}(y)

as the y-key polynomial which produces V_{s2} . For, \zeta_{2}(y) is equivalence-
irreducible in V_{01} in K[y] , but \zeta_{2}(y) is not always equivalence-irreducible in
V_{s1} in K[x, y] , but it happens often that \zeta_{2} is equivalence-reducible in V_{s1}

in K[x, y] . Consequently in such a case, we must find a factorization of
\zeta_{2} into equivalence-irreducible factors in V_{s1} in K[x, y] and we must adopt
one of the factors as the y-key polynomoal which produces a y-simply aug-
mented valuation V_{s2} of V_{s1} in K[x, y] .

Let be \zeta_{2}(y)=y^{n\sigma_{1}}+\cdots+b_{iy}^{i\sigma_{1}}+\cdots+b_{0} , where b_{i}\in K and V_{01}(y^{n\sigma_{1}})=V_{01}b_{0}

and a value of every term of \zeta_{2}(y) in V_{01} equals each other.
As I explained in \S 29, \Delta_{01} , the residue-class ring of V_{01} in K[y] is

isomorphic to F_{11}[Y_{01}] , where H_{01}(d_{1y}^{\sigma_{1}})=Y_{01} and V_{01}(d_{1}y)\sigma_{1}=0 .
\sum‘ f_{i}(y)\zeta_{2}^{i} is an expansion of a polynomial f(y) in K[y] by \zeta_{2}(y) and V_{02}

is defined as follows;

V_{02}(f(y))={\rm Min}[iV_{01}f_{i}(y)+i\nu_{2}]

, where \nu_{2}=V_{02}\zeta_{2}>V_{01}\zeta_{2}=V_{s1}\zeta_{2} .
So, \Gamma_{02} , the value group of V_{02} in K[y] , includes \Gamma_{01} and \nu_{2} .

V_{01}(d_{1}^{n}\zeta_{2})=Mini[V_{01}(d_{1}y)^{n}\sigma_{1}, \cdots]=0

and g(Y_{01})=H_{01}(d_{1}^{n}\zeta_{2})=Y_{01}^{n}+\cdots+\overline{b}_{i}Y_{01}^{i}+\cdots+\overline{b}_{0} , where \overline{b}_{i}\in F_{11} .
g(Y_{01}) is irreducible in \Delta_{01}\cong F_{11}[Y_{01}] , because \zeta_{2} is equivalence-irreducible

in V_{01} in K[y], for \zeta_{2} is the key polynomial which produces a y-augmented
valuation V_{02} of V_{01} in K[y] .

Let \rho_{2} be the smallest natural number that \rho_{2}\nu_{2}=V_{02}(\zeta_{2}^{\rho_{2}}) belongs to \Gamma_{01}

and C_{2} be such a unit in V_{02} in K[y] that V_{02}(c_{2}\zeta_{2}^{\rho_{2}})=0 . Then, by M.
Theorem 12. 1, \Delta_{02} , the residue-class ring of V_{02} in K[y] , is \cdot isomorphic to
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F_{02}[Y_{02}] , where F_{02}=F_{11}(\theta) and \theta is a root of g(Y_{01})=0 and Y_{02}=H_{02}(c_{2}\zeta_{2}^{\rho_{2}}) is
transcendental over F_{02} and H_{02} is the natural homomorphism from K[y]^{+}

to \Delta_{02} .
\sigma_{s} is the smallest natural number that \sigma_{s}\nu_{1}=V_{01}(y^{\sigma}s)=V_{s1}(y^{\sigma}s) belongs to

\Gamma_{s-1,0} which equals the value group of V_{s1} in U_{s1} .
\sigma_{s}\nu_{1}\in\Gamma_{s-1,0} and \sigma_{1}\nu_{1}\in\Gamma_{00}

and \Gamma_{00} is a subgroup of a cyclic group \Gamma_{s-1,0}. Therefore, \sigma_{1} is a multiple
\delta_{1}\sigma_{s} of \sigma_{s} .

[\Gamma_{01} : \Gamma_{00}]=\sigma_{1} , because \Gamma_{01} is the value group of V_{01} in K[y] and \sigma_{1} is
the smallest natural number that \sigma_{1}\nu_{1} belongs to \Gamma_{00} . \Gamma_{01} is a subgroup of \Gamma_{w} ,
so [\Gamma_{w} : \Gamma_{00}]=[\Gamma_{w} : \Gamma_{01}][\Gamma_{01} : \Gamma_{00}] and according to Condition 28. 2, [\Gamma_{w} : \Gamma_{00}]

is not a multiple of P, so \sigma_{1} is not a multiple of P and \delta_{1} is also not a
multiple of P.

0=V_{01}(d_{1y}^{\sigma_{1}})=V_{s1}(d_{1y}^{\sigma_{1}})=V_{s1}(d_{1}y^{\delta_{1}\sigma_{g}})

0=V_{s1}(d_{s}ys)^{\delta_{1}}\sigma+V_{s1}(d_{1}d_{\overline{s}}^{\delta_{1}})=V_{s1}(d_{1}d_{s}^{-\delta}‘).. \cdot

V_{s1}(d_{s}^{\sigma}ys)=0 and H_{s1}(d_{s}y^{\sigma}s)=Y_{s1}

d_{1}\in K and d_{s}\in U_{s1} . \cdot . d_{1}d_{s}^{-\delta_{1}}\in U_{s1}

’ so H_{s1}(d_{1}d_{s}^{-\delta_{1}})=\overline{l}_{s}\in F_{s1} .
Y_{01}=H_{01}(d_{1y}^{\sigma_{1}})=H_{s1}(d_{1}y^{\delta_{1}\sigma_{\theta}})=[H_{s1}(d_{s}^{\sigma}ys)]^{\delta_{1}}\cdot H_{s1}(d_{1}d_{s}^{-\delta_{1}})

Y_{01}=\overline{l}_{s}Y_{s1}^{\delta_{1}}

. \cdot . H_{s1}(f_{1}f\zeta_{2})=H_{01}(d_{1}^{n}\zeta_{2})=g(Y_{01})

g(Y_{01})=Y_{01}^{n}+\cdots+\overline{b}_{i}Y_{01}^{i}+\cdots+\overline{b}_{0}

=(i_{s}Y_{s1}^{\delta_{1}})^{n}+\cdots+\overline{b}_{i}(Z_{s}Y_{s1}^{\delta_{1}})^{i}+\cdots+\overline{b}_{0}

=\overline{l}_{s}^{n}[Y_{s1}^{n\delta_{1}}+\cdots+\overline{C}_{i}Y_{s1}^{i\delta_{1}}+\cdots+\overline{C_{0},}]

H_{s1}(d_{1}^{n}\zeta_{2})=\overline{l}_{s}^{n}\cdot L(Y_{s1})\cdots (33)

, where \overline{C}_{i}\in F_{s1} and \overline{b}_{i}\in F_{11} .
According to Condition 28. 1, F_{w} is separable over F_{11} , so F_{s1} , a subfield

of F_{w} , is also separable over F_{11} . g(Y_{01}) is in F_{11}[Y_{01}] and g(Y_{01})=0 is a
separable equation over F_{11} and L(Y_{s1}) is in F_{s1}[Y_{s1}] and L(Y_{s1})=0 is a sepa-
rable equation over F_{s1} , for \delta_{1} is not a multiple of P.

We resolve L(Y_{s1}) uniquely into irreducible factors in \Delta_{s1} .
L(Y_{s1})=G_{1}(Y_{s1})\cdots G_{q}(Y_{s1}) in \Delta_{s1} .

