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On infinitesimal projective transformations
By Kazunari YAMAUCHI

§ 1. Introduction

For the infinitesimal conformal transformations, the following results
are well known.

THEOREM A. Let M be a complete Riemannian manifold with parallel
Ricci tensor. If M admits nonisometric infinitesimal conformal transfor-
mations, then M is isometric to a sphere.

THEOREM B. Let M be a compact Riemannian manifold wzth constant

scalar curvature. If the scalar curvature is nonpositive, then an infinitesi-
~ mal conformal transformation is a motion.

THEOREM C. Let M be a compact Riemannian manifold with positive
constant scalar curvature. If M admits nonisometric infinitesimal confor-
mal transformations, then M is isometric to a sphere.

And for the infinitesimal projective transformations, the following
results are known.

TrEOREM D. Let M be a complete Riemannian manifold with parallel
Ricci tensor. If M admits nonaffine infinitesimal projective transformations,
then M is a space of positive constant curvature. [1] '

TureorREM E. Let M be a complete analytic Riemannian manifold. If
M admits nonaffine infinitesimal projective transformations, then M 1s
a space of positive constant curvature. [2]

The purpose of this paper is to prove the following theorems :

THEOREM 1. Let M be a compact Riemannian manifold with constant
scalar curvature K. If the scalar curvature is nonpositive, then an infini-
tesimal projective transformation is a motion.

TueoREM 2. Let M be a compact Riemannian manifold satisfying
a condition V,K;—V;K,;, =0, (K=+0), where V,, K;, denote a covariant
derivative and Ricci tensor respectively. The projective killing vector v
can be decomposed uniquely as follows,

V' =w"+q",

where w" and q" are killing vector and gradient projective killing vector
respectively.
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THEOREM 3. Let M be a compact Riemannian manifold satisfying
a condition Vi K;—V;K,;=0, (K+0). If M admits a nonisometric infini-
tesimal projective transformation, then M is a space of positive constant
curvature.

CorOLLALY. Let M be a compact conformally flat Riemannian mani-
Sfold with positive constant scalar curvature. If M admits a nonisometric
in finitesimal projective transformation, then M is a space of positive con-
stant curvature.

For this Corollaly, see [3].

A vector field v* is called an infinitesimal projective transformation or
- a projective killing vector if it satisfies

L{]{;} =VVv"+ K" v* = 03+ 01 ¢y,
where L, {;;.}, K" ¢, denote a Lie derivation with respect to v”, Chris-

toffel’s symbol, curvature tensor, and associated vector respectively. From
this equation, we get following results

LK, "= — 0V s+ 04V s
£Kj¢= “(n'—l)VjS[’z',

ViV,-’()j+Kj¢‘vi=2¢'j,

Vi(div') = (n+1)¢;.

1
If we put mV,;v’=f, then we have f;=¢;, where f; means F,f.

Therefore ¢; is a gradient vector and in the following discussions we use

f; instead of ¢,.

I should like to express my hearty thanks to Prof. Y. Katsurada for
her kind suggestions and many valuable criticisms.

§ 2. Proof of Theorem 1

In this section we assume Riemannian manifold M is compact and the
scalar curvature is constant.

LEMMA 1. There exists the following equation
(n—1)Ff+2KAf+2K,Vif'=0,
where 4 means gV ,V,.

PrOOF. Since the scalar curvature K is constant, we have
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0

L(g?*V ;K;q)
£gj“)VjK¢a+gj LVjK,m

(
(Lo P, Kyt g’ {Vj,LKm—(,C{fi})Kb,,—(L{ .b})Ka,}
(

ja
Lg*)V ;Kea—(n—=1)VV ; f,—(05 /i +6:f3) K3
(1.1) —( jf:z‘*‘agfj) 97" K,
= (Lg?)V;Kia—(n—1)V(4f )—(n—1) Kos f*
—Kf,——SKa,,f"
= (Lg? )V ;Kia—(n—1)V,(4f ) — Kf:
—(n+2) K, f°.
And operate V; for (1.1), we obtain the following equation
=W, Lg?"\V,K:+(Lg?\V,V;Ki—(n—1)Lf
—KAf—(n+2)K, PV fe.

Qn theother hand, we have the following equentions
7. Lo7,Ke={L0m— (£} —(£{5))o") 7.k

1.3) = —{(04fs+011) 91
+(85fo+ 08 £) g} 7 K

(1.2)

0
=(Lg")(V,V:Ki+ Ku:f Ki—Ki;d K3)
(Lg%) (K Ki— Koy Ki)
L{g" Ky K,,—Ku: K
—g*(L K Ko—K,;2 K3)
(1. 4) = — g/ {(LK ) Kt + K, LKA~ (LK) K
. —Kul LK
—(LKp)K?+(LKj4") 9 Ky
=(n—1)V, £, K?+(— 80, fu+ 837 . £) g"* Ki
=nKVifi—KAf.

Substituting (1. 3) and (1. 4) into (1.2), we have Lemma 1.
LEMMA 2. There is the following relation

(| faras={ (afrds,

(Lg’)V.V;Kq
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where do is the volume element of M.

Proor. This is obious from the following equation,

P{df) fi—fP.(Af )} = (Af P—f £F.

LEMMA 3. There exists the following relation |

SMfA fds = —SMf, fids .

This proof is trivial.
LEMMA 4. We have the following equations

| SMfKﬁ Vi fids = —SMKﬂ ffdo
[ {v.owir—ary)as.

