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lntroduction

Many of familiar Banach spaces have natural tensor product represen-
tations X\wedge\otimes_{\alpha}Y with suitable Banach spaces X and Y and a suitable uniform
resonable norm \alpha . Consider linear operators with domains in such a Banach
space X\otimes_{\beta}Y\wedge with a norm \beta and ranges in X\wedge\otimes_{\alpha}Y with another norm \alpha ,
the set of which will be denoted by \mathfrak{L}(X\wedge\otimes_{\beta}Y, X_{\sim}^{\wedge}\otimes_{\alpha}Y) and if \alpha=\beta, by
\mathfrak{L}(X\otimes_{\alpha}Y\wedge) . Some of them are represented as “polynomials” of suitable,
densely defined closed linear operators A in X and B in Y : if
P(\xi, \eta)=\Sigma_{fk}c_{jk}\xi^{f}\cdot\eta^{k}’.

(0. 1) P.\{A\otimes LI\otimes B\}\equiv\Sigma_{fk}c_{jk}A^{f}\otimes B^{k} .
In this case, they are often expected to inherit some properties from the
operators A and B.

The aim of the present paper is to investigate, as one of such proper-
ties, their invertibility which will be derived from the properties of A and
B. In this respect, our approach may give a meaning to the method of
separation of variables (cf. [7]).

It has been shown by the author [16] that if \alpha=\beta, for a \wedge class of
polynomials the spectral mapping theorem holds:

(0. 2) P(\sigma(A), \sigma(B))=\sigma(P\{A\otimes LI\otimes B\})=\sigma(\tilde{P}\{A\otimes I, I\otimes B\}) ,

where \tilde{P}\{A\otimes I, I\otimes B\} is a maximal extension of P\{A\otimes I, I\otimes B\} in X\otimes_{\alpha}Y\wedge.
This has extended in particular the results of Ju. M. Berezanski_{\dot{1}}[3] and
L. and K. Maurin [23] for A and B selfadjoint, A. Brown and C. Pearcy
[4], M. Schechter [28] for A and B bounded, and the author [14], [15] for
A and B not necessarily bounded. Another investigation has been made
by M. Reed and B. Simon [26].

The results have been applied to the operators A\otimes I+I\otimes B in gener-
alizing in [16] the result of V. P. Miha\dot{1lov}[25] on the first boundary value
problem for quasi-elliptic differential equations and to the spectral theory
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of many-body Schr\"odinger operators ([1], [29]).
In the present paper, we study, for one of A and B, say B, being a

scalar type spectral operator in the sense of N. Dunford and W. G. Bade
(see [6, Part III]), the invertibility of the operators (0. 1) and their maximal
extensions (in fact, their closures), considered as operators in (a) \mathfrak{L}(X\wedge\otimes_{\pi}L),
(b) \mathfrak{L}(X\wedge\otimes_{\epsilon}C) , (c) \mathfrak{L}(H_{1}\otimes {}_{\alpha_{0}}H_{2}\wedge) and (d) \mathfrak{L}(X\otimes_{\text{\’{e}}}Y\wedge, X_{(}’\hat{\cross}\gamma_{\pi}Y) , where L(resp. C) is
an \mathscr{L}_{1}-space (resp. \mathscr{L}_{\infty}-space) of J. Lindenstrauss and A. Pefczyfiski [21],

and H_{i} are Hilbert spaces. In particular, in the first three cases, we estab-
lish the spectral mapping theorem (0. 2) with P(\sigma(A), \sigma(B)) replaced by its
closure, for a larger class of polynomials as that in [16]. In this context,

an attempt was already made for some special cases in [17]. We present
here a rather comprehensive study.

Applied to the operator A\otimes I+I\otimes B, our theory involves the partial
differential equations of not only elliptic and parabolic but also hyperbolic
type.

Here it should be noted that in the first three cases as above, if both
A and B are scalar type spectral operators, then for any polynomials the
spectral mapping theorem (0. 2) holds with P(\sigma(A), \sigma(B)) replaced by its
closure.

In Section 1, there are summarized some definitions and useful results
on linear operators, \mathscr{L}_{p}-spaces of J. Lindenstrauss and A. Pe^{*czy}\acute{r} ski and
reasonable norms on tensor products of Banach spaces. Section 2 is con-
cerned with the Gowurin property of the bounded Boolean algebra of pr0-

jections; this concept is employed to guarantee the existence of a certain
integral with respect to the spectral measure. In Section 3, we introduce
the polynomial operators to study their invertibility and in particular, to
establish\backslash the spectral mapping theorem. The present class of admissible
polynomials is strictly larger than that in [16], though the operators and
the spaces are more restricted. The results are also restated for A\otimes I+I\otimes B.
In Section 4, our results are applied to the initial value problem for an
abstract wave equation such as was considered by L. G[mathring]_{a}rding and J. Leray
for a strongly hyperbolic differential equation in a strip.

