H-projective-recurrent Kählerian manifolds and Bochner-recurrent Kählerian manifolds

By Izumi Hasegawa

Introduction.

T. Adati and T. Miyazawa [1] investigated the conformal-recurrent Riemannian manifolds and M. Matsumoto [2] the projective-recurrent Riemannian manifolds. In their paper, they concerned with the more general Riemannian manifolds, that is, the Riemannian metric g is not necessarily positive definite.

Recently, L. R. Ahuja and R. Behari [3] studied the H-projettive-recurrent Kählerian manifolds.

The purpose of the present paper is to make researches in the H -projective-recurrent Kählerian manifolds and the Bochner-recurrent Kählerian manifolds.

The present auther wishes to express his hearty thanks to Professor Y. Katsurada for her many valuable advices and encouragement.

§ 1. Preliminaries.

Let M be an $n(=2 m)$ dimensional Kählerian manifold with Kählerian structure (g, J) satisfying

$$
\begin{equation*}
{J^{i}}_{a} J^{a}{ }_{j}=-\delta_{j}^{i}, \quad J_{i j}=-J_{j i}, \nabla_{h} J^{i}{ }_{j}=0, \tag{1.1}
\end{equation*}
$$

where $J_{i j}=g_{i a} J^{a}{ }_{j}$.
It is well known that the tensor

$$
\begin{equation*}
P_{n i j k}=R_{k i j k}-\frac{1}{n+2}\left(R_{i j} g_{n k}-R_{h j} g_{i k}+H_{i j} J_{h k}-H_{h j} J_{i k}-2 H_{h i} J_{j k}\right) \tag{1.2}
\end{equation*}
$$

where $H_{i j}=R_{i a} J^{a}{ }_{j}$, is called the holomorphically projective (for brevity, Hprojective) curvature tensor of M, and the tensor

$$
\begin{align*}
B_{h i j k}= & R_{h i j k}-\frac{1}{n+4}\left(R_{i j} g_{k k}-R_{h j} g_{i k}+H_{i j} J_{k k}-H_{h j} J_{i k}-2 H_{h i} J_{j k}\right. \tag{1.3}\\
& \left.+R_{k k} g_{i j}-R_{i k} g_{h j}+H_{h k} J_{i j}-H_{i k} J_{h j}-2 H_{j k} J_{k i}\right) \\
& +\frac{R}{(n+2)(n+4)}\left(g_{i j} g_{h k}-g_{k j} g_{i k}+J_{i j} J_{h k}-J_{h j} J_{i k}-2 J_{h i} J_{j k}\right)
\end{align*}
$$

the Bochner curvature tensor of M.
We concider a tensor $U_{n i j_{k}}$ given by

$$
\begin{equation*}
U_{n i j k}=\dot{R}_{n i j k}-\frac{R}{n(n+2)}\left(g_{i j} g_{n k}-g_{n j} g_{i k}+J_{i j} J_{n k}-J_{h j} J_{i k}-2 J_{n i} J_{j k}\right) . \tag{1.4}
\end{equation*}
$$

Hence we call this tensor the H-concircular curvature tensor of M. The H-projective curvature tensor and the Bochner curvature tensor coincide with the H -concircular curvature tensor of M if and only if M is an Einstein space.

We call that a Kählerian manifold M is H -projective-recurrent if $\nabla_{l} P_{\text {hidk }}$ $=\kappa_{l} P_{n i 9_{k}}$ where κ_{l} is the vector of H-projective-recurrence, Bochner-recurrent $\nabla_{l} B_{n i j k}=\kappa_{l} B_{n i j k}$ where κ_{l} is the vector of Bochner-recurrence and H-con-circular-recurrent if $\nabla_{l} U_{n i j k}=\kappa_{l} U_{n i j k}$ where κ_{l} is the vector of H-concircularrecurrence.

We call that a Kählerian manifold M is H -projective-symmetric if the H-projective curvature tensor is parallel, that is, $\nabla_{l} P_{n i d k}=0$. Similarly, we define the Bochner-symmetric Kählerian manifold and H-concircular-symmetric Kählerian manifold.