L(Y_{s1}) does not include X_{s1} , so these G_{i}(Y_{s1}) are polynomials of Y_{s1} with
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coefficients in F_{s1} . L(Y_{s1}) is a separable polynomial over F_{s1} , so G_{1}(Y_{s1}), \cdots ,
G_{q}(Y_{s1}) are prime each other. The leading coefficient of L(Y_{s1}) is 1, so these
G_{\dot{l}}(Y_{s1}) are all canon classes in \Delta_{s1} .

Y_{s1}=H_{s1}(d_{s}y)\sigma_{s} , where d_{s}\in U_{s1}c

Let g_{i}(x, y^{\sigma_{s}}) be the canon polynomial of G_{i}(Y_{s1}) for i=1,2, \cdots , q, namely
H_{s1}(g_{i}(x, y^{\sigma}s))=G_{i}(Y_{s1}). From (33) d_{1}^{n}\zeta_{2}\sim h_{0}g_{1}(x, y^{\sigma_{S}})\cdots g_{q}(x, y^{\sigma}s) in V_{s1} , where
h_{0}\in U_{s1} .

Let be g_{i}(x, y^{\sigma}s)=h_{ig_{i}}^{*}(x, y^{\sigma_{s}}), where h_{i} is the leading coefficient of
g_{i}(x, y^{\sigma_{s}}) and g_{i}^{*}(x, y^{\sigma_{s}}) is a key part of g_{i}(x, y^{\sigma_{t}}) for i=1,2, \cdots , q.

All G_{i}(Y_{s1}) are irreducible in \Delta_{s1} , so all g_{i}(x, y^{\sigma}s)ar,e equivalence-irredu-
cible in V_{s1} in K[x, y] and all g_{i}^{*}(x, y^{\sigma}s) are also equivalence-irreducible in
V_{s1} in K[x, y] . Let be k=d_{1}^{n}(h_{0}h_{1}\cdots h_{q})^{-1}, then

k\zeta_{2}\sim g_{1}^{*}(x, y^{\sigma}s)\cdots g_{q}^{*}(x, y^{\sigma}s) in V_{s1} .
Therefore, in the same way as in Corollary 18. 2, we know that there

exist such polynomials l_{1}(x, y^{\sigma}s), \cdots , l_{q}(x, y^{\sigma}s) that

k\zeta_{2}\simeq l_{1}(x, y^{\sigma_{C}})\cdots l_{q}(x, y^{\sigma_{S}})\omega in V_{s1}

, where

andand\omega

is an

arbi]rarydeg_{y}g_{i}^{*}(x,y^{\sigma_{s}})=\ gJ_{l}(x,.y^{\sigma_{s}})givenpositivenumberg_{i}^{*}(x,y^{\sigma_{g}})\sim l_{i}(x, y^{\sigma}s)inV_{s1} for i=1,2, \cdots , q

V_{s1}(k\zeta_{2}-l_{1}(x, y^{\sigma}s)\cdots l_{q}(x, y^{\sigma_{s}}))-V_{s1}(k\zeta_{2})>\omega .
g_{i}^{*}(x, y^{\sigma_{s}}) is equivalence-irreducible in V_{s1} in K[x, y] , then l_{i}(x, y^{\sigma_{g}}) is

also equivalence-irreducible in V_{s1} in K[x, y] and the leading coefficient of
l_{i}(x, y^{\sigma_{s}}) is 1. Therefore every l_{i}(x, y^{\sigma}s) satisfies a sufficient condition that
l_{i}(x, y^{\sigma}s) becomes a y-key polynomial which produces a y-simply augmented
valuation of V_{s1} in K[x, y] .

Here let be \omega=V_{02}\zeta_{2}-V_{01}\zeta_{2}>0 .
k is a unit in V_{s1} in K[x, y] , so V_{s2}k=V_{s1}k .

. \cdot . V_{s2}(k\zeta_{2})-V_{s1}(k\zeta_{2})=V_{02}\zeta_{2}-V_{01}\zeta_{2}=\omega 1

Therefore, one and only one out of l_{1}(x, y^{\sigma_{\delta}}), \cdots , l_{q}(x, y^{\sigma_{s}}) must increase its
value when we make a y-simply augmented valuation V_{s2} of V_{s1} in K[x, y] .
Let it be l_{1}(x, y^{\sigma_{g}})=l(x, y^{\sigma_{S}}).
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Namely V_{s2}(l(x, y^{\sigma_{\delta}}))=V_{s1}(l(x_{1}y^{\sigma_{8^{\iota}}}))+\omega=\eta_{2}\cdots (33. 2)

-, then V_{s2}(l_{i}(x, y^{\sigma_{s}}))=V_{s1}(l_{i}(x, y^{\sigma}s)) for i=2,3, \cdots , q .

So, by M. Lemma 9. 1,

\prod_{i=2}^{q}l_{i}(x, y^{\sigma_{\rho}})=\epsilon is a unit in V_{s2} in K[x, y]

k\zeta_{2}\approx l(x, y^{\sigma}s)\epsilon\omega in V_{s1}

, namely V_{s1}(k\zeta_{2}-l(x, y^{\sigma}s)\epsilon)>\omega+V_{s1}(l(x, y^{\sigma_{s}})\epsilon)

V_{s2}(k\zeta_{2}-l(x, y^{\sigma}s)\epsilon)\geqq V_{s1}(k\zeta_{2}-l(x, y^{\sigma_{S}})\epsilon) .
And from (33. 2)

V_{s2}(k\zeta_{2}-l(x, y^{\sigma}s)\epsilon)>V_{s2}(l(x, y^{\sigma_{s}})) .
k\zeta_{2}\sim l(x, y^{\sigma}s)\epsilon in V_{s2} ,

. \cdot . \zeta_{2}\sim l(x, y^{\sigma}s)\epsilon_{2} in V_{s2} (33. 3)

, where \epsilon_{2}^{\underline{\wedge}}\epsilon k^{-1} is a unit in V_{s2} in K[x, y] .

V_{s2}=[V_{s1}, V_{s2}l(x, y^{\sigma_{s}})=\eta_{2}] .
V_{s2} is a y-simply augmented valuation of V_{s1} in the ring K_{x}[y] whose

coefficient field K_{x}=K(x) has valuation V_{s0} .

\S 34. Units in V_{s2} in K[x, y]
Now we investigate the structure of l(x, y^{\sigma_{S}})=l and the structure of V_{s2} .
By. M. Theorem 9. 4.

l=y^{m\sigma_{s}}+\cdots+b_{i}(x, y)y^{i\sigma}s+\cdots+b_{0}(x, y)

, where b_{i}(x, y)\in U_{s1} and

V_{s1}l=V_{s1}(y^{m\sigma_{s}})=V_{s1}(b_{0}(x, y))=V_{s1}(b_{i}(x, y)y^{i\sigma}s)

for every term of l.
Let be \sum_{f}f_{f}(x, y)l^{f} an expansion of a polynomial f(x, y) by l

, where deg_{y}f_{f}(x, y)<deg_{y}l=m\sigma_{s} .

f_{f}(x, y)= \sum_{i}f_{fi}(x)y^{i}=\sum_{i}(\sum_{h}f_{fih}(x)\phi_{s}^{h})y^{i} .
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where deg_{x}f_{jih}(x)<deg_{x}\phi_{s} .

f(x, y)= \sum_{f,h}(\sum_{i}f_{fih}(x)y^{i})\phi_{s}^{h}l^{f}

,
\cdot where i<deg_{y}l=m\sigma_{s} .

So, consequently

V_{s2}f(x, y)={\rm Min}[V_{s1}( \sum_{if,h}f_{fih}(x)y^{i})+h\mu_{s}+j\eta_{2}]

,
\cdot where \mu_{s}=V_{s0}\phi_{s}=V_{s2}\phi_{s} and \eta_{2}=V_{s2}l .

