Some congruence theorems for closed hypersurfaces
in Riemann spaces :

(The continuation of Part I1I)

Dedicated to the memory of Professor Dr. Heinz Hopf

By Yoshie KATsURADA

Introduction. This is the continuation of the previous paper ([1])
given by H. Hopf and the present author. In [1], considering an (m+1)-
dimensional orientable Riemann space S™*' with constant ¢urvature of class
C’ (v=3) which admits a one-parameter 'group G of isometric transforma-
tions, we proved the following

THEOREM. Let W™ and W™ be two orientable closed hypersurfaces in
S™* which do not contain a piece of a hypersurface covered by the orbits
of the transformations and p 7 be the corresponding points of these hyper-
surfaces along an orbit, and H,(p) and H,(p), r=1,--,m be the r-th mean
curvatures of these hypersurfaces at p and 7 respectively. Assume that in

case r=2, the second fundamental form of W”‘(t)d—ﬁ-f'(l—t) W+ tWn™ 0<t<L1,
is positive definite. If the relation H,(p)=H,(p) holds for each point pe W™,
then W™ and W™ are congruent mod G.

In the present paper, we shall cancel the assumption that the trans-
formations are isometric, in fact, under a group G of essentially arbitrary
transformations it is the purpose of the present paper to generalize the
above theorem. Especially, in case of r=m, that is, the general theorem
relating to the Gauss curvature was already proved in the previous paper [2].

§1. A certain integral form for two closed hypersurfaces. We
suppose an (m -+ 1)-dimensional orientable Riemann space S™*' with constant
curvature of class C” (v=3) which admits an infinitesimal transformation

(1. 1) £ =2'+&(x)or

(where x* are local coordinates in S™*! and & are the components of a
contravariant vector £). We assume that orbits of the transformations
generated by & cover S™*! simply and that & is everywhere continuous and
#0. Let us choose a coordinate system such that the orbits of transfor-

1) Numbers in brackets refer to the references at the end of the paper.
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mations are new x'-coordinate curves, that is, a coordinate system in which
the vector & has components & =4§?, where the symbol §% denotes Kronecker’s
delta; then (1.1) becomes as follows

(1.2) £ = 2+ loc

and S™*' admits a one-parameter continuous group G of transformations
which are 1-1-mappings of S™*! onto itself and are given by the expression

2t = 2+

in the new special coordinate system.

Now we consider two orientable closed hypersurfaces W™ and W™ of
class C* imbedded in S™*! which are given as follows
(1. 3) { W=m: 2'=2'u) i=1,-,m+1 a=1,--,m.
' W #=z(u)+0ir(u)

where u* are local coordinates of W™ and 7 is a continuous function attached
to each point of the hypersurface W™. We shall henceforth confine our-
selves to Latin indices running from 1 to m+1 and Greek indices from 1
to m. |
Then we can take the family of the hypersurfaces
W) =(1—)Wm+tW™ 0=t=1,
genrated by W™ and W™ whose points correspond along the orbits of the

transformations, where W™ and W” mean W™(0) and W™(1) respectively.
Thus according to (1.3), W™(¢) is given by the expression

(1. 4) W=(@): x*(u®, t)=(1—8) 2 (u*)+ tz* (u®) 0=st=s1,
and (1. 4) may be rewritten as follows
W™(t): x*(us t)= x2*(u®)+ ottr(u®) 0=t=1.
The relation between W™ and W™ () becomes as follows
| B (") = 2, )+ 81— D)z ().

If we take the hypersurface W™(#,) defined by a fixed value #, in 021,
then we have the transformation 7i;_,.(,,€G attached to the point on W™(#,)
corresponding to p,e W™, given by

Tatyeiwn: #=2'+01(1—2)c(uf),

(1—¢y)7(u5) = constant .

Thus we get the additional hypersurface
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_ def-
W?o(to) = T(l—-to)r(po) . Wm(to)

which passes through the corresponding point 7, on W™, and is given by

—

Wo(t): % (u, t) = 2°(u®, t,)+ 0t (1 — o) (us) ,
(1—#,)7(uf) = const. .
Therefore we have the additional hypersurfaces

W@ =Ta-np W™ 0521

for all hypersurfaces in the family, which pass through the corresponding
point 5,€W™. Thus we can consider W7(£)=Tq_. ,W™(#) for each point
p€ W™, which pass through the corresponding point eW™, and the normal
unit vector @5(f) of W7(¢) at .

