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Introduction.

T. Adati and T. Miyazawa [1] investigated the conformal-recurrent
Riemannian manifolds and M. Matsumoto [2] the projective-recurre.nt Rie-
mannian manifolds. In their paper, they concerned with the more general
Riemannian manifolds, that is, the Riemannian metric g is not necessarily
positive definite.

Recently, L. R. Ahuja and R. Behari [3] studied the H-projettive-recur-
rent K\"ahlerian manifolds.

The purpose of the present paper is to make researches in the H-
projective-recurrent K\"ahlerian manifolds and the Bochner-recurrent K\"ahlerian
manifolds.

The present auther wishes to express his hearty thanks to Professor
Y_{\cong_{-}}^{F}.Katsurada for her many valuable advices and encouragement.

\S 1. Preliminaries.

Let M be an n(=2m) dimensional K\"ahlerian manifold with K\"ahlerian
structure (g, J) satisfying

(1. 1) J_{a}^{i}J_{j}^{a}=-\delta_{f}^{i} , J_{if}=-J_{fi\prime}. \nabla_{h}J_{f}^{i}=0 ,

where J_{if}=g_{ia}J_{f}^{a} .
It is well known that the tensor

(1. 2) P_{hifk}=R_{hifk}- \frac{1}{n+2}(R_{if}g_{hk}-R_{hf}g_{ik}+H_{if}J_{hk}-H_{hf}J_{ik}-2H_{hi}J_{fk}) ,

where H_{if}=R_{ia}J_{f}^{a} , is called the holomorphically projective (for brevity, H-
projective) curvature tensor of M, and the tensor

(1. 3) B_{hifk}=R_{hijk}- \frac{1}{n+4}(R_{if}g_{hk}-R_{hf}g_{ik}+H_{if}J_{hk}-H_{hJ}J_{ik}-2H_{hi}J_{jk}

+R_{hk}g_{if}-R_{ik}g_{hf}+H_{hk}J_{if}-H_{ik}J_{hf}-2H_{fk}J_{hi})

+ \frac{R}{(n+2)(n+4)}(g_{if}g_{hk}-g_{hf}g_{ik}+J_{if}J_{hk}-J_{hj}J_{ik}-2J_{hi}J_{fk})



272 I. Hasegawa

the Bochner curvature tensor of M.
We concider a tensor U_{hifk} given by

(1. 4) U_{hifk}= \dot{R}_{hifk}-\frac{R}{n(n+2)}(g_{if}g_{hk}-g_{hf}g_{ik}+J_{iJ_{\backslash }}J_{hk}-J_{hf}J_{ik}-2J_{hi}J_{fk})\iota

Hence we call this tensor the H-concircular curvature tensor of M. The
H-projective curvature tensor and the Bochner curvature tensor coincide
with the H-concircular curvature tensor of M if and only if M is an
Einstein space.

We call that a K\"ahlerian manifold M is H-projective-recurrent if \nabla_{l}P_{hifk}

=\kappa_{l}P_{hi\acute{f}k} where \kappa_{l} is the vector of H-projective-recurrence, Bochner-recurrent
\nabla_{l}B_{hifk}=\kappa_{l}B_{hifk} where \kappa_{l} is the vector of Bochner-recurrence and H-con-
circular-recurrent if \nabla_{l}U_{hifk}=\kappa_{l}U_{hifk} where \kappa_{l} is the vector of H-concircular-
recurrence.

We call that a K\"ahlerian manifold M is H-projective-symmetric if the
H-projective curvature tensor is parallel, that is, \nabla_{l}P_{hifk}=0 . Similarly, we
define the Bochner-symmetric K\"ahlerian manifold and H-concircular-sym-
metric K\"ahlerian manifold.