Now I will prove that such a polynomial \sum_{i}f_{i}(x)y^{i}

, where degf_{i}(x)<deg\phi_{s}(x) and deg_{y}( \sum_{i}f_{i}(x)y^{i})<deg_{v}l

: is a unit in V_{s2} in K[x, y] .
THEOREM 34. 1. Such a polynomial \sum_{i}f_{i}(x)y^{i} , where f_{i}(x)\in U_{s1} and

deg_{y}( \sum_{i}f_{i}(x)y^{i})<deg_{y}l, is a unit in V_{s2} in K[x, y] .

PROOF. All f_{i}(x) are units in V_{s1} in K[x, y] , so

k( \sum_{i}f_{i}(x)y^{i})\sim y^{n}(\sum_{f}f_{f}^{*}(x)y^{f\sigma_{S}}) in V_{s1} , also in V_{s2}

, where k\in U_{s1} and 0\leqq n\leqq\sigma_{s}-1 and f_{f}^{*}(x)\in U_{s1}

V_{s1} ( \sum_{j}f_{f}^{*}

. (x) y^{f\sigma}s)=0t

This is evident from the definition of \sigma_{s} . Here we have the two following
cases

(1) n=0
(2) n>0 .

when n=0, let be Q(Y_{s1})=H_{s1}( \sum_{f}f_{f}^{*}(x)y^{f\sigma}s)

G_{1}(Y_{s1})=H_{s1}(g_{1}(x, y^{\sigma_{S}}))=H_{s1}(h_{1}l) .

Both Q(Y_{S1}) and G_{1}(Y_{s1}) are polynomials of the ring F_{s1}[Y_{s1}] and G_{1}(Y_{s1}) is
irreducible in F_{s1}[Y_{s1}] and

deg_{Y}Q(Y_{s1})<deg_{Y}G_{1}(Y_{s1}) .
Then there exist such two polynomials A(Y_{s1}) and B(Y_{s1}) that

Q(Y_{s1})A(Y_{s1})+G_{1}(Y_{s1})B(Y_{s1})=1

,\cdot where deg_{Y}A(Y_{s1})<deg_{Y}G_{1}(Y_{s1}) .
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We adopt the polynomials which are correspondent to these classes, then

( \sum_{f}f_{j}^{*}(x)y^{j\sigma_{s}})\cdot a(x, y)+h_{1}l\cdot b(x, y)\sim 1 in V_{s1}

V_{s2}(h_{1}l\cdot b(x, y))>V_{s1}(h_{1}l\cdot b(x, y))

V_{s2}1=0=V_{s1}1

and V_{s2}(( \sum_{j}f_{j}^{*}(x)y^{j\sigma}s)a(x, y))=V_{s1}((\sum_{f}f_{f}^{*}(x)y^{f\sigma_{S}})a(x, y))

, because deg_{y}a(x, y)<deg_{y}l l

Therefore

( \sum_{f}f_{j}^{\star}(x)y^{j\sigma}s)a(x, y)\sim 1 in V_{s2} .

( \sum_{j}f_{i}(x)y^{i})(k\cdot a(x, y))\sim 1 in V_{s2} .

Thus \sum_{i}f_{i}(x)y^{i} is a unit in V_{s2} in K(x, y) .

When n>0 ,

k’( \sum_{i}f_{i}(x)y^{i})\sim\frac{1}{y^{\sigma-n}s}(\sum_{f}f_{f}^{*}(x)y^{f\sigma}s)(d_{s}^{\sigma_{S}}y) in V_{s1} , also in V_{s2}

\neg, where k’\in U_{s1} .

Let be Y_{s1} \cdot Q(Y_{s1})=H_{s1}[(d_{s}^{\sigma_{s}}y)(\sum_{f}f_{f}^{*}(x)y^{f\sigma_{S}})]

then G_{1}(Y_{s1}) and Y_{si}\cdot Q(Y_{s1}) are prime to each other.

And Y_{s1}Q(Y_{s1})A(Y_{s1})+G_{1}(Y_{s1})B(Y_{s1})=1

and in the same way, we know that

d_{sy}^{\sigma}s( \sum_{f}f_{f}^{*}(x)y^{f\sigma_{S}})a(x, y)\sim 1 in V_{s2}

k’( \sum_{i}f_{i}(x)y^{i})a(x, y)\sim\frac{1}{y^{\sigma-n}s} in T^{\Gamma_{s2}}

( \sum_{i}f_{i}(x)y^{i})(k^{\prime\sigma}ys^{-n}a(x, y))\sim 1 in V_{s2} .

Thus, when n>0 , \sum_{i}f_{i}(x)y^{i} is also a unit in V_{s2} in K[x, y] .

\S 35. Residue-class field of V_{s2} in K[x, y]
Next, we make \Delta_{s2} , the residue-class ring of V_{s2} in K[x, y] in the same

way as we did in V_{s1} . Let \sigma be the smallest natural number that \sigma\eta_{2}=V_{s2}(l^{\sigma})
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belongs to the value group \Gamma_{U} of V_{s2} in U_{s2} which is a set of all units in
V_{s2} in K[x, y] . Then d is such a unit in U_{s2} that V_{s2}(dl^{\sigma})=0 .

Let \Gamma_{Ul} be the value group which consists of such real numbers of the
form k+n\eta_{2} , where k\in\Gamma_{U} and n are integers. \tau is the smallest natural
number that \tau\mu_{s}=V_{s0}(\phi_{s}^{r}) belongs to \Gamma_{Ul} . Then there exist such a unit a
in U_{s2} and such an integer \lambda that V_{s2}(a\phi_{s}^{\tau}l^{\lambda})=0 . Here we have the two
following cases;

(1) \lambda=0 and V_{s2}(a\phi_{s}^{\tau})=0

(2) \lambda>0 and V_{s2}(a\phi_{S}^{\tau}l^{\lambda})=0 .
When \lambda=0 , \Delta_{s2}\cong F_{s2}[X_{s2}, Y_{s2}] , where F_{s2} is a finite-dimensional algebraic
extension of F_{s1} and X_{s2}=H_{s2}(a\phi_{s}^{\tau}) and H_{s2}(dl^{\sigma})=Y_{s2} and X_{s2} and Y_{s2} are alge-
braically independent over F_{s2} and H_{s2} is the natural homomorphism from
K[x, y]^{+} to \Delta_{s2} .

These matters are calculated in the same way as we did them in V_{s1} ,

except that F_{s2} is a finite-dimensional algebraic extension of F_{s1} . It is to

be proved at the end of \S 35. Generally when \lambda\geqq 0 , \Delta_{s2} is isomorphic to

a ring of RY_{s2}-quotient of polynomials as X_{s2} with coefficients in F_{s2} , where
X_{s2}=H_{s2}(a\phi_{s}^{\tau}l^{\lambda}) .

THEOREM 35. 1. \Lambda_{s2} , the residue-class fifield of V_{s2} in K(x, y) is isomor-
phic to F_{s2}(X, Y), where X and Y are algebraically independent over F_{s2} .

Every class in \Delta_{s2} can be resolved uniquely into irreducible factors in
\Delta_{s2} and every polynomial f(x, y) for which V_{s2}(x, y)=0 can be resolved
uniquely into equivalence-irreducible factors in V_{s2} in K[x, y] . These mat-

ters can be proved in the same way as in V_{s1} .
Now I must prove that F_{s2} , which is a constant field of \Delta_{s2} , is isomor-

phic to an extension of F_{s1} .