We have well known the following identities:

$$
\begin{align*}
& g_{a b} J^{a}{ }_{i} J^{b}{ }_{j}=g_{i j}, \\
& R_{a b} J^{a} J^{J}{ }_{j}=R_{i j}, \quad R_{i a} J^{a}{ }_{j}=-R_{j a} J^{a}, \\
& \nabla^{a}, \\
& R_{a i j k}=\nabla_{k} R_{i j}-\nabla_{j} R_{i k}, \quad \nabla_{k} R=2 \nabla_{a} R^{a}{ }_{k}, \tag{1.5}\\
& H_{i j}=-H_{j i}, \quad H_{a b} J^{a b}=R, \\
& H_{i a} J^{a}=H_{j a} J^{a}{ }_{i}=-R_{i j}, \\
& H_{i j}=-(1 / 2) R_{a b i j} J^{a b}=R_{a i j J} J^{a b}, \\
& \nabla_{a} H_{k j} J^{a}{ }_{i}=\nabla_{k} R_{i j}-\nabla_{j} R_{i k}, \quad \nabla_{a} R J^{a}{ }_{k}=2 \nabla_{a} H^{a}{ }_{k} .
\end{align*}
$$

§ 2. H-projective-recurrent Kählerian manifolds.

Theorem 1. A necessary and sufficient condition for a Kählerian manifold M to be H-projective-recurrent is that M be H-concircular-recurrent.

Proof. We assum that a Kälerian manifold M is H -concircularrecurrent, i.e.

$$
\begin{equation*}
\nabla_{l} U_{n i j k}=\kappa_{l} U_{n i j k} . \tag{2.1}
\end{equation*}
$$

From (1.4), we can write (2.1) as

$$
\begin{equation*}
\nabla_{\imath} R_{n i j k}=\kappa_{l} R_{n i j k}+\frac{1}{n(n+2)}\left(\nabla_{\imath} R-\kappa_{l} R\right) \mathscr{A}_{n i j k}, \tag{2.1}
\end{equation*}
$$

where $\mathscr{A}_{n i j k}=g_{i j} g_{n k}-g_{k j} g_{i k}+J_{i j} J_{n k}-J_{h j} J_{i k}-2 J_{h i} J_{j k}$.
Contracting (2.1)* with $g^{h k}$, we get

$$
\begin{equation*}
\nabla_{\imath} R_{i j}=\kappa_{l} R_{i j}+\frac{1}{n}\left(\nabla_{l} R-\kappa_{l} R\right) g_{i j} \tag{2.2}
\end{equation*}
$$

Substituting (2.1)* and (2.2) in $\nabla_{l} P_{h i j k}$, we have

$$
\begin{equation*}
\nabla_{l} P_{h i j k}=\kappa_{l} P_{h i j k}, \tag{2.3}
\end{equation*}
$$

that is, M is H -projective-recurrent.
Conversely, we assume that M is H-projective-recurrent, than we have

$$
\begin{align*}
\nabla_{l} R_{h i j k}= & \kappa_{l} R_{h i j k}+\frac{1}{n+2}\left\{\left(\nabla_{l} R_{i j} g_{h k}-\nabla_{l} R_{h j} g_{i k}+\nabla_{l} H_{i j} J_{h k}-\nabla_{l} H_{h j} J_{i k}\right.\right. \tag{2.3}\\
& \left.\left.-2 \nabla_{l} H_{h i} J_{j k}\right)-\kappa_{l}\left(R_{i j} g_{h k}-R_{h j} g_{i k}+H_{i j} J_{h k}-H_{h j} J_{i k}-2 H_{h i} J_{j k}\right)\right\} .
\end{align*}
$$

Trancevecting (2.3)* with $g^{i j}$, we get

$$
\nabla_{l} R_{h k}=\kappa_{l} R_{h k}+\frac{1}{n}\left(\nabla_{l} R-\kappa_{l} R\right) g_{n k}
$$

Substituting this in (2.3)*, we obtain (2.1)*, i.e. (2.1).
Q.E.D.

From Theorem 1, we have the following corollaries.
Corollary 1. If a H-projective-recurrent Kählerian manifold M satisfies $\nabla_{l} R=\kappa_{l} R$, where κ_{l} is the vector of H-projective-recurrence, then M is recurrent.