We have well known the following identities:
g_{ab}J_{i}^{a}J_{f}^{b}=g_{if} ,
R_{ab}J_{i}^{a}J_{f}^{b}=R_{if} , R_{ia}J_{f}^{a}=-R_{fa}J_{i}^{a} ,
\nabla^{a}R_{aifk}=\nabla_{k}R_{if}-\nabla_{f}R_{ik} , \nabla_{k}R=2\nabla_{a}R_{k}^{a} ,

(1. 5) H_{if}=-H_{fi} , H_{ab}J^{ab}=R ,

H_{ia}J_{f}^{a}=H_{fa}J_{i}^{a}=-R_{if} ,
H_{if}=-(1/2)R_{abif}J^{ab}=R_{aifb}J^{ab} ,
\nabla_{a}H_{kf}J_{i}^{a}=\nabla_{k}R_{if}-\nabla_{f}R_{ik} , \nabla_{a}RJ_{k}^{a}=2\nabla_{a}H_{k}^{a} .

\S 2. H-projective-recurrent K\"ahlerian manifolds.

THEOREM 1. A necessary and sufficient condition for a K\"ahlerian

manifold M to be H-projective-recurrent is that M be H-concircular-recurrmt.

PROOF. We assum that a K\"alerian manifold M is H-concircular-
recurrent, i.e.
(2. 1) \nabla_{l}U_{hifk}=\kappa_{l}U_{hifk}

From (1. 4), we can write (2. 1) as

(2. 1)^{*} \nabla_{l}R_{hifk}=\kappa_{l}R_{hifk}+\frac{1}{n(n+2)}(\nabla_{l}R-\kappa_{l}R)\mathscr{A}_{hifk} ,
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where \mathscr{A}_{hifk}=g_{if}g_{hk}-g_{hf}g_{ik}+J_{if}J_{hk}-J_{hf}J_{ik}-2J_{hi}J_{fk}r

Contracting (2. 1)^{*} with g^{hk} , we get

(2. 2) \nabla_{l}R_{if}=\kappa_{l}R_{if}+\frac{1}{n}(\nabla_{l}R-\kappa_{l}R)g_{if} .

Substituting (2. 1)^{*} and (2. 2) in \nabla_{l}P_{htfk} , we have
(2. 3) \nabla_{l}P_{hifk}=\kappa_{l}P_{hifk} ,

that is, M is H-projective-recurrent.
Conversely, we assume that M is H-projective-recurrent, than we have

(2. 3)^{*} \nabla_{l}R_{hifk}=\kappa_{l}R_{hifk}+\frac{1}{n+2}\{(\nabla_{l}R_{if}g_{hk}-\nabla_{l}R_{hf}g_{ik}+\nabla_{l}H_{ij}J_{hk}-\nabla_{l}H_{hj}J_{ik}

-2\nabla_{l}H_{hi}J_{fk})-\kappa_{l}(R_{if}g_{hk}-R_{hj}g_{ik}+H_{if}J_{hk}-H_{hj}J_{ik}-2H_{hi}J_{fk})\} .
Trancevecting (2. 3)^{*} with g^{if}, we get

\nabla_{l}R_{hk}=\kappa_{l}R_{hk}+\frac{1}{n}(\nabla_{l}R-\kappa_{l}R)g_{hk1}

Substituting this in (2. 3)^{*} , we obtain (2. 1)^{*} , i.e. (2. 1). Q. E. D.
From THEOREM 1, we have the following corollaries.
COROLLARY 1. If a H-projective-recurrent K\"ahlerian manifold M satis-

fies \nabla_{l}R=\kappa_{l}R , where \kappa_{l} is the vector of H-projective-recurrence, then M is
recurrent.

COROLLARY 2. A necessary and sufficient condition for a K\"ahlerian

manifold M to be H-projective-spmmetric is that M be H-concircular-
symmetric.

COROLLARY 3. If a H-projective-symmetric K\"ahlerian manifold M has
the constant scalar cunature, then M is symmetric.

PROPOSITION 2. If a K\"ahlerian manifold M is H-projective-recurrent,
then M satisfies the identity

(2. 4) (n-2)\nabla_{k}R=2n\kappa_{a}R^{a_{k}}-2\kappa_{k}R ,

where \kappa_{k} is the vector of H-projective-recurrence.
PROOF. Contracting (2. 1)^{*} with g^{lh}, we get

(2. 5) \nabla^{a}R_{aifk}=\kappa^{a}R_{aijk}+\frac{1}{n(n+2)}(\nabla^{a}R-\kappa^{a}R)\mathscr{A}_{aifk:}

where \kappa^{a}=g^{ab}\kappa_{b} .
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Using (1. 5) in the left side of (2. 5), we obtain