If V_{s2}(g\phi_{s}^{\alpha}\eta^{\beta})=0

,\cdot where g\in U_{s2} , then in the same way when we obtain (32. 1),

V_{s2}(ga^{-\alpha_{1}}d^{-\beta_{1}})=0

, where g, a and d are such polynomials in Theorem 34. 1.
And again by Theorem 34. 1, a^{-\alpha_{1}} and d^{-\beta_{1}} are also equivalent to such

polynomials in Theorem 34. 1.
Therefore ga^{-\alpha_{1}}d^{-\beta_{1}} is equivalent to a polynomial of y with coefficients

in U_{s1} , but its degree with respect to y is not bounded. So H_{s1}(ga^{-a_{1}}b^{-\beta_{1}}) is
a polynomial of Y_{s1} with coefficients in F_{s1} . Let be

H_{s1}(ga^{-\alpha_{1}}b^{-\beta_{1}})=Q_{1}(Y_{s1})G_{1}(Y_{s1})+R(Y_{s1})
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, where deg_{Y}R(Y_{s1})<deg_{Y}G_{1}(Y_{s1}). We adopt the polynomials which are cor-
respondent to these classes and deg_{y}r(x, y)<deg_{y}l

ga^{-\alpha_{1}}b^{-\beta}l\sim q(x, y)h_{1}l+r(x, y) in V_{s1}

and V_{s1}(ga^{-\alpha_{1}}b^{-\beta_{1}})=V_{s1}(q(x, y)h_{1}l)=V_{s1}(r(x, y))=0

, but only V_{s2}(q(x, y)h_{1}l)>0 .
So, ga^{-\alpha_{1}}b^{-\beta_{1}}\sim r(x, y) in V_{s2} .
Namely H_{s2}(ga^{-\alpha_{1}}b^{-\beta_{1}})=H_{s2}(r(x, y))

-, where H_{s2} is the natural homomorphism from K[x, y]^{+} to \Delta_{s2} .
H_{s1}(ga^{-\alpha_{1}}b^{-\beta_{1}})=H_{s2}(ga^{-\alpha_{1}}b^{-\beta_{1}})=R(Y_{s1}) .

Therefore every class in \Delta_{s2} , which includes units in V_{s2} in K[x, y] , includes
such a polynomial in Theorem 34. 1. And a set of all such classes in \Delta_{s2} ,
which include units in V_{s2} in K[x, y] , is equal to a set of all such poly-
nomials R(Y_{s1}) in F_{s1} [Y_{s1}] whose degree with respect to Y_{s1} is less than that
of G_{1}(Y_{s1}) .

Therefore, the constant field, namely, a set of all such classes in \Delta_{s2} ,
which include units in V_{s2} in K[x, y] , is isomorphic to the field F_{s2}=F_{s1}(\theta),
where \theta is a root of G_{1}(Y_{s1})=0 .

\S 36. The last simply augmenten valuation V_{st} of W

Thus we can make such a series of y-simply augmented inductive
valuations

V_{s1}^{ysysys}<V_{s2}<\cdots<V_{st}

, that V_{sf}(\zeta_{f}(y))=V_{0f}(\zeta_{j}(y))=\nu_{f} for j=1,2, \cdots , t .
Now we must study the last valuation V_{st} , because otherwise, we can

not make an augmented valuations of V_{st} .
V_{st}=[V_{s,t-1}, V_{st}l_{t}=\eta_{t}]

l_{t}=l_{t-1}^{n\sigma_{t-1}}+\cdots+b_{i}(x, y)l_{t-1}^{i\sigma_{t-1}}+\cdots+b_{0}(x, y)

, where every b_{i}(x, y)\in U_{s,t-1} and

V_{s,t-1}l_{t}=V_{s,t-1}(l_{t-1}^{n\sigma_{l-1}})=V_{s,t-1}(b_{0}(x, y))=V_{s,t-1}(b_{i}(x, y)l_{t-1}^{i\sigma_{t-1)}}

for every term of l_{t} .
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And l_{t-1} is the y-key polynomial which produces the y-simply augmented
valuation V_{s,t-1} of V_{s,t-2} in K[x, y] and \sigma_{t-1} is the smallest natural number
that \sigma_{t-1}\eta_{t-1}=V_{s,t-1}(l_{t-1}^{\sigma_{t-1}}) belongs to the value group of V_{s,t-1} of U_{s,t-1} which
is a set of all units in V_{s,t-1} in K[x, y] .

An arbitrary polynomial f(x, y) can become an expansion of \phi_{s}(x) and
l_{t} with coefficients in U_{s,t} which is a set of all units in V_{s,t} in K[x, y] .

f(x, y)= \sum_{i,f}f_{if}\phi_{s}^{i}l_{t}^{j}

, where deg_{y}f_{if}<deg_{y}l_{t} and deg_{x}f_{if}<deg_{x}\phi_{s}\tau

V_{st}f(x, y)={\rm Min}[V_{s,t-1}f_{if}+i\mu_{s}+j\eta_{t}]i,f

, where \mu_{s}=V_{s0}\phi_{s}=W\phi_{s} and \eta_{t}=V_{st}l_{t}=Wl_{t} .
Let \Gamma_{t-1} be the value group of V_{st} in U_{s,t} and \sigma_{t} the smallest natural

number that \sigma_{t}\eta_{t}=V_{st}(l_{t}^{\sigma_{t}}) belongs to \Gamma_{t-1} , then in U_{s,t} there exists such
a unit d_{t} that V_{st}(d_{t}l_{t}^{\sigma}{}^{t}I=0 .

\Gamma_{l} is the value group which consists of such real numbers of the form
k+n\eta_{t} , where k\in\Gamma_{t-1} and n are integers and \tau_{t} is the smallest natural number
that \tau_{t}u_{s}=V_{st}(\phi_{s}^{\tau_{\ell}}) belongs to \Gamma_{l} , then there exist such a unit a_{t} in V_{st} and
such an integer \lambda_{t} that V_{st}(a_{t}\phi_{s}^{t}\prime l_{t}^{\lambda}’)=0, where 0\leqq\lambda_{t}\leqq\sigma_{t}-1 .

C_{t} is such a unit in V_{s,t-1} in K[x, y] that V_{s,t-1}(c_{t}l_{t})=0 and G(Y)=
H_{s,t-1}(c_{t}l_{t}) is an irreducible class in \Delta_{s,t-1} , where H_{s,t-1} is the natural hom0-
morphism from K[x, y]^{+} to \Delta_{s,t-1} , the residue-class ring of V_{s,t-1} in K[x, y] .
And \theta_{t} is one root of G(Y)=0.

Then, in the same way as we did above, we can prove that \Delta_{st} , the
residue-class ring of V_{st} in K[x, y] is isomorphic to a ring of R_{t}Y_{t}-quotient
polynomials of X_{t} with coefficients in a field F_{st} , where F_{st}=F_{s,t-1}(\theta_{t}) and
R_{t}=\underline{\lambda_{t}} is a non-negative fixed number and X_{t} and Y_{t} are algebraically

\sigma_{t}

independent over F_{st} .
\Lambda_{st} , the residue-class field of V_{st} in K(x, y) is isomorphic to F_{st}(X_{t}, Y_{t}).
Every residue-class of \Delta_{st} can be uniquely resolved into irreducible factors

in \Delta_{st} and every polynomial f(x, y) for which V_{st}f(x, y)=0, can be uniquely
resolved into equivalence-irreducible factors in V_{st} in K[x, y] .