Corollary 2. A necessary and sufficient condition for a Kählerian manifold M to be H-projective-spmmetric is that M be H-concircularsymmetric.

Corollary 3. If a H-projective-symmetric Kählerian manifold M has the constant scalar curvature, then M is symmetric.

Proposition 2. If a Kählerian manifold M is H-projective-recurrent, then M satisfies the identity

$$
\begin{equation*}
(n-2) \nabla_{k} R=2 n \kappa_{k} R_{k}^{a}-2 \kappa_{k} R, \tag{2.4}
\end{equation*}
$$

where κ_{k} is the vector of H-projective-recurrence.
Proof. Contracting (2.1)* with $g^{2 h}$, we get

$$
\begin{equation*}
\nabla^{a} R_{a i j k}=\kappa^{a} R_{a i j k}+\frac{1}{n(n+2)}\left(\nabla^{a} R-\kappa^{a} R\right) \mathscr{A}_{a i j k} \tag{2.5}
\end{equation*}
$$

where $\kappa^{a}=g^{a b} \kappa_{b}$.

Using (1.5) in the left side of (2.5), we obtain

$$
\begin{equation*}
\nabla_{a} H_{k j} J_{i}^{a}=\kappa^{a} R_{a i j k}+\frac{1}{n(n+2)}\left(\nabla^{a} R-\kappa^{a} R\right) \mathscr{A}_{a i j k} \tag{2.6}
\end{equation*}
$$

Transvecting this with $J^{i}{ }_{2} J^{j}{ }_{m}$, we get

$$
\begin{align*}
\nabla_{l} R_{k m}= & \kappa^{a} R_{a b c k} J^{b}{ }_{l} J^{c}{ }_{m}+\frac{1}{n(n+2)}\left(\nabla^{a} R-\kappa^{a} R\right)\left(g_{l m} g_{a k}+g_{a m} g_{l k}\right. \tag{2.7}\\
& \left.+2 g_{a l} g_{m k}+J_{l m} J_{a k}+J_{a m} J_{l k}\right) .
\end{align*}
$$

Moreover contracting this with $g^{k m}$, we obtain

$$
\nabla_{l} R=2 \kappa^{a} R_{a l}+\frac{2}{n}\left(\nabla_{l} R-\kappa_{l} R\right)
$$

whence (2.4) follows.
Q.E.D.

As an immediate consequence of this proposition and Corollary 3, we have the following

Corollary 4. In a H-projective-symmetric Kählerian manifold M, the scalar curvature R is constant. Therefore M is symmetric.

Now, we assume that a Kählerian manifold M is H-projective-recurrent and M is not of constant holomorphic sectional curvature. We have

$$
\begin{equation*}
\nabla_{l}\left(P_{h i j k} P^{n i j k}\right)=2 \kappa_{l}\left(P_{h i j k} P^{n i j k}\right) \tag{2.8}
\end{equation*}
$$

whence it follows that κ_{l} is gradient.
Using the Ricci identity and Theorem 1, we have the following
Proposition 3. A H-projective-recurrent Kählerian manifold M satisfies the condition $\nabla_{m} \nabla_{l} R_{h i j k}=\nabla_{2} \nabla_{m} R_{n i j k}$.

Next, we have the following
Theorem 4. If a Kählerian manifold M is H-projective-recurrent, then M is recurrent.

Proof. We have the following two cases: (a) M is of constant holomorphic sectional curvature, (b) the vector of H-projective-recurrence κ_{l} is gradient. In the case (a), M is symmetric, whence it follows that M is recurrent.

Now, we shall concider with the case (b).
We consider a tensor $U_{i j}$ given by

$$
\begin{equation*}
U_{i j}=R_{i j}-\frac{R}{n} g_{i j} \tag{2.9}
\end{equation*}
$$

In a H-projective-recurrent Kählerian manifold M, from Theorem 1, we
have (2.1), whence we obtain

$$
\begin{equation*}
\nabla_{l} U_{i j}=\kappa_{l} U_{i j} \tag{2.10}
\end{equation*}
$$

Since κ_{l} is gradient, we have

$$
\begin{equation*}
\nabla_{m} \nabla_{l} U_{i j}-\nabla_{l} \nabla_{m} U_{i j}=0 \tag{2.11}
\end{equation*}
$$