(2. 6) \nabla_{a}H_{kf}J^{a_{i}}=\kappa^{a}R_{aifk}+\frac{1}{n(n+2)}(\nabla^{a}R-\kappa^{a}R)\mathscr{A}_{aijk}1

Transvecting this with J_{l}^{i}J_{m}^{f} , we get

(2. 7) \nabla_{l}R_{km}=\kappa^{a}R_{abck}J_{l}^{b}J_{m}^{c}+\frac{1}{n(n+2)}(\nabla^{a}R-\kappa^{a}R)(g_{lm}g_{ak}+g_{am}g_{lk}

+2g_{al}g_{mk}+J_{lm}J_{ak}+J_{am}J_{lk}) .
Moreover contracting this with g^{km}, we obtain

\nabla_{l}R=2\kappa^{a}R_{al}+\frac{2}{n}(\nabla_{l}R-\kappa_{l}R) ,

whence (2. 4) follows. Q. E. D.

As an immediate consequence of this proposition and COROLLARY 3,
we have the following

COROLLARY 4. In a H-projective-symmetric K\"ahlerian manifold M,

the scalar curvature R is constant. Therefore M is symmetric.

Now, we assume that a K\"ahlerian manifold M is H-projective-recurrent
and M is not of constant holomorphic sectional curvature. We have

(2. 8) \nabla_{l}(P_{hifk}P^{hifk})=2\kappa_{l}(P_{hifk}P^{hifk}) ,

whence it follows that \kappa_{l} is gradient.
Using the Ricci identity and THEOREM 1, we have the following

PROPOSITION 3. A H-projective-recurrent K\"ahlerian manifold M satis-

fies the condition \nabla_{m}\nabla_{l}R_{hifk}=\nabla_{l}\nabla_{m}R_{hifk} .
Next, we have the following

THEOREM 4. If a K\"ahlerian manifold M is H-projective-recurrent,
then M is recurrent.

PROOF. We have the following two cases: (a) M is of constant hol0-
morphic sectional curvature, (b) the vector of H-projective-recurrence \kappa_{l} is
gradient. In the case (a), M is symmetric, whence it follows that M is
recurrent.

Now, we shall concider with the case (b).

We consider a tensor U_{if} given by

(2. 9) U_{if}=R_{if}- \frac{R}{n}g_{if} .

In a H-projective-recurrent K\"ahlerian manifold M, from THEOREM 1, we
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have (2. 1), whence we obtain

(2. 10) \nabla_{l}U_{if}=\kappa_{l}U_{ij}

Since \kappa_{l} is gradient, we have

(2. 11) \nabla_{m}\nabla_{l}U_{if}-\nabla_{l}\nabla_{m}U_{if}=01

Applying the Ricci identity to (2. 11), we obtain
0=R_{mli}^{a}U_{aj}+R_{mlf}^{a}U_{ia}

(2. 12)
=U_{mli}^{a}U_{af}+U_{mlf}^{a}U_{ia}+ \frac{R}{n(n+2)}(\mathscr{A}_{mli}^{a}U_{af}+\mathscr{A}_{mlg^{a}}U_{ia}) .

Differentiating this covariantly, we get

0=2\kappa_{p}(U_{mli}^{a}U_{af}+U_{mlf}^{a}U_{ia})

(2. 13)
+ \frac{1}{n(n+2)}(\nabla_{p}R+\kappa_{p}R)(\mathscr{A}_{mli}^{a}U_{aj}+\mathscr{A}_{mlf}^{a}U_{ia}) .

It follows from (2. 12) and (2. 13) that

(2. 14) (\nabla_{p}R-\kappa_{p}R)(-\vee 4_{mli}^{a}U_{af}+\mathscr{A}_{mlf}^{a}U_{ia})=0 .
Contracting this with g^{li}, we obtain

(2. 15) (\nabla_{p}R-\kappa_{p}R)U_{mf}=0 .
Thus we find either \nabla_{p}R=\kappa_{p}R or U_{mf}=0 .

In the case \nabla_{p}R=\kappa_{p}R , from COROLLARY 1, M is recurrent.
In the case U_{if}=0, M is symmetric. (see \S 3. THEOREM 6 or [3]) Q.E.D.