\S 37. Factorization in V_{st}

Here we try to carry out real factorization of a polynomial f(x, y) for
which V_{st}f(x, y)=0 , into equivalence-irreducible factors in V_{st} in K[x, y] ,
because this will be used below in this paper.
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\Gamma_{\phi} is a value group which consists of such real numbers of the form
k+n\mu_{s} , where k\in\Gamma_{t-1} and n are integers. Let \Gamma^{*} be an intersection of \Gamma_{l}

and \Gamma_{\eta\}} . Then a is the smallest natural number that a\mu_{s}=V_{st}(\phi_{s}^{a}) belongs
to \Gamma^{*} and b is the smallest natural number that b\eta_{t}=V_{st}(l_{t}^{b}) belongs to \Gamma^{*} .

When V_{st}(f\phi_{s}^{i}l_{t}^{f})=0

, where f\in U_{s,t} ,
i is a multiple i_{1}a of a and j is a multiple j_{1}b of b, namely

f\phi_{s}^{i}l_{t}^{f}=f\phi_{s^{1}}^{ia}l_{t}^{f_{1}b}

Therefore, when V_{st}f(x, y)=0

f(x, y) \sim h\prod_{i}P_{i}(\phi_{s}^{a}, l_{t}^{b}) in V_{st}

, where h\in U_{s,t} and every P_{i}(\phi_{s}^{a}, l_{t}^{b}) is an equivalence-irreducible polynomial
of \phi_{s}^{a} and l_{t}^{b} with coefficients in U_{st} .

Next we resolve specially a polynomial c(x) in K[x] and another poly-
nomial d(y) in K[y] into equivalence-irreducible factors in V_{st} in K[x, y] .

\phi_{s}(x) is a polynomial in K[x] , so c(x) can be expressed as an expansion
by \phi_{s} ,

c(x)= \sum_{i}c_{i}(x)\phi_{s}^{i}

, where deg_{x}c_{i}(x)<deg_{x}\phi_{s} , so c_{i}(x)\in U_{s,t} .

V_{st}c(x)=V_{s0}c(x)={\rm Min}[V_{i0}c_{s}(x)\phi_{s}^{i}]i .

We adopt only the homogeneous part of c(x), namely we abandon all such
terms that V_{s0}(c_{i}(x)\phi_{s}^{i})>V_{s}{}_{t}C(x)

, then c(x) \sim\sum_{l}c_{l}(x)\phi_{s}^{l} in V_{st}\cdots (37. 1)

, where c_{l}(x)\in U_{s,t} .
Next we must prove that

d(y) \sim\sum_{f}d_{f}(x, y)l_{t}^{j} in V_{st}

, where d_{j}(x, y)\in U_{st} .
For the sake of it, we must make another series of augmented inductive

valuations as follows.

\S 38. \overline{V}_{st}

W induces in K[x] the following series;
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V_{10}<V_{20}<\cdots<V_{s0}

, where V_{i0}=[V_{i-1,0}, V_{i0}\phi_{i}(x)=\mu_{i}] for i=1,2, \cdots , s.
And W induces in K[y] another series as follows;

V_{01}<V_{02}<\cdots<V_{0t}

where V_{0f}=[V_{0,f-1}, V_{0f}\zeta_{f}(y)=\nu_{f}] for j=1,2, \cdots , t .
At first, we defined the valuation V_{s1} of the ring K_{x}[y] whose coefficient

field K_{x}=K(x) has the valuation V_{s0} . And next we made a series of y-
simply augmented inductive valuations and we obtained the valuation V_{st} as
the last valuation of this series.

So, here we consider, exchanging x and y. We define a valuation \overline{V}_{1t}

of the ring K_{y}[x] whose coefficient field K_{y}=K(y) has the valuation V_{0t} ,
as follows;

f(x, y)= \sum_{i}f_{i}(y)x^{i}

\overline{V}_{1t}(f(x, y))={\rm Min}[iV_{0t}f_{i}(y)+i\mu_{1}]

, where \mu_{1}=Wx=V_{10}x .

Next, we make such a series of x-simply augmented inductive valuations
that

\overline{V}_{1t}^{xsxsxs}<\overline{V}_{2t}<\cdots<\overline{V}_{st}

, where \overline{V}_{it}=[\overline{V}_{i-1,t}, \overline{V}_{it}\psi_{i}=\pi_{i}]

and \overline{V}_{it}\psi_{i}(x)=\pi_{i}=W\psi_{i}(x) for i=1,2, \cdots , s.
\psi_{i}(x) is an x-key polynomial which produces an x-simply augmented

valuation \overline{V}_{it} of \overline{V}_{i-1,t} of the ring K_{y}[x] .

Then V_{st}=\overline{V}_{st} .
Therefore, if f(x, y)\sim g(x, y) in V_{st}

then f(x, y)\sim g(x, y) in \overline{V}_{st}

and vice versa.
And U_{st} , a set of all units in V_{st} in K[x, y] , coincides completely with

that in \overline{V}_{st} in K[x, y] .
\overline{V}_{st}=[\overline{V}_{s-1,t},\overline{V}_{st}\psi_{s}(x)=\pi_{s}] .

In the same way as (33. 3), there exist such units \epsilon_{t} and \epsilon_{s} in U_{st} that

\zeta_{t}(y)\sim l_{t}\epsilon_{t} in V_{st} (38. 1)
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and \phi_{s}(x)\sim\psi_{s}\epsilon_{s} in \overline{V}_{st} (38. 2)

\Gamma_{\psi} is a value group which consists of such real numbers of the form
k+n\pi_{s} , where k\in\Gamma_{t- 1} and n are integers.

\mu_{s}=\overline{V}_{st}\phi_{s}=\overline{V}_{st}\psi_{s}+\overline{V}_{st}\epsilon_{s} from (38. 2)

\mu_{s}=\pi_{s}+\overline{V}_{st}\epsilon_{s}

-, where \overline{V}_{st}\epsilon_{s}\in\Gamma_{t-1}t

Therefore \Gamma_{\phi}=\Gamma_{\phi} .
\Gamma_{\zeta} is a value group which consists of such real numbers of the form

k+n\nu_{t} , where k\in\Gamma_{t-1} and n are integers. Then, in the same way, from
(38. 1)

\Gamma_{\zeta}=\Gamma_{l} .
Let a’ be the smallest natural number that a’\pi_{s}=\overline{V}_{st}(\psi_{s}^{a’}) belongs to \Gamma^{*}

and b’ be the smallest natural number that b’\nu_{t}=V_{st}(\zeta_{t}^{b’}) belongs to \Gamma^{*} , then
a’=a and b’=b, where a and b are defined in \S 37.

Therefore every equivalence relation in V_{st} also holds, when we sub-
stitute l_{t}\epsilon_{t} for \zeta_{t}(y) and \psi_{s}\epsilon_{s} for \phi_{s}(x) in the equivalence relation in V_{st} .

For example; when V_{st}f(x, y)=0

f(x, y) \sim h\prod_{i}p_{i}(\phi_{s}^{a}, l_{t}^{b}) in V_{st}

, where h\in U_{st} and every p_{i}(cb_{s}^{a}, l_{t}^{b}) is an equivalence-irreducible polynomial
of \phi_{s}^{a} and l_{t}^{b} with coefficients in U_{st} ,

f(x, y) \sim h’\prod_{i}p_{i}’(\psi_{s}^{a}, \zeta_{t}^{b}) in V_{st}

, where h’\in U_{st} and every p_{i}’(\psi_{s}^{a}, \zeta_{t}^{b}) is an equivalence-irreducible polynomial
of \psi_{s}^{a} and \zeta_{t}^{b} with coefficients in U_{st} .