ProOF. These are immediate consequence from the following equations,
VI(Kuf')= Kuf ' +fKulV 1",
FA(L ) =WV, 0+ LW f)
= {7 df)+Kpuf} A+ L) PP F)
=V.(f4f)—(4f P+ Kuf7f*
+V 3 f)WIf). |
We have the following equation by means of [Lemma 1,
(n—=1)fAf+2KfAf+2fK,Vifi=0.

We apply Lemma 2, Lemma 3, and for the avove equation,

and we obtain,

_L{(n—S) (Af)2+2(l7jf;) (iji)—-ZKﬁf”')} do=0.
This complets the proof of [Theorem 1l

§ 3. Proof of Theorem 2 and Theorem 3.

In this section we assume M is compact and Ricci curvature satisfies
VK~ Ku=0.

LEMMA 5. K is constant.

This proof is trivial.

LEMMA 6. There exist the following equations
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1
K/cﬂlfz = ;‘:—1" (ﬁc Kji _f7 Kki) ’

K
Kuft=""f;.

PROOF. From VkKji—'VjK]d:O, we Obtain,
O = L(VkKﬁ_Vijz)

— V,c,CKﬁ—<£ { ,;}) Kaz—(,c { Zz}) Kju—V,LK,,

(e {j1}) Ko (2 ) K
=—(n—1) ViV 1 fi—V Vi f))— (0% fi+ 00 S%) Kia
+(05.fe + 0513) Kar
=(n—1)Kup' fi—(fe Ks—f3 Kni) -
This completes the proof of the first equation, and proof of the¥second

equation is easy from the first equation.
LEmMA 7. We have the following equation

2(n+1)

K «
. y = - a wfl=—fi - -
Proor. By means of K=const. and K f’=-"f; we:have the fol

lowing equation

KV ff =V (Kuf*)
K
| =-——Af.
From Lemma 1, we obtain,
0=(n—1)df+2Kdf+2> 4f

=(n—1)A(Af+ iEZiB Kf)-

Therefore we have

%ﬁ% K f= constant .

df+
On theother hand,
S fda=S Afds=0.
M M

Thus we have
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LEMMA 8. There is the following equation :

n-

2VkﬁViji = —n—i—ffj(KkiKki_ K ).
Proor. From we obtain
1
0 = VjVi {Kkjilﬁ—?——l— (kaji—ﬁKki)}

R 1 o -
= PP Rl ot Kasd T =g (Kl o= K )

1 "
=——"7 VKV fr— KV’ f3)
1
n—1

(KPP fo— (77 Ko P fi— KoV 74 £)
1 . . T
= — KWl Ve f = KT
| —Ku 'V f;i—K*/ £}
S N AT R R
— KV (4f)— Ku K £}

1 .
= ——1;___1{KﬁVijfi_K'ﬁKjkq;lﬁ_(Vij,,;) Vif:j

2(n+1 K?
i ]
1 1
=T a1 {KﬁVlchfi—Kﬂ n—1 (ijkz“f/cKﬁ)

2(n+1) , K?
) KA

1 ' 1 K2

—(P7 K. V”ﬁ+7ﬁl(lni_31—) Kzf"}

_(Viji) thf""

1

1
=—7_1 {qu;V;chfi-—(VjKu)Vifj+;:TkaﬁKﬂ
n—+2
* ety KA
1

- ____{Vk (Kl f) =W K VP~ Ku) P £

n—1
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oo KuK _n(;—zl)Kzf"}
— 2 P K20 KT 4 ST fRGK
Aoy KA
= A an 2w KPS AR
. { 2((’:" 11)) K =20 KV f 4+t fiKuK
- —7}T{—2(17,J<ﬁ)171fwr nil filKugn -2 )}
n(n—1)

LEmMA 9. If we put w,=v;+ 5K fi:, where v, is a projective

n(n—1)

killing vector, then w; is a killing vector and 2K —5Jfi 15 a gradzent
projective killing vector.

Proor. We have the following equations

Vi, = Piv,+ o=t (’2’;) Af
=n+1)f—n+1)f
=()’

Vjij¢+Kj,;wj V ij (2K )V ij;;""Kji‘U + (2K )Kﬂf

+ 2 K|+ 25 1

=2ﬁ

o+ 1) fit bt
=0. -
n(n—1)

Thus w, is a killing vector and it is clear that Rk f: is a gradient

projective killing vector.

The proof of uniqueness of this decomposition is as follows. If v, is
decomposed as follows
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Vi=2;+q;

where z; is a killing vector and ¢; is a gradient projective killing vector,

tnen from Lemma 9, we have

Viw,— (ZK )Af Vizs+V'q, .

Thus we obtain

n(n

A<q+~——2—lg—l—)f)= 0

and consequently we get

q+£(721%)— f = constant .
This shows
n—1
qi= — (ZK ) fi

Therefore this completes the proof of
We have the following equation from

L= — (0" +F*0)

n(n—1) . .
=~k "

We put this result into (1. 1), and we get

0=(Lg’)V;Kia—(n—1)V,(4f)—Kfi—(n+2)K; f7
(n+1) n+2

| =—(-K—~)~V’f“Vij —— = Kf;—Kf,— Kf,

=2l pipp k...

Therefore, from [Lemma 8, we have
2
fi (KkiKki—' 5 ) = O .
Consequently we get
K2
Kji Kj'i = n

That is, M is an Einstein space. From Theorem D, we arrive at the

complete proof of [Theorem 3.

Mathematical Institute
College of Liberal Arts

Kagoshima University
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