The author should like to express his hearty thanks to Professor G[mathring]_{a}rding
for bringing his attention to their unpublished result.

1. Definitions and Preliminaries

In this section, we collect some definitions and basic facts on linear
operators, \mathscr{L}_{p}-spaces and tensor products.

Linear operators. If Z and Z_{1} are Banach spaces, \mathfrak{L}(Z, Z_{1}) denotes
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the set of all linear operators T : D[T]\subset Z- Z_{1} with domain D[T] in Z
and range in Z_{1} , and \mathfrak{L}(Z)=\mathfrak{L}(Z, Z) . By L(Z, Z_{1}) we denote the Banach
space of all continuous linear operators of Z into Z_{1} , and L(Z)=L(Z, Z).
Every densely defined linear operator T:D[T]\subset Z- Z_{1} has a maximal ex-
tension \tilde{T} The domain D[\tilde{T}] of \tilde{T} is the projection of the closure of the
graph G(T)\subset Z\cross Z_{1} into Z([20], [14]). The spectrum of a linear operator
T:D[T]\subset Zarrow Z is denoted by \sigma(T) . The spectrum is unchanged under
maximal extensions, in particular, under the closure operation [14]. The
resolvent set of T is denoted by \rho(T) .

The \mathscr{S}_{p}. -spaces. J. Lindenstrauss and A. Pefczyn’ski [21] have intr0-
duced the \mathscr{L}_{p}-spaces.

For 1\leq p\leq\infty and a positive integer n, we denote by l_{p}^{n} the space of
all s=(s_{1}, s_{2}, \cdots, s_{n})\in C^{n} with norm ||s||=( \sum_{i}|s_{i}|^{p})^{1\prime p} if p<\infty and ||s||= \max|s_{i}|

if p=\infty . For two isomorphic Banach spaces E and F, so that there exists
an invertible continuous linear operator T of E onto F, their distance d(E, F)
is defined by inf (||T||||T^{-1}||), where the infimum is taken over all invertible
continuous linear operators T of E onto F.

A Banach space Z is called an \mathscr{L}_{p,\lambda}-space (1\leq p\leq\infty, 1\leq\lambda<\infty) if for
each finite-dimensional subspace F\subset Z there exists a finite-dimensional sub-
space G with F\subset G\subset Z such that d(G, l_{p}^{n})\leq\lambda, where n=\dim G . A Banach
space Z is called an \mathscr{L}_{p}-space (1\leq p\leq\infty) if it is an \mathscr{L}_{p,\lambda}-space for some \lambda .

It is known ([21], [22]) that the space L_{p}(\mu) of all (equivalence classes
of) measurable functions on some measure space whose p-th power is inte-
grable (resp. essentially bounded if p=\infty ) is an \mathscr{L}_{p}-space, and the space
C(K) of all continuous functions on the compact Hausdorff space K is an
\mathscr{L}_{\infty}-space. The L_{p}-spaces have many properties in common with the spaces
L_{p}(\mu), although unless p=2, there are \mathscr{L}_{p}-spaces which are not isomorphic
to L_{p}(\mu) . If p=2, every \mathscr{S}_{2}-space is isomorphic to a Hilbert space. Every
Banach space Z is an \mathscr{L}_{p}-space (1\leq p\leq\infty) if and only if its dual space Z’
is an \mathscr{S}_{p’}. -space with 1/p+1/p’=1 . It is also known [18] that a separable
\mathscr{S}_{p}-space (1\leq p\leq\infty) has a Schauder basis.

In the present paper, we shall only concern with the cases p=1 and
\infty . From the above mentioned, Banach spaces of type (L) and (C) in the
sense of A. Grothendieck [12] are an \mathscr{S}_{1}. -space and an \mathscr{L}_{\infty}-space, respec-
tively, but this converse is not always true. However, throughout, we shall
employ the symbols L and C to express an \mathscr{L}_{1}-space and an \mathscr{L}_{\infty}-space,
respectively. By the way, H and H_{i} , i=1,2, denote Hilbert spaces.

By a bounded Boolean algebra \mathcal{E} of projections in a Banach space Z,
we mean a Boolean algebra of commuting continuous projections E in Z
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such that for some constant h one has sup ||E||<h for all E\in \mathcal{E} (.see [6]).

The following result is due to J. Lindenstrauss and A. Pefczy\acute{r} ski ([21],

cf. [24] ).
THEOREM 1. 1. Let Z be an \mathscr{L}_{1}-space (resp. \mathscr{L}_{\infty}-space), in particular,

a Banach space of type (L) (resp. type (C)), and \mathcal{E} a bounded Boolean al-
gebra of projections in Z. Then there exists a constant k_{0} such that for
every fifinite collection \{E_{i}\}_{i=1}^{s}\subset \mathcal{E}, of disjoint projections one has

\Sigma_{i=1}^{s}||E_{i}z||\leq k_{0}||\Sigma_