3-dimensional Riemannian manifolds satisfying

$$
\boldsymbol{R}(X, \boldsymbol{Y}) \cdot \boldsymbol{R}=\mathbf{0}
$$

By Shûkichi Tanno

§ 1. Introduction

Let (M, g) be a Riemannian manifold with a positive definite metric tensor g. By R we denote the Riemannian curvature tensor. By M_{p} we denote the tangent space to M at p. Let $X, Y \in M_{p}$. Then $R(X, Y)$ operates on the tensor algebra as a derivation at each point p. In a locally symmetric space (i. e., $\nabla R=0$), we have $R(X, Y) \cdot R=0$. We consider the converse under some additional conditions.

Theorem. Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold. Assume that the scalar curvature S is positive and bounded away from zero (i.e., $S \geq \varepsilon>0$ for some constant ε). If (M, g) satisfies
(*) $R(X, Y) \cdot R=0$ for any $p \in M$ and $X, Y \in M_{p}$, then (M, g) is of positive constant curvature.

This theorem follows from the following
Proposition. Let (M, g) be a complete 3-dimensional Riemannian manifold satisfying $\left(^{*}\right)$. Assume that S is positive and bounded away from zero. Then (M, g) is either
(1) a space of positive constant curvature, or
(2) locally a product Riemannian manifold of a 2-dimensional space of positive curvature and a real line.

A consequence of Theorem is as follows:
Corollary. Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold. If (M, g) satisfies $\left({ }^{*}\right)$ and S is positive, then (M, g) is of positive constant curvature.

In Theorem the condition on the scalar curvature or something like this is necessary, because of Takagi's example [6].

It may be noticed that $\left.{ }^{*}\right)$ is equivalent to $R(X, Y) \cdot R_{1}=0$, where R_{1} denotes the Ricci curvature tensor. In this paper (M, g) is assumed to be connected and of class C^{∞}.

§ 2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold and assume $\left(^{*}\right)$ on
(M, g). Since $\operatorname{dim} M=3, R(X, Y)$ is given by

$$
\begin{equation*}
R(X, Y)=R^{1} X \wedge Y+X \wedge R^{1} Y-(S / 2) X \wedge Y \tag{2.1}
\end{equation*}
$$

where $g\left(R^{1} X, Y\right)=R_{1}(X, Y)$ and $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$. Let $\left(K_{1}\right.$, K_{2}, K_{3}) be eigenvalues of the Ricci transformation R^{1} at a point p. Then $\left(^{*}\right)$ is equivalent to (cf. Tanno [7], p. 302)

$$
\begin{equation*}
\left(K_{i}-K_{j}\right)\left(2\left(K_{i}+K_{j}\right)-S\right)=0 . \tag{2.2}
\end{equation*}
$$

Therefore we have three cases of eigenvalues of $R^{1}:(K, K, K),(K, K, 0)$, and $(0,0,0)$ at each point p.
[A] If (K, K, K), $K \neq 0$, holds at some point x, then it holds on some open neighborhood U of x. Hence U is an Einstein space, and K is constant on U and on M. Therefore (M, g) is of constant curvature (cf. Takagi and Sekigawa [5]).
[B] From now on we assume that rank $R^{1} \leq 2$. Let $W=\{x \in M$; rank $R^{1}=2$ at $\left.x\right\}$. By W_{0} we denote one component of W. On W_{0} we have two C^{∞}-distributions D_{K} and D_{0} such that

$$
\begin{aligned}
& D_{K}=\left\{X ; R^{1} X=K X\right\}, \\
& D_{0}=\left\{Z ; R^{1} Z=0\right\} .
\end{aligned}
$$

For $X, Y \in D_{K}$ and $Z \in D_{0}$, by (2.1) we have

$$
\begin{align*}
& R(X, Y)=K X \wedge Y, \tag{2.3}\\
& R(Y, Z)=0
\end{align*}
$$