Now we can prove easily that d(y) \sim\sum_{f}d_{f}(x, y)l_{t}^{j} in V_{st} . In the same
way as in (37. 1)

d(y) \sim\sum_{l}d_{l}(y)\zeta_{t}^{l} in V_{st}

, where d_{l}(y)\in U_{st} and deg_{y}d_{l}(y)<deg_{y}\zeta_{t}(y) .

From (38. 1) d(y) \sim\sum_{l}(d_{l}(y)\epsilon_{t}^{l})l_{t}(y)^{l} in V_{st}

, then d_{l}(y)\epsilon_{t}^{l}\in U_{st} , because U_{st} is a group with respect to multiplication.
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\S 39. Structures of key polynomials

In^{\fallingdotseq}\underline{z}the beginning of Part Three of this paper I assumed that V_{st} is the
last simply augmented valuation of W. But hence in this paper I abandon
this assumption, namely now we prescribe that we can freely make an x-
simply augmented valuation of V_{st} , or a y-simply augmented valuation of
V_{st} , or an xy-doubly augmented valuation of V_{st} .

And we want to study structures of these key polynomials.
According to M. Theorem 9. 4, a polynomial L=L(x, y) can be a y-key

polynomial which produces a y-augmented valuation of V_{st} in the ring K_{x}[y]

whose coefficient field K_{x} has the valuation V_{s0} , if and only if the following
conditions hold:

L=l_{t}^{m\varphi}+\cdots+q_{i}(x, y)l_{t}^{i\varphi}+\cdots+q_{0}(x, y)\cdots(39.1)

, where V_{st}L=V_{st}(l_{t}^{m\varphi})=V_{st}(q_{0}(x, y))=V_{st}(q_{i}l_{t}^{i\varphi}) for every term of L and L is
equivalence-irreducible in V_{st} in K_{x}[y] . Here q_{i}(x, y) is a polynomial of y
with coefficients in K(x) and deg_{y}q_{i}(x, y)<deg_{y}l_{t} for every term of L and
\varphi is the smallest natural number that \varphi\eta_{t}=V_{st}(l_{t}^{\varphi}) belongs to \Gamma_{\phi} .

Let be q_{i}(x, y)= \frac{n_{i}(x,y)}{d_{i}(x)}

,
\cdot where n_{i}(x, y) is a polynomial of x and y. and deg_{y}n_{i}(x, y)<deg_{y}l_{t} and d_{i}(x)

is a polynomial of x.
n_{i}(x, y) \sim\sum_{f}n_{f}\phi_{s}^{f} in V_{st}

and d_{i}(x) \sim\sum_{f}d_{j}\phi_{s}^{j} in V_{st}

, where n_{j}\in U_{st} and d_{f}\in U_{st} .
Then I will prove the following theorem;
THEOREM 39. 1. A necessary and suffiffifficient condition that L, the above-

mmtioned polynomial, is a key polynomial that produces a y-simply aug-
mented valuation of V_{st} in K_{x}[y] , is that none of n_{i}(x, y) and d_{i}(x) of L
include \phi_{s}(x) in their homogmeous parts.

This theorem is equivalent to the following theorem, because if a y-
augmented valuation of V_{st} in K_{x}[y] is not an xy-doubly augmented valua-
tion of V_{st} in K_{x}[y] , then it is a y-simply augmented valuation of V_{st} in
K_{x}[y] and vice versa.

THEOREM 39. 2. A necessary and suffiffifficient condition that L, the above-
mentioned polynomial, is a key polynomial that produces an xy-doubly aug-
mmted valuation of V_{st} in K_{x}[y] , is that \phi_{s}(x) appears in some tems of
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n_{i}(x, y) or d_{i}(x) of L in their homogmeous parts.

L \sim l_{t}^{m\varphi}+\cdots+\frac{n_{i}(x,y)}{d_{i}(x)}l_{t}^{i\varphi}+\cdots+\frac{n_{0}(x,y)}{d_{0}(x)} in V_{st} .

At first I prove that, if \phi_{s}(x) appears in some terms of n_{i}(x, y) or d_{i}(x)

of L and L is a key polynomial which produces a y-simply augmented
valuation of V_{st} in K_{x}[y] , then a contradiction takes place. As L produces
a y-simply augmented valuation V_{y} of V_{st} in K_{x}[y] , there exists such a
polynomial f(y) in K[y] that V_{y}f(y)>V_{st}f(y) .

So, by M. Theorem 5. 1

L|f(y) in V_{st} in K_{x}[y]

Namely f(y) is equivalence-divisible by L in V_{st} in K_{x}[y] .
f(y)\sim L\cdot g(x, y) in V_{st} in K_{x}[y]

, where g(x, y) is a polynomial of y with coefficients in K(x).
We multiple both sides by the least common multiple h’(x) of L\cdot g(x, y),

then
f(y)h’(x)\sim L’\cdot g(\prime x, y) in V_{st} in K[x, y] .

L is equivalence-irreducible in V_{st} in K_{x}[y] , so L’ is equivalence-irreducible
in V_{st} in K[x, y] and in L’, boih \phi_{s}^{a} and l_{t}^{b} appear. But in f(y), only l_{t}^{b}

appears and \phi_{s}^{a} does not appear, and in h’(x), only \phi_{s}^{a} appears and l_{t}^{b} does
not appear as I explained in \S 37. f(y)h’(x) must be resolved uniquely into
equivalence-irreducible factors in V_{st} in K[x, y] . Thus a contradiction takes
place. Therefore, if \phi_{s}(x) appears in L, then L is a y-key polynomial which
produces an xy-doubly augmented valuation of V_{st} in K[x, y] .

Next I will prove that if \phi_{s}(x) does not appear in L, then L is not a
key polynomial which produces an x-augmented valuation of V_{st} in K[x, y] .
If I can prove it, then L is a key polynomial which produces a y-simply
augmented valuation of V_{st} in K[x, y] , because L produces a y-augmented
valuation, but L can not produce an x-augmented valuation of V_{st} in K[x, y] ,
so owing to the definition of a y-simply augmented valuation, L is a key
polynomial which produces a y-simply augmented valuation of V_{st} in K[x, y] .

L= \frac{L’(x,y)}{h(x)} , where L’(x, y) does not include \phi_{s}(x).

V_{st}=\overline{V}_{st}=[\overline{V}_{s-1,t}, \overline{V}\psi_{s}(x)=\pi_{s}]

\zeta_{t}(y)\sim l_{t}\epsilon_{t} and \phi_{s}(x)\sim\psi_{s}\epsilon_{s} in V_{st} .
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According to M. Theorem 9. 4., a polynomial L^{*}(x, y)=L^{*} can be an x-key
polynomial which produces an x-augmented valuation of \overline{V}_{st} in K_{y}[x] whose
coefficient field K_{y}=K(y) has the valuation V_{0t} , if and only if the following
conditions hold:

L^{*}=\psi_{s}^{n}+\cdots

L^{*}= \frac{L’(x,y)}{h(x,y)}

Namely the numerator of L^{*} must include \psi_{s} in its homogeneous part.

\zeta_{t}(y)\sim l_{t}\epsilon_{t} and \phi_{s}(x)\sim\psi_{s}\epsilon_{s} in V_{st} .

So, the numerator L’(x, y) is equivalent only to such polynomials which
include only l_{t} or \zeta_{t}(y) and do not include \psi_{s} . Therefore L can not be
such a key polynomial that produces an x-augmented valuation of \overline{V}_{st} in
K_{y}[x] .

Thus, Theorem 39. 1. and 39. 2. are proved completely.

\S 40. xy-doubly augmented valuation V_{s+1,t}

When L in (39. 1) is a y-key polynomial which produces an xy-doubly
augmented valuation of V_{st} in K_{x}[y] , we define a y-augmented valuation
V_{s,t+1} of V_{st} in K_{x}[y] in the same way as we difined a y-augmented valua-
tion V_{st} of V_{s,t-1} in K_{x}[y] .