Let us give henceforth the derivative with respect to # by the dash.
We shall calculate #;?(2). Then g,; being the metric tensor of S™**! at 5
and differentiating the following relations with respect to ¢,

9usi(2) jw_g(%g =0, g @niH)=1, O0=t=<l1
Uu

since §;; is independent with respect to # we have

=~ 0TS, ) | o d [ oTi(u,t
(1. 6) gun;(t)—%—l + Gus(2) dt( wgizi )>=0,
(1.7) Gosty(2)7,(£) =0

From (1.6), (1. 7) and

:th ( 0T5(u, t) ) _d ( 0x(u, t) ) = ot

we obtain
(1. 8) AL (8) = — §%(8) 7,077 (£)

where §%(¢) is the contravariant metric tensor of W=(t) and z, means dr/du".
Throughout this paper repeated lower case Latin indices call for summation
1 to m+1 and repeated lower case Greek indices for smmation 1 to m; but
p is not a summation index. And also for the covariant differential of %, (£)
along W7(2) at 3, we get

ony () = diny (&) + ') (8) Trpdud”

where I, is the christoffel symbol with respect to the metric tensor of
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0z, (u, t)
ouwr
Calculating (67%(2)Y, we have
- onb)=dit(0)+ om0 &hdu’

(o78(0)" = (s @) + T4 (O Budr + T ()@ s

S™*! at p and %, means

because of I'%, is independent with respect to z Consequently we get the
following relation between 6%, and (67%)

(1. 9) (ont) = ony + I mir,du’

because of di;}=(da}).
We consider the following differential form of degree m—1 attached
to each point on the hypersurface W7 ()

(@, biz, ORiyy -+, Oy, Ay, -+, dE,)

r—1
def —
(1. 10) =g &, 8, 5Ty, -+, Oy, ATy, dT,)

= ('—l)r_lﬂ/—g—(‘ﬁ;9 o, '%pax’ ""%pa,_,a %pﬁ,’ "t ""Epﬁm_l)
X Ezhl(t)---5;;;:‘(t)du“A---Adu"'A~--Adu"n-l
where ¢ is the determinant of the metric tensor g,; of S™*, the symbol
( ) means a determinant of order m+1 whose columns are the components
of respective vectors and b,,;(£) is the second fundamental tensor of W()
and &2,(¢) denotes b,,,(£)3(2).

Then the exterior differential of the d1fferent1a1 form (1.10) becomes
as follows

d (@, o, o, oy By iy, o, dE,))
u = (03, 8z, 87y, -+, Oy, ARy, -o-, )
- -l;((’fz;, 5(63)c, Oy, oy Oy, Ay, oo, d,))
+ (5, 8.t 87y, -, Oy, Ay, - ,dE,))
because since S™*! is a space of constant curvature, we have

((ﬁ,p’ 517, 557~2p> 5ﬁp> "'aaﬁp7 di'p, ) dﬁp)) =0.

From that the quantity 7,,(£)0*4 §% (#) is independent with respect to ¢, where
73 (¢) is the determinant of §,.,(¢), we see
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r(0, OB, 01y, -+, 0y, di,, -, dT,))
= (=1ym! H,7,dcd A, (2)

(1. 12)

where H,.(¢) and dA,(f) are the r-th mean curvature and the area element
of W7 (¢) respectively, and using (1.8), we have