This shows that D_{0} is the nullity distribution. Since the index of nullity at each point of M is 1 or 3 , the index of nullity of M is 1 . Thus, integral curves of D_{0} are geodesics, and complete if (M, g) is complete (cf. Clifton and Maltz [2], Abe [1], etc.).
[C] Let $\left\{E_{1}, E_{2}, E_{3}\right\}=\{E\}$ be a local field of orthonormal frames such that $E_{3} \in D_{0}$ (consequently, $E_{1}, E_{2} \in D_{K}$) and

$$
\nabla_{E_{3}} E_{i}=0 \quad i=1,2,3,
$$

where ∇ denotes the Riemannian connection. We call this $\{E\}$ an adapted frame field. If we put

$$
\nabla_{E_{i}} E_{j}=\sum B_{i j k} E_{k},
$$

then we get $B_{i j k}=-B_{i k j}$ and

$$
\begin{equation*}
B_{3 i j}=0 \quad i, j=1,2,3 . \tag{2.4}
\end{equation*}
$$

The second Bianchi identity and (2.3) give

$$
\begin{equation*}
E_{3} K+K\left(B_{131}+B_{232}\right)=0 \tag{2.5}
\end{equation*}
$$

By (2.4) and $R\left(E_{i}, E_{3}\right) E_{3}=\nabla_{E_{i}} \nabla_{E_{3}} E_{3}-\nabla_{E_{3}} \nabla_{E_{i}} E_{3}-\nabla_{\left[E_{i}, E_{3}\right]} E_{3}=0$, we get

$$
\begin{align*}
& E_{3} B_{131}+\left(B_{131}\right)^{2}+B_{132} B_{231}=0, \tag{2.6}\\
& E_{3} B_{132}+B_{131} B_{132}+B_{132} B_{232}=0, \\
& E_{3} B_{231}+B_{231} B_{131}+B_{232} B_{231}=0, \\
& E_{3} B_{232}+\left(B_{232}\right)^{2}+B_{231} B_{132}=0
\end{align*}
$$

(2.5) and $(2.6)_{2},(2.5)$ and $(2.6)_{3},(2.5)$ and (2.6) $)_{1,4}$ imply

$$
\begin{align*}
& B_{132}=C_{1}(E) K, \quad B_{231}=C_{2}(E) K \tag{2.7}\\
& B_{131}-B_{232}=D(E) K \tag{2.8}
\end{align*}
$$

where $C_{1}(E), C_{2}(E)$ and $D(E)$ are functions defined on the same domain as $\{E\}$ such that $E_{3} C_{1}(E)=E_{3} C_{2}(E)=E_{3} D(E)=0$. By (2.5) and (2.8), we get

$$
\begin{equation*}
2 B_{131}=D(E) K-E_{3} K / K \tag{2.9}
\end{equation*}
$$

[D] Let $L=x(s)$ be an integral curve of D_{0} through $x(0)$ with arclength parameter s. Then $(2.6)_{1},(2.7)$ and (2.9) give

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d s}\left(\frac{1}{K} \frac{d K}{d s}\right)=H K^{2}+\frac{1}{4}\left(\frac{1}{K} \frac{d K}{d s}\right)^{2} \tag{2.10}
\end{equation*}
$$

where $H=D(E)^{2} / 4+C_{1}(E) C_{2}(E)$. (2.10) implies that H is independent of the choice of the adapted frame fields $\{E\}$. Solving (2.10), we get

$$
\begin{array}{ll}
K_{\mid L}=K(s)=\gamma \quad \text { or } \quad \pm 1 /(\alpha s-\beta)^{2} & \text { for } H=0 \\
K_{\mid L}=K(s)= \pm 1 /\left[(\alpha s-\beta)^{2}-H / \alpha^{2}\right] & \text { for } H \neq 0 \tag{2.12}
\end{array}
$$

where $\gamma, \alpha \neq 0$, and β are constant on L.
[E] Next we assume that W_{0} is oriented. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be an adapted frame field which is compatible with the orientation. We call it an oriented adapted frame field. Then we see that $f=C_{1}(E)-C_{2}(E)$ is independent of the choice of oriented adapted frame fields, and hence f is a C^{∞}-function on W_{0}.
[F] $f=0$ holds on an open set $U \subset W_{0}$, if and only if D_{K} is integrable on U. This is a geometrical meaning of f.
[G] (cf. Sekigawa [4]) Assume that $E_{3} K=0$ on W_{0}. If $f \neq 0$, we put $V=\left\{x \in W_{0} ; f(x) \neq 0\right\}$. Let V_{0} be one component of $V . \quad E_{3} K=0$ and (2.10) imply $H=0$, i. e., $D(E)^{2}=-4 C_{1}(E) C_{2}(E)$. We define a function $\theta(E)$ by

$$
\begin{aligned}
& \cos 2 \theta(E)=\left[C_{1}(E)+C_{2}(E)\right] / f \\
& \sin 2 \theta(E)=D(E) / f
\end{aligned}
$$