Applying the Ricci identity to (2.11), we obtain

$$
\begin{align*}
0 & =R_{m l i}{ }^{a} U_{a j}+R_{m l j}{ }^{a} U_{i a} \\
& =U_{m l i}{ }^{a} U_{a j}+U_{m l j}{ }^{a} U_{i a}+\frac{R}{n(n+2)}\left(\mathscr{A}_{m l i}{ }^{a} U_{a j}+\mathscr{A}_{m l j}{ }^{a} U_{i a}\right) . \tag{2.12}
\end{align*}
$$

Differentiating this covariantly, we get

$$
\begin{align*}
0= & 2 \kappa_{p}\left(U_{m l i}{ }^{a} U_{a j}+U_{m l j}{ }^{a} U_{i a}\right) \\
& +\frac{1}{n(n+2)}\left(\nabla_{p} R+\kappa_{p} R\right)\left(\mathscr{A}_{m l i}{ }^{a} U_{a j}+\mathscr{A}_{m l j}{ }^{a} U_{i a}\right) . \tag{2.13}
\end{align*}
$$

It follows from (2.12) and (2.13) that

$$
\begin{equation*}
\left(\nabla_{p} R-\kappa_{p} R\right)\left(\mathscr{A}_{m l i}{ }^{a} U_{a j}+\mathscr{A}_{m l j}{ }^{a} U_{i a}\right)=0 . \tag{2.14}
\end{equation*}
$$

Contracting this with $g^{l i}$, we obtain

$$
\begin{equation*}
\left(\nabla_{p} R-\kappa_{p} R\right) U_{m j}=0 \tag{2.15}
\end{equation*}
$$

Thus we find either $\nabla_{p} R=\kappa_{p} R$ or $U_{m j}=0$.
In the case $\nabla_{p} R=\kappa_{p} R$, from Corollary $1, M$ is recurrent.
In the case $U_{i j}=0, M$ is symmetric. (see $\S 3$. Theorem 6 or [3]) Q.E.D.

§ 3. Bochner-recurrent Kählerian manifolds.

It is clear that a Bochner-recurrent Kählerian manifold satisfying the condition $\nabla_{k} R_{i j}=\kappa_{k} R_{i j}$, where κ_{k} isthe vector of Bochner-recurrence, is recurrent.

In this section, first, we shall prove the following
Theorem 5. In order that a Bochner-recurrent Kählerian manifold M is H-projective-recurrent, it is necessary and sufficient to be $\nabla_{k} R_{i j}=\kappa_{k} R_{i j}$ $+\frac{1}{n}\left(\nabla_{k} R-\kappa_{k} R\right) g_{i j}$, where κ_{k} is the vector of Bochner-recurrence.

Proof. We assum that a Kählerian manifold M is H-projective-recurrent, then from the proof of Theorem 1 we have (2.1)* and (2.2). Substituting (2.1)* and (2.2) in $\nabla_{l} B_{n i j k}$, we have

$$
\begin{equation*}
\nabla_{l} B_{h i j k}=\kappa_{l} B_{h i j k} \tag{3.1}
\end{equation*}
$$

Conversely, we assume that a Bochner-recurrent Kählerian manifold M satisfies the condition (2.2) where κ_{l} is the vector of Bochner-recurrence, then we have
(3. 1)*

$$
\begin{aligned}
\nabla_{l} R_{h i j k}=\kappa_{l} R_{h i j j} & +\frac{1}{n+4}\left\{\nabla_{\imath}\left(\mathscr{B}_{h i j k}+\mathscr{B}_{i_{k k j} j}-2 H_{h i} J_{j k}-2 H_{j k} J_{n i}\right)\right. \\
& \left.-\kappa_{l}\left(\cdot \mathscr{B}_{n i j k}+\mathscr{B}_{i n k j}-2 H_{n i} J_{j k}-2 H_{j k} J_{h i}\right)\right\} \\
& -\frac{1}{(n+2)(n+4)}\left(\nabla_{l} R-\kappa_{l} R\right) \mathscr{A}_{k i j k},
\end{aligned}
$$

where $\mathscr{B}_{n i j k}=R_{i j} g_{h k}-R_{h j} g_{i k}+H_{i j} J_{n k}-H_{h j} J_{i k}$.
Substituting (2.2) in (3.1)*, we have (2.1)*, that is, (2.1). From Theorem $1, M$ is H-projective-recurrent. Q.E.D.