V_{s,t+1}=[V_{st}, V_{s,t+1}L=\eta_{t+1}]

, where \eta_{t+1}-V_{st}L=V_{s,t+1}L-V_{st}L=\omega>0 (40. 1)

Then V_{s,t+1} is a y-augmented valuation of V_{st} , but it is an xy-doubly
augmented valuation of V_{st} in K_{x}[y] .

Next multiply both sides of (39. 1) by the least common multiple d(x)

of denominators of L, then

d(x)L=g(\phi_{s}^{a}(x), l_{t}^{b})

,\cdot where coeffiffifficients\in U_{st} .
We substitute \epsilon_{t}^{-1}\zeta_{t}(y) for l_{t} and \psi_{s}(x)\epsilon_{s} for \phi_{s}(x) in g(\phi_{s}^{a}, l_{t}^{b})

and d(x)L \sim g’=\sum_{f}m_{f}(\zeta_{t}^{b})\psi_{s}^{fa} in V_{st}

, where coeffiffifficients\in U_{st} .
Let m_{p}(\zeta_{t}^{b}) be a coefficient of \psi_{s}^{pa} , the highest term of g’.

d(x)L\sim m_{p}(\zeta_{t}^{b})g’(\psi_{s}^{a}(x), \zeta_{t}^{b}) in V_{st} .
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g’ is equivalence-irreducible in V_{st}=\overline{V}_{st} , so there exist such polynomials
m_{p}’ and g^{*} in K_{y}[x] that

\omega

d(x)L\simeq m_{p}’(\zeta_{t}^{b})g^{*}(\psi_{s}^{a}(x), \zeta_{t}^{b}) in \overline{T^{\gamma_{st}}} . (40. 2)

The leading coefficient of g^{*} is 1 and g^{*}(\psi_{s}^{a}, \zeta_{t}^{b}) satisfies the necessary and
sufficient conditions that g^{*} is a x-key polynomial which produces an x-
augmented valuation of \overline{V}_{\mathfrak{p}t} in K_{y}[x] .

So, we define an x-augmented valuation \overline{V}_{s+1,t} of \overline{V}_{st} in K_{y}[x] , in the
same way as we defined an x-augmented valuation \overline{V}_{st} of \tau_{s-1,t} in K_{y}[x] ;

\overline{V}_{s+1,t}=[\overline{V}_{st},\overline{V}_{s+1,t}g=\omega+\overline{V}_{st}*g]*

\overline{V}_{s+1,t} is an xy-doubly augmented valuation of \overline{V}_{st} , so values of d(x) and
m_{p}’ do not increase when we make -V_{s+1,t}^{arrow} of \overline{V}_{st} .

Let be Q=d(x)L-m_{p}’g^{*} , then by (40. 2)

\overline{V}_{s+1,t}Q\geqq\overline{V}_{st}Q>\omega+\overline{V}_{st}(m_{p}’g^{*})=\overline{V}_{st}m_{p}’+(\omega+\overline{V}_{st}g)*

=\overline{V}_{s+1,t}m_{p}+\overline{V}_{s+1,t}\prime\prime(g^{*})=\overline{V}_{s+1,t}(m_{p}’g^{*}) .
. \cdot . \overline{V}_{s+1,t}(m_{p}’g^{*})=\overline{V}_{s+1,t}(d(x)L) .

In the same way as above

V_{s,t+1}(m_{p}’g^{*})=V_{s,t+1}(d(x)L)

and V_{st}=\overline{V}_{st} .
So, \overline{V}_{s+1,t}=V_{s,t+1^{t}}

\S 41. Residue-class fields of doubly augmented valuations
We make a y-augmented valuation V_{s,t+1} of V_{st} in K_{x}[y] as follows;

V_{s,t+1}=[V_{st}, V_{s,t+1}L=\eta_{t+1}]

-, where L is the polynomial in (39. 1) and \eta_{t+1} is the value in (40. 1).
V_{s,t+1} is an xy-doubly augmented valuation of V_{st} , so \Lambda_{s,t+1} , the residue-

class field of V_{s,t+1} in K(x, y), is pretty different from \Lambda_{st} , the residue-class
field of V_{st} in K(x, y).

Here we change representation of \Delta_{st} a little as follows, because this
method is necessary for us to study the structure of \Lambda_{s,t+1} .

\Gamma_{t-1} is the value group of V_{st} in U_{st} and \Gamma_{\phi} is the value group which
is defined in the beginning of \S 37 and \alpha is the smallest natural number
that \alpha\mu_{s}=V_{st}(\phi_{s}^{\alpha}) belongs to \Gamma_{t-1} . \varphi is the natural number which is defined
in (39. 1).
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V_{st}(\phi_{s}^{\alpha}) belongs to \Gamma_{t-1} , then there exists such a unit h_{1} that V_{st}(h_{1}\phi_{s}^{\alpha})=0 .
V_{st}(l_{t}^{\varphi}) belongs to \Gamma_{\phi} , so there exist such a unit h_{2} and such an integer \pi

that V_{st}(h_{2}\phi_{s}^{\pi}l_{t}^{\varphi})=0, where 0\leqq\pi\leqq\alpha-1 .
Let be H_{st}(h_{1}\phi_{s}^{\alpha})=\overline{X} and H_{st}(h_{2}\phi_{s}^{\pi}l_{t}^{\varphi})=\overline{Y}. then \overline{X} and \overline{Y} are algebraically

independent over F_{st} and \Lambda_{st}\cong F_{st}(\overline{X},\overline{Y}).
Moreover \Delta_{st}’ , the residue-class ring of V_{st} in the ring K_{x}[y] whose

coefficient field K_{x}=K(x) has the valuation V_{s0} , is isomorphic to F_{st\acute{x}}[\overline{Y}] ,

where F_{st\overline{x}}=F_{st}(\overline{X}) . Because, if f(x, y)\in K_{x}[y] and V_{st}f(x, y)=0 , then

f(x, y)= \frac{n(x,y)}{d(x)} , where n(x, y) are a polynomial of x and y.

H_{st}f(x, y)= \frac{H_{st}n(x,y)}{H_{st}d(x)}=\frac{\sum_{i,f}n_{if}\overline{X}^{i}\overline{Y}^{j}}{d(\overline{X})},

, where n_{if}\in F_{st} .

H_{st}f(x, y)= \sum_{f}(\frac{\sum n_{if}\overline{X}^{i}}{d’(\overline{X})})\overline{\uparrow 7}f

Now we can make \Lambda_{s,t+1} by M. Theorem 12. 1. M. Theorem 12. 1.
states as follows :
V_{t+1} is a given discrete valuation of k(y) and V_{t+1} induces a valuation V_{0} in
k and F_{1} is the residue-class field of V_{0} in k. V_{1} is defined for a polynomial

f(y)= \sum_{\dot{\emptyset}}f_{i}y^{i} in k(y) as

V_{1}f(y)=Mini[V_{0}f_{i}+iV_{t+1}y]

Thus we make such a series of y-augmented inductive valuations in k[y] that

V_{1}<V_{2}<\cdots<V_{t}<V_{t+1}

, where V_{i}=[V_{i-1}, V_{f}l_{i}=\eta_{i}] for i=1,2, \cdots , t .
When a(y)b(y)\sim 1 in V_{i} , a(y) is called a unit in V_{i} . And U_{i} is a set of
all units in V_{i} .

V_{t}=[V_{t-1}, V_{t}l_{t}=\eta_{t}] .