Define $\left\{E^{*}\right\}$ by $E_{3}^{*}=E_{3}$ and

$$
\begin{aligned}
& E_{1}^{*}=\cos \theta(E) E_{1}-\sin \theta(E) E_{2}, \\
& E_{2}^{*}=\sin \theta(E) E_{1}+\cos \theta(E) E_{2} .
\end{aligned}
$$

Then we have $D\left(E^{*}\right)=0$. Furthermore, for two oriented adapted frame fields $\{E\}$ and $\left\{E^{\prime}\right\}$ such that $E_{3}=E_{3}^{\prime}$, we have $E_{1}^{*}(E)= \pm E_{1}^{*}\left(E^{\prime}\right)$ and $E_{2}^{*}(E)$ $= \pm E_{2}^{*}\left(E^{\prime}\right) . \quad H=0$ and $D\left(E^{*}\right)=0$ imply $C_{1}\left(E^{*}\right) C_{2}\left(E^{*}\right)=0$. So we can assume that $C_{2}\left(E^{*}\right)=0$ [otherwise, change $\left.\left\{E_{1}^{*}, E_{2}^{*}, E_{3}^{*}\right\} \rightarrow\left\{E_{2}^{*},-E_{1}^{*}, E_{3}^{*}\right\}\right]$. Then we get

$$
\begin{equation*}
B_{132}^{*} \neq 0, \quad B_{231}^{*}=B_{131}^{*}=B_{232}^{*}=0 . \tag{2.13}
\end{equation*}
$$

$R\left(E_{1}^{*}, E_{2}^{*}\right) E_{3}^{*}=0$ implies $B_{21}^{*}=0$ and

$$
\begin{equation*}
E_{2}^{*} B_{132}^{*}+B_{121}^{*} B_{132}^{*}=0 . \tag{2.14}
\end{equation*}
$$

$R\left(E_{1}^{*}, E_{2}^{*}\right) E_{1}^{*}=-K E_{2}^{*}$ implies

$$
\begin{equation*}
E_{2}^{*} B_{121}^{*}+\left(B_{121}^{*}\right)^{2}=-K . \tag{2.15}
\end{equation*}
$$

§ 3. Proof of Proposition

In the proof we can assume that M is oriented. By [A] of $\S 2$, we assume that rank $R^{1} \leq 2$. Since $S=2 K$ is positive, rank $R^{1}=2$ on M and $W=W_{0}=M . \quad f$ is defined on M. Since (M, g) is complete and S is bounded away from zero, by (2.11) and (2.12) we have $H=0$ and $E_{3} K=0$. So we can apply [G] of $\S 2$. Assume that there is a point x_{0} such that $f\left(x_{0}\right) \neq 0$. By $B_{2 i j}^{*}=0$, each trajectory of E_{2}^{*} is a geodesic in V_{0}. Let N be a trajectory of E_{2}^{*} through x_{0} and parametrize it by arc-length parameter t such that $x(0)=x_{0}$. Put $f K= \pm k$ according to $f\left(x_{0}\right) \gtrless 0 . k$ is a C^{∞}-function on M. Put $B_{121}^{*}=h$ on V_{0}. Since $B_{132}^{*}=C_{1}\left(E^{*}\right) K=f K= \pm k$, on $N \cap V_{0}=(x(t))$ $\cap V_{0}$ we have

$$
\begin{align*}
& \frac{d k(t)}{d t}+h(t) k(t)=0, \tag{3.1}\\
& \frac{d h(t)}{d t}+h(t)^{2}=-K(t), \tag{3.2}
\end{align*}
$$

by (2.14) and (2.15). By the following Lemma we have a contradiction. Hence $f=0$ identically on M. Then [F] of $\S 2$ and Theorem A in [9] show that (M, g) is locally a Riemannian product of a 2 -dimensional Riemannian manifold of positive curvature and a real line \boldsymbol{R}.