Theorem 6. ${ }^{1)}$ If a Bochner-recurrent Kählerian manifold M is Riccisymmetric, then either the Bochner curvature tensor vanishes or the vector of Bochner-recurrence is zero. Consequently M is symmetric.

Proof. If a Bochner-recurrent Kählerian manifold M is Ricci-symmetric, We have

$$
\begin{equation*}
\nabla_{l} R_{h i j k}=\kappa_{l} B_{n i j k} . \tag{3.2}
\end{equation*}
$$

From the Bianchi's identity and (3.2), we get

$$
\begin{equation*}
\kappa_{l} B_{n i j k}+\kappa_{h} B_{i l j k}+\kappa_{i} B_{l h j k}=0 . \tag{3.3}
\end{equation*}
$$

Transvecting (3.3) with κ^{l}, we have

$$
\begin{equation*}
\kappa_{i} \kappa^{l} B_{h i j k}+\kappa_{h} \kappa^{l} B_{i l j k}+\kappa_{i} \kappa^{l} B_{l h j k}=0 . \tag{3.4}
\end{equation*}
$$

Since $\nabla^{a} R_{a i j k}=\nabla_{k} R_{i j}-\nabla_{j} R_{i k}=0$, we have $\kappa^{l} B_{i l j k}=0$ and $\kappa^{l} B_{i h j k}=0$.
Now, we obtain $\left(\kappa_{l} \kappa^{l}\right) B_{n i j k}=0$. Consequently, κ_{l} is zero or the Bochner curvature tenson vanishes. Therefore M is symmetric. Q.E.D.

Theorem 7. If a Kählerian manifold M is Bochner-recurrent and Ricci-recurrent, then M is recurrent.

Proof. We assume that the Bochner curvature tensor does not vanish in a Bochner-recurrent Kählerian manifold M. Then the vector of Bochnerrecurrence κ_{l} is gradient.

We put κ_{\imath}^{*} the vector of Ricci-recuarence and

$$
\begin{equation*}
\mathscr{C}_{n i j k}=R_{n i j k}-B_{n i j k}, \tag{3.5}
\end{equation*}
$$

whence it follows that

$$
\begin{equation*}
\nabla_{l} R_{n i j k}=\kappa_{l} B_{h i j k}+\kappa_{l}^{*} \mathscr{C}_{n i j_{k}} . \tag{3.6}
\end{equation*}
$$

1) This theorem was proved by T. Yamada.

Since either $B_{h i j k}=0$ or κ_{l} is gradient, we have

$$
\begin{equation*}
\nabla_{m} \nabla_{l} B_{n i j k}-\nabla_{l} \nabla_{m} B_{n i j k}=0 . \tag{3.7}
\end{equation*}
$$

Using the Ricci identity to (3.7), we obtain

$$
\begin{align*}
& 0=R_{m l n}{ }^{a} B_{a t j k}+R_{m l i}{ }^{a} B_{n a j k}+R_{m l j}{ }^{a} B_{n t a k k}+R_{m l k}{ }^{a} B_{n j j a} \\
& =B_{m l h}{ }^{a} B_{a i j k}+B_{m l i}{ }^{a} B_{n a j k}+B_{m l j}{ }^{a} B_{n i d k}+B_{m l k}{ }^{a} B_{n i j a} \tag{3.8}\\
& +\mathscr{C}_{m l l}{ }^{a} B_{a i j k}+\mathscr{C}_{m l i}{ }^{a} B_{n a j k}+\mathscr{C}_{m l j}{ }^{a} B_{n t a k}+\mathscr{C}_{m l k}{ }^{a} B_{n t j a} .
\end{align*}
$$