\S 3. Bochner-recurrent K\"ahlerian manifolds.

It is clear that a Bochner-recurrent K\"ahlerian manifold satisfying the
condition \nabla_{k}R_{if}=\kappa_{k}R_{ij} , where \kappa_{k} isthe vector of Bochner-recurrence, is
recurrent.

In this section, first, we shall prove the following

THEOREM 5. In order that a Bochner-recurrent K\"ahlerian manifold
M is H-projective-recurrmt, it is necessary and sufficimt to be \nabla_{k}R_{ij}=\kappa_{k}R_{if}\sim

+ \frac{1}{n}(\nabla_{k}R-\kappa_{k}R)g_{if} , where \kappa_{k} is the vector of Bochner-recurrence.

PROOF. We assum that a K\"ahlerian manifold M is H-projective-recur-
rent, then from the proof of THEOREM 1 we have (2. 1)^{*} and (2. 2).
Substituting (2. 1)^{*} and (2. 2) in \nabla_{l}B_{hijk} , we have

(3. 1) \nabla_{l}B_{hifk}=\kappa_{l}B_{hifk}
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Conversely, we assume that a Bochner-recurrent K\"ahlerian manifold M
satisfies the condition (2. 2) where \kappa_{l} is the vector of Bochner-recurrence,
then we have

\nabla_{l}R_{hifk}=\kappa_{l}R_{hiff}+\frac{1}{n+4}\{\nabla_{l}({?}_{hifk}.+{?}_{ihkf}-2H_{hi}J_{jk}-2H_{fk}J_{hi})

(3. 1)^{*} -\kappa_{l}(-{?}_{hifk}+{?}_{ihkf}-2H_{hi}J_{fk}-2H_{fk}J_{hi})\}

- \frac{1}{(n+2)(n+4)}(\nabla_{l}R-\kappa_{l}R)\mathscr{A}_{hifk} ,

where c{?}_{hifk}.=R_{if}g_{hk}-R_{hf}g_{ik}+H_{if}J_{hk}-H_{hf}J_{ik} .
Substituting (2. 2) in (3. 1)^{*} , we have (2. 1)^{*} , that is, (2. 1). From THE-
OREM 1, M is H-projective-recurrent. Q. E. D.

THEOREM 6.1) If a Bochner-recurrent K\"ahlerian manifold M is Ricci-
symmetric, then either the Bochner curvature tensor vanishes or the vector

of Bochner-recurrence is zero. Consequently M is symmetric.
PROOF. If a Bochner-recurrent K\"ahlerian manifold M is Ricci-sym-

metric, We have
(3. 2) \nabla_{l}R_{hifk}=\kappa_{l}B_{hifk} .
From the Bianchi’s identity and (3. 2), we get

(3. 3) \kappa_{l}B_{hifk}+\kappa_{h}B_{ilfk}+\kappa_{i}B_{lhfk}=0 .
Transvecting (3. 3) with \kappa^{l}, we have
(3. 4) \kappa_{l}\kappa^{l}B_{hifk}+\kappa_{h}\kappa^{l}B_{ilfk}+\kappa_{i}\kappa^{l}B_{lhfk}=0t

Since \nabla^{a}R_{aifk}=\nabla_{k}R_{if}-\nabla_{f}R_{ik}=0, we have \kappa^{l}B_{ilfk}=0 and \kappa^{l}B_{lhfk}=0 .
Now, we obtain (\kappa_{l}\kappa^{l})B_{hifk}=0 . Consequently, \kappa_{l} is zero or the Bochner

curvature tenson vanishes. Therefore M is symmetric. Q.E.D.

THEOREM 7. If a K\"ahlerian manifold M is Bochner-recurrent and
Ricci-recurrent, then M is recurrent.

PROOF. We assume that the Bochner curvature tensor does not vanish
in a Bochner-recurrent K\"ahlerian manifold M. Then the vector of Bochner-
recurrence \kappa_{l} is gradient.