Lemma. The following (i)~(vi) are not compatible:
(i) $k(t)$ and $K(t)$ are C^{∞}-functions on \boldsymbol{R},
(ii) $k(0)>0$,
(iii) $K(t)>0$ for all $t \in R$,
(iv) $h(t)$ is a C^{∞}-function defined on an open interval $I=\{t: k(t)>0\}$ containing 0 ,
$(\mathrm{v}) \frac{d k(t)}{d t}+k(t) h(t)=0$ on I,
(vi) $\frac{d h(t)}{d t}+h(t)^{2}=-K(t)$ on I.

Proof. The first case : $\mathrm{h}(0)<0$. By (iii) and (vi) we get

$$
\begin{equation*}
\frac{d h(t)}{d t}=-\left(K(t)+h(t)^{2}\right)<-h(t)^{2} \tag{3.3}
\end{equation*}
$$

Let $h^{*}(t)$ be the solution of

$$
\begin{equation*}
\frac{d h^{*}(t)}{d t}=-h^{*}(t)^{2} \tag{3.4}
\end{equation*}
$$

such that $h^{*}(0)=h(0)$. Then $h(t)<h^{*}(t)$ for $t: t>0$ in I. Since $h^{*}(t)=1 /$ $(t-\alpha)$, we get $h(t)<1 /(t-\alpha)$, where $\alpha=-1 / h(0)$ and $\alpha>t>0$. Since $h(t)$ is decreasing for $t>0$ in I, by (v) $k(t)$ is increasing for $t>0$ in I. Hence, $k(t)>k(0)>0$. Then (v) is

$$
\frac{d k(t)}{d t}=k(t)(-h(t))>k(0)\left(-\frac{1}{t-\alpha}\right)
$$

This shows that if $t \rightarrow \alpha-0$, then $d k(t) / d t \rightarrow \infty$. This contradicts (i).
The second case : $h(0)=0$. By (vi) we get $d h(0) / d t=-K(0)<0$. Therefore we have some small positive number ε such that $k(\varepsilon)>0$ and $h(\varepsilon)<0$. Hence, this case reduces to the first case.

The third case: $h(0)>0$. For (3.3) and (3.4), we have $h(t)>h^{*}(t)$ for $t: t<0$. Hence, $\mathrm{h}(t)>1 /(t-\alpha)$, where $\alpha=-1 / h(0)<0$ and $\alpha<t<0$. Then we get

$$
\frac{d k(t)}{d t}=k(t)(-h(t))<k(0)\left(-\frac{1}{t-\alpha}\right)
$$

This implies that if $t \rightarrow \alpha+0$, then $d k(t) / d t \rightarrow-\infty$. This contradicts (i).
Mathematical Institute
Tôhoku University

References

[1] K. Abe: A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tôhoku Math. Journ., 23 (1971), 219-244.
[2] Y. H. Clifton and R. Maltz: The K-nullity of the curvature operator, Michigan Math. Journ., 17 (1970), 85-89.
[3] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. Journ., 20 (1968), 46-59.
[4] K. Sekigawa: On some 3-dimensional Riemannian manifolds, Hokkaido Math. Journ., 2 (1973), 259-270.
[5] H. Takagi and K. Sekigawa: On 3-dimensional Riemannian manifolds satisfying a certain condition on the curvature tensor, Sci. Rep. Niigata Univ., 7 (1969), 23-27.
[6] H. Takagi: An example of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$ but not $\nabla R=0$, Tôhoku Math. Journ., 24 (1972), 105-108.
[7] S. Tanno: Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. Journ., 21 (1969), 297-303.
[8] S. Tanno: A class of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, Nagoya Math. Journ. 42 (1971), 67-77.
[9] S. Tanno: A theorem on totally geodesic foliations and its applications, Tensor N. S., 24 (1972), 116-122.
(Received November 6, 1973)