The covariant differentiation of (3.8) gives

$$
\begin{align*}
0= & 2 \kappa_{p}\left(B_{m l h}{ }^{a} B_{a i t j k}+B_{m l i}{ }^{a} B_{n a j k}+B_{m l j}{ }^{a} B_{n t a k}+B_{m l k}{ }^{a} B_{n i j a}\right) \tag{3.9}\\
& +\left(\kappa_{p}+\kappa_{p}^{*}\right)\left(\mathscr{C}_{m l h}{ }^{4} B_{a i j j k}+\mathscr{C}_{m l i}{ }^{a} B_{n a j k k}+\mathscr{C}_{m l j}{ }^{a} B_{n i d k}+\mathscr{C}_{m l k}{ }^{a} B_{n i j j a}\right) .
\end{align*}
$$

It follows from (3.8) and (3.9), that

$$
\begin{equation*}
\left(\kappa_{p}-\kappa_{p}^{*}\right)\left(\mathscr{C}_{m l h}{ }^{a} B_{a i j k}+\mathscr{C}_{m l i}{ }^{a} B_{h a j k}+\mathscr{C}_{m l j}{ }^{a} B_{h i a k k}+\mathscr{C}_{m l k}{ }^{a} B_{h i j a}\right)=0 . \tag{3.10}
\end{equation*}
$$

In the case $\kappa_{p}=\kappa_{p}^{*}$, clearly, M is recurrent.
Next, we assume that

$$
\begin{equation*}
\mathscr{C}_{m l n}{ }^{a} B_{a i j k k}+\mathscr{C}_{m l i}{ }^{a} B_{n a j k}+\mathscr{C}_{m l j}{ }^{a} B_{n i a k k}+\mathscr{C}_{m l k}{ }^{a} B_{n i j a a}=0 . \tag{3.11}
\end{equation*}
$$

Contracting this with $g^{l n}$, we have

$$
\begin{equation*}
R_{m}{ }^{a} B_{a i j k}=0 . \tag{3.12}
\end{equation*}
$$

Transvecting this with $\kappa^{* m}$, we obtain

$$
\begin{align*}
0 & =\kappa^{* b} R_{b}{ }^{a} B_{a t j k} \\
& =\frac{R}{2} \kappa^{* a} B_{a i j k} . \tag{3.13}
\end{align*}
$$

Thus, we find either

$$
\begin{equation*}
\kappa^{* a} B_{a i j k l}=0 \tag{3.14}
\end{equation*}
$$

or $R=0$.
In the case (3.14), transvecting (3.11) with $\kappa^{* 1} \kappa^{* h}$, we obtain $\kappa^{* 1} \kappa^{* h} \mathscr{C}_{m l h}{ }^{a} B_{a i j k}=0$, whence it follows that

$$
\begin{equation*}
R\left(\kappa^{*}{ }_{a} \kappa^{* a}\right) B_{m i j k}=0 . \tag{3.15}
\end{equation*}
$$

In the case $B_{n i j k}=0$, we have

$$
\begin{aligned}
\nabla_{\imath} R_{h i j k} & =\nabla_{\imath} \mathscr{C}_{\text {nijk }} \\
& =\kappa^{*} \mathscr{l} \mathscr{C}_{\text {nijk }} \\
& =\kappa^{*}{ }_{l} R_{k i j k},
\end{aligned}
$$

that is, M is recurrent.
Next, we shall consider the base $\kappa^{*}{ }_{k}=0$.
In this case, from Theorem $6, M$ is symmetric.
Finally, we shall consider the case $R=0$.
Transvecting (3.11) with $R^{l h}$ and using (3.12), we have

$$
\begin{align*}
0 & =\left(R^{a b} R_{a b}\right) B_{m i j k}+R^{d c} R_{c b} J^{b}{ }_{a} J_{m}{ }^{a} B_{a i j k} \tag{3.16}\\
& =\left(R^{a b} R_{a b}\right) B_{m i j k k} .
\end{align*}
$$

Consequently M is recurrent.
Q.E.D.

Department of Mathematics Hokkaido University of Education

References

[1] T. Adati and T. Miyazawa: On a Riemannian space with recurrent conformal curvature, Tensor, N.S. 18 (1967), 348-354.
[2] M. Matsumoto: On Riemannian spaces with recurrent projective curvature, Tensor, N. S. 19 (1968), 11-18.
[3] L. R. Ahuja and R. Behari: H-projective-symmetric and recurrent Kähler spaces, Tensor, N.S. 26 (1972), 102-104.
[4] S. Tachibana: On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ., 18 (1968), 15-19.