We put \kappa_{l}^{*} the vector of Ricci-recuarence and
(3. 5) \mathscr{C}_{hifk}=R_{hifk}-B_{hifk} ,

whence it follows that

(3. 6) \nabla_{l}R_{hifk}=\kappa_{l}B_{hifk}+\kappa_{l}^{*}\mathscr{C}_{hifk1}

1) This theorem was proved by T. Yamada.
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Since either B_{hifk}=0 or \kappa_{l} is gradient, we have

(3. 7) \nabla_{m}\nabla_{l}B_{hifk}-\nabla_{l}\nabla_{m}B_{hifk}=0t

Using the Ricci identity to (3. 7), we obtain
0=R_{mlh}^{a}B_{aifk}+R_{mli}^{a}B_{hafk}+R_{mlf}^{a}B_{hiak}+R_{mlk}^{a}B_{hifa}

(3. 8) =B_{mlh}^{a}B_{aifk}+B_{mli}^{a}B_{hafk}+B_{mlf}^{a}B_{hiak}+B_{mlk}^{a}B_{hifa}

+\mathscr{C}_{mlh}^{a}B_{aifk}+\mathscr{C}_{mli}^{a}B_{hafk}+\mathscr{C}_{mlf}^{a}B_{hiak}+\mathscr{C}_{mlk}^{a}B_{hif\alpha}1

The covariant differentiation of (3. 8) gives

0=2\kappa_{p}(B_{mlh}^{a}B_{aifk}+B_{mli}^{a}B_{hafk}+B_{mlf}^{a}B_{htak}+B_{mlk}^{a}B_{hifa})

(3. 9)
+(\kappa_{p}+\kappa_{p}^{*})(\mathscr{C}_{mlh}^{a}B_{aifk}+r\mathscr{C}_{mli}^{a}B_{hafk}+\mathscr{C}_{mlf}^{a}B_{hiak}+\mathscr{C}_{mlk}^{a}B_{hifa}) .

It follows from (3. 8) and (3. 9), that
(3. 10) (\kappa_{p}-\kappa_{p}^{*})(\mathscr{C}_{mlh}^{a}B_{aifk}+\prime \mathscr{C}_{mli}^{a}B_{hafk}+\mathscr{C}_{mlf}^{a}B_{hiak}+\mathscr{C}_{mlk}^{a}B_{hifa})=0 .

In the case \kappa_{p}=\kappa_{p}^{*} , clearly, M is recurrent.
Next, we assume that

(3. 11) \mathscr{C}_{mlh}^{a}B_{aifk}+\mathscr{C}_{mli}^{a}B_{hafk}+\mathscr{C}_{mlf}^{a}B_{hiak}+\mathscr{C}_{mlk}^{a}B_{hif\alpha}=0

Contracting this with g^{lh}, we have

(3. 12) R_{m}^{a}B_{aifk}=0 .
Transvecting this with \kappa^{*m}, we obtain

0=\kappa R_{b}^{a}*bB_{aifk}

(3. 13)
= \frac{R}{2}\kappa^{*a}B_{aifk} .

Thus, we find either
(3. 14) \kappa^{*a}B_{aifk}=0

or R=0.
In the case (3. 14), transvecting (3. 11) with \kappa^{*l}\kappa^{*h} , we obtain

\kappa^{*l}\kappa^{*h}\mathscr{C}_{mlh}^{a}B_{aifk}=0 , whence it follows that

(3. 15) R(\kappa_{a}^{*}\kappa^{*\cdot a})B_{mifk}=0 .
In the case B_{hifk}=0, we have

\nabla_{l}^{R_{hifk}=\nabla_{l}\mathscr{C}_{hijk}}

=\kappa_{l}^{*}\mathscr{C}_{hifk}

=\kappa_{l}^{*}R_{hifk} ,
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that is, M is recurrent.
Next, we shall consider the base \kappa_{k}^{*}=0 .

In this case, from THEOREM 6, M is symmetric.
Finally, we shall consider the case R=0.

Transvecting (3. 11) with R^{lh} and using (3. 12), we have
0=(R^{ab}R_{ab})B_{mifk}+R^{dc}R_{rb}J_{l}^{b},J_{m}^{a}B_{aifk}

(3. 16)
=(R^{ab}R_{ab})B_{mifk\{}

Consequently M is recurrent. Q. E. D.

Department of Mathematics
Hokkaido University of Education
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