Let \xi_{t} be the smallest natural number that \xi_{t}\eta_{t}=V_{t}(l_{t^{t}}^{\xi}) belongs to the
value group of V_{t} in U_{t} , then there exists such a unit d_{t} in V_{t} that
V_{t}(d_{t}l_{t}^{\xi}’)=0 .

\Delta_{t} , the residue-class ring of V_{t} in k[y] , is isomorphic to F_{t}[Y] , where
F_{t} is a set of all such classes in \Delta_{t} that include units in V_{t} and F_{t} is a
finite-dimensional extension of F_{1} and Y=H_{t}(d_{t}l_{t^{t}}^{\xi}) is transcendental with
respect to F_{t} and H_{t} is the natural homomorphism of k[y]^{+} to \Delta_{t} .
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V_{t+1}=[V_{t}, V_{t+1}l_{t+1}=\eta_{t+1}]

There exists such a unit k in V_{t} that
V_{t}(kl_{t+1})=0

and H_{t}(\mathcal{U}_{t+1})=g(Y) is a polynomial of Y with coefficients in F_{t} . \theta is a root
of g(Y)=0.

Then \Delta_{t+1} , the residue-class ring of V_{t+1} in k[y] is isomorphic to
F_{t+1}[Y_{t+1}] , where F_{t+1}=F_{t}(\theta) and Y_{t+1} is transcendental with respect to F_{t+1} .

M. Theorem 12. 1. states so. Comparing his theorey with ours, we
have the following complete correspondences;

K(x)k|y|V_{s0}|V_{s1}|V_{st}|l_{t}| \eta_{t}|r^{1}J_{st}H_{st}|F_{st}|\frac{1}{V}V_{s,t+1}|L

y V_{0} V_{1} V_{t}l_{t}\eta_{t}U_{t}H_{t}F_{t} YV_{t+1} l
1^{t+1}

’

Now we will make \Delta_{s,t+1}’ , the residue-class ring of V_{s,t+1} in the ring
K_{x}[y] . From (39. 1)

V_{st}L=V_{st}q_{0}(x, y) , so V_{st}(q_{0}^{-1}L)=0

then H_{st}(q_{0}^{-1}L)=G(\overline{B’}-\cdot) is a polynomial of \overline{Y} with coefficients in F_{st}(\overline{X}) and
its degree with respect to \overline{Y} is m. And \phi_{s}(x) appears in some coefficients
of L in their homogeneous parts, so some coefficients of G(\overline{Y}) include \overline{X} .
Let be G(\theta)=0, then \theta is algebraic with respect to F_{st}(\overline{X}), but \theta is not alge-
braic with respect to F_{st} . And by M. Theorem 12. 1,

\Delta_{\acute{s},t+1}\cong F_{1}^{*}[Y_{t+1}]

,\cdot where F_{1}^{*}=F_{st} - (\theta) and F_{st\overline{\tau}}=F_{st}(\overline{X}) and Y_{t+1} is transcendental with respect
to F_{1}^{*} .

Therefore \Lambda_{s,t+1}\cong F_{1}^{*}(Y_{t+1}) .
I summarize the relations between valuations V_{if} and their residue-class

field \Lambda_{ij} in the. following table ;

V_{11}^{xsxsxsysysxyxyxy}<V_{21}<\cdots<V_{s1}<V_{s2}<\cdots<V_{st}<V_{s,t+1}<\cdots<V_{s,t+q}

F_{11}\subset F_{21}\subset\cdots\subset F_{s1}\subset F_{s2}\subset\cdots\subset F_{st}

F_{st}(X)\subset F_{1}^{*}\subset\cdots\subset F_{q}^{*}

,\cdot where F or p*is respectively a finite-dimensional algebraic extension of
its preceding F or F^{*} on the same line.

(\alpha) \Lambda_{if}\cong F_{if}(X, Y) , while simply augmented valuations continue.
(\beta) \Lambda_{s,t+j}\cong F_{j}^{*}(Y) : while xy-doubly augmented valuations continue.
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Of course (\beta) always holds, even if when simply augmented valuations
take place. But, I, Inoue, struggled very hard to prove that (\alpha) holds while
simply augmented valuations continue.

\S 42. The case without Conditions 28. 1 and 28. 2.

When we do not give Conditions 28. 1 and 28. 2, after V_{s2} only (\beta) holds.
Namely \Lambda_{s1} , the residue-class field of V_{s1} in K(x, y) is isomorphic to F_{s1}(X, Y),

but \Lambda_{s2} , the residue-class field of V_{s2} in K(x, y) is isomorphic to F_{1}^{*}(Y) ,

where F_{1}^{*} is a finite-dimensional algebraic extension of F_{s1}(X) and X is
transcendental with respect to F_{s1} and after \Lambda_{s2} , every \Lambda_{s.1+f}\cong F_{f}^{*}(Y), where
F_{j}^{*} is a finite-dimensional algebraic extension of F_{j-1}^{*} for j=2,3,4, \cdots .

Corrections in Part Two of this paper.

Part Two of this paper was pretty long and I am really sorry that I
could not find completely some careless misses in it. I think that you can
easily find them, but here I correct them as follows;

1. To the assumptions of Corollary 13. 2. I add such a condition that
V_{k}’G(X)>UG(X) when U is a descended valuation of V_{k}’ .

2. To the assumptions of Lemma 21. 3. I add such a condition that
f(x, y)\sim g(x, y) in V_{1q} .

3. In Page 272, “n” is ‘
‘\theta”, of course.

In near future I want to establish valuations of polynomial rings of
three or more variables, namely, in Part Four of this paper.
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Hokkaido University
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APPENDIX
In front of Corollary 30. 2, I add the four following definitions;
DEFINITION 30. A. If f=ay^{n}g , where a\in K and f\in S_{R} and g\in S_{R} and

n is an integer, then we say that f and g are associately equal to each
other in S_{R} .

DEFINITION 30. B. If a polynomial p(X, Y) which is not equal to Y
is irreducible in K[X, Y] , thm p(X, Y) is said to be irreducible in S_{R} .
And if f(X, Y)=ay^{n}p(X, Y), where a\in K and n is an integer, then f(X, Y)
is said to be associately irreducible in S_{R} .

DEFINITION 30. C. If l(x, y)\sim ay^{n}g(x, y) in V_{11} , where a\in K and n is
an integer, then we say that these two polynomials l(x, y) and g(x, y) are
associately equivalent to each other in V_{11} .

DEFINITION 30. D. p(x, y)\in K[x, y] and p[x, y]\neq y and p(x, y) is not
in K. And if p(x, y)\sim a(x, y)b(x, y) in V_{11} in K[x, y] , then always one of
a(x, y) and b(x, y) is in K. In this case we say that p(x, y) is equivalence-
irreducible in V_{11} in K[x, y] .

Consequently I rewrite the word “uniquely” into “associately uniquely”
in Corollary 30. 2, in Theorem 31. 1, and in Corollary 31. 4, and “irreducible
in \Delta_{11}

” into “associately irreducible in \Delta_{11}
” and “equivalence-irreducible’,

into “associately equivalence-irreducible” in Theorem 31. 3. And I rewrite
in the same way in \Delta_{s1} and in V_{s1} and so on.

Immediately after my first proofreading of this paper, I visited Professor
Malcolm Griffin of Queen’s University in Canada who gave me many useful
advices by which I determined to write supplementary explanations about
Part I, II and III of this papers in Part IV of this papers in future. And
after my long research in Zentral Blatt recently at last I could find Van
der Put’s opinions about this papers to which I want to answer in Part
IV of this papers, if possible. And I want to write about polynomial rings
of n variables after them.

(Received September 25, 1973)
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