A remark on 2-transitive groups of odd degree

By Hiroshi KIMURA

Let G be a 2-transitive group on $\Omega = \{1, 2, \dots, n\}$, n odd. Let $G_{a,b}$ be the stabilizer of the points a, b and g_1^* (2) the number of involutions in G_1 which fix only the point 1. Let F(H) denote the set of all points fixed by a subset H of G and $\alpha(H)$ the number of points in F(H). In this note we shall prove the following.

THEOREM If $|G_{1,2}|$ is even and $\alpha(G_{1,2})$ is odd, then $g_1^*(2)=1$ and G has a regular normal subgroup or every involution of G is conjugate to an involution of $G_{1,2}$.

PROOF. Let I be an involution of G with the cycle structure (1, 2)... Then I normalizes $G_{1,2}$. Let d be the number of elements of $G_{1,2}$ inverted by I. Then d is the number of involutions with cycle structures (1, 2).... Let g(2) and $g_1(2)$ denote the number of involutions in G and G_1 , respectively. Since G is 2-transitive, $G = G_1 + G_1 IG_1$ and hence $g(2) = g_1(2) + g_2(2) = g_1(2) + g_2(2) + g_$ d(n-1). $d-g_1^*(2) = \{(g(2)-g_1^*(2)n)-(g_1(2)-g_1^*(2))\}/(n-1)$ is the number of involutions with the cycle structures (1, 2)... which are conjugate to an involution of $G_{1,2}$. Thus $g_1^*(2)$ is the number of involutions with cycle structures (1, 2)... which are not conjugate to any involution of $G_{1,2}$. Since $F(G_{1,2})^{I} = F(G_{1,2})$ and $\alpha(G_{1,2})$ is odd, $\alpha(\langle G_{1,2}, I \rangle) = 1$. Let a be the point in $F(\langle G_{1,2}, I \rangle)$. Every involution in $IG_{1,2}$ fixes a. Assume $g_1^*(2) \neq 0$. Let L be the subgroup of G_a generated by $g_1^*(2)$ involutions with the cycle structures (1, 2)... which fix only a. Then L is characteristic in G_a and hence L is 1/2-transitive on $\Omega - \{a\}$. Since $\{1, 2\}^{L} = \{1, 2\}$, L is 2-group and every L-orbits in $\Omega - \{a\}$ is of length 2. If $g^*(2) \ge 2$, then there exists a L-orbit of length >2. Thus $g^{*}(2)=1$, and by Z*-theorem $O(G)\neq 1$ and G has a regular normal subgroup. This proves Theorem.

Hokkaido University

References

[1] G. Glauberman: Central elements in core-free groups, J. Alg. 4 (1966), 403-420.
[2] H. Wielandt: Finite permutation groups, Academic press, New York, 1964.

(Received February 6, 1974)