(@5, bude, 80y, -+, OR,, diy, -, dEy)
= (—1)7'95(2) 7ty (2) 01
(1.13) X (3> Eups Bpuys > Bouy > Bpays s Bpu_)
x b33 (2) - ?5;;: 1 du' NduPs A\ du’r—'r/\du“* A-+ A dum-1
e (1Y G,y S8
B, () B () (D00l 0
because since ¢;,..q,,,, and &,,..., are the s-symbols of S™*! and W2(2),

def- —
e'tl-"i.m.*_l Jg e’i “Bop 4y epal @y \/y (t) ea1 "m’

the symbol e;,..;,,  meaning plus one or minus one, depending on whether
the indices 7,-:-7,,; denote an even permutation of 1,2,---,m+1 or odd
permutation, and zero when at least any two indices have the same value,
and also the symbol e, ..., meaning similarly for the indices ay, ‘-, @,, running
from 1 to m, we have the relation

(1. 14) it (D)8 pasy e, (2) = 0t W(P)wm e, gt
On the other hand, from (1.9) we have

(0Ry, bz, Ry, -, Oy, iy, -, dE,))
(1. 15) = ((0%,), oz, SRy, -+, Wiy, Ay, -, diEy))

—(Tounjrdw, o, Oy, -+, 00y, dEy, -, di,)).

Then putting

(m—1)!Ct,) = &, &b oerennsbiy (8)---b5 (0
and using (1. 11), (1.12), (1.13), (1.14) and the relation

| a(07) = jlxprdu > “

Cy— 1B Em—y

we have
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d (@, o, Oy, -+, Oy, ARy, -+, dE,))

_ (_1)1'—1 [ﬁ/ - i d~
= ——-r——- m! H 0,01 Ap(t>

+ (=17 m—1)!Cglyy cars(ms (D)3 d A, (2)
+ (@, < pnThdur, 50y, 07y, ATy, -, diy)

— (T (t)rd, bz, 80yy, -+, Oy, ARy, -, AFy)-
Furthermore we shall calculate the following quantity

(B T Bl S, 30y, B, )
(1. 16) R |
—(TpmiO)zdu, oz, o0y, -+, 00y, dzy, -+, diy)).

For the first term of (1. 16), making use of (1.8) and from that Ce,, is the
symmetric tensor, we have the following

=('—l)r—lrﬁpl(t)ai((rﬂ%zn gap(t)fﬁ'%pa,

~

(1.17) | Zyays s Brey_p Bpaps s Eomp )
| x b2y (£)-+-Be5— (1w’ NduP \o--\duPr=+ \dus N\ dun=s
= (= 1) 0Ty () 011 el 5767 (2)

ety gy P Proitrtnm B (f)- Do (£)dAL(2)

= (1) (m—1)! () 8T s 0 (O Z s Ol (8) A, 2),

X & pee,

where I',, is §,,I % and the symbol (78) means the symmetric part for indices
7 and B°
On the other hand, putting the vector & by the following expession
3t = (Rp(£)00) 7S + Fh(£)2%,

for the second term of (1.16), we have

— (T i (r,dut, bz, Oy, -, Oy, ARy, -+, AR,)
= _(_1)r_17-{npl(t)gi((‘l—:'ﬂﬁjjo(t)fr, %p’ g'1(Ja,""’ ﬁ'pa,._l’ Ez'pa,.a“', ﬁpu,,,__,))

+‘;5':>(t)<(rj1ﬁg(t)7n gz'pﬁ’ ‘%pan ""%par_n %pa,, ) Ei'pu,,,-,))}

x b2y (2) -+ b (B NP - N duPr=» N s -\ dun=s
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Let us take the relation (1.14) and

& (DT 7., = (—1)"E Zh ... ¥
€paa,-any,_Ip (t)wppg,-,- = ( 1) eﬁz...im“a?pﬁ,l wlzzm_lnpm+l ,

where &, .c at 3. Then after some calculations, we

get

means the ¢ ..

m+1 m+1

— (Tt Dyrydur, bz, Sy, -+, Oy, AZy, -+, 0%y))
(1.18) = (=17 (m—1) 7 {7y (&) 81T e} ()
— T (O74(8) § 7} C4 (DA, 2),
where ¢,5 is F,p(2) 2.

Thus from (1. 17), (1. 18) and T_ﬂ1+1—i¢jl=<aagij) , We have
Z /v

1

(@, T syt 31y, -+, 0y, ATy, -+, dE))
~ (T8O, 5z, 8y, -0y, ATy, -+, dEy)
(1. 19) =(—1y"'m—1)!z {ﬁpz(t)ﬁi(fm + Iy ) W5 (8) 5 )
— (Tt Ten)a (07 F 70} Ol (B A5(0
= (— 1Y (m—1) 7 {7y (2) 3L M) ()
— - LG OO F ) O D AAL(D)

where the symbol L means the Lie derivative and Lg,; is the Lie derivative

of g,; at p.
Now putting

Syolt) = = (o OR L B = - LT
X Py (ﬂ‘fr)} Con(0)dA, ),
we have

—1\-1 - -
T(ﬁ%)ﬁd(m;,, Bt Oy, <+, iy, ATy, -+, )

(1. 20) = i:f— H,5,0cd A, (2)

—

ColoOrats(@pudif T3 (0) dA,(8)+ 8 4 (2).
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Since #,,(£)0ty 5(f) at 7 is independent with respect to #, we can see the
following '

AN TD = T |
where #, is the normal unit vector of W™ at % and J* is the determinant
of the metric tensor §.; of W™, "

Integrating both members of (1 20) at p over the interval OSt<1 we
obtain the following .

_1\-1 1. ~ ~
%‘}i‘)"—' dSO ((1“1,;,?&611, 5721,, ) 57&1,, dx?’ T d%‘p))dt

(1. 21) = m(H,—H,,(0))#dtrdA

— 1 -1 ~ A
7 | 05T, dieeyrotydA
. | . v

-+ So Sp(_r) (t)dt ’

where H, and H,,(0) are the r-th mean curvature of W, and W™(0) respec-
tively, and dA means the area element of W™. Thus we can see that the
left hand’' member 'of (1.21) is the exterior differential of the differential
form attached to each pomt on the hypersurface W™. Let us denote a set
of W"‘( ?) for all pe W™ by W™(£) and sets of the quantities of W ()eW™ ()

H,t), C2(2, S (2), etc.. Then integrating both members of (1.21) over
W”” and applying Stokes’ thebrem, since W™ is closed, we have

o~

m({ (H—H.0)nsdA

(1 22) || 7 [0t @duamaraa

A " me S;g(f)(t)dt# 0 .

' (1.22) is the integral form '\relating to the 7-th mean curvature defined by
two hypersurfaces W™ and W™.

§2. A main theorem. We shall prove the following congruence the-
orem concerning the r-th mean curvature for closed hypersurfaces with the
- aid of the statements of the preceding section. We shall henceforth confine
ourselves to two hypersurfaces W™ and W™ Whlch do not contain a piece

of a hypersurface covered by the orblts of the transformations, which is
expressed by f( . x”‘“) 0. '
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THEOREM 2.1. If the hypersurfaces W™ and W™ in S™' are closod
orientable, and if there exists the relation

(2.1) H,=H,0)

at corresponding points along the orbits of the transformations, and if the
JSollowing conditions are satisfied

2.2) ﬁwm S:SW dt=0

and that in case of r=2, the second fundamental form of Wn(¢) is positive
definite for all p€ W™ and all t of the interval 0<t<1, at the corresponding
point P, then W™ and W™ are congruent mod G to ecch other.

Proor. Using the condition that in case of =2, the second funda-
mental form of W7(¢) is positive definite at , for all 7, we have that the
quantity

V5 | @ tTpav.y,

is positive definite. If we put the conditions (2. 1) and (2. 2) in the integral
form (1.22), we get

([ 7 [ ertos@aeainayad-o.

From the hypersurfaces W” and W™ do not contain a piece of a hyper-
surface covered by the orbits of transformations, that is, a point on wm
such that #,02=0 must be an isolate point. Moreover since z is a continuous
function of W™, we conclude

T = constant

at every point of W™. This fact shows that W™ and W™ are congruent
mod G.

ReEMARK 1. If G is a group of isometric transformations, then we have
that S,,(0)=0 and H,(0)=H,, etc., and Theorem 2.1 coincide with the
theorem given in the introduction.

ReEMARK 2. In case of =1, that is, the first mean curvature, we can
cancel the assumption that our space S™*! is of constant curvature.

Department of Mathematics
Hokkaido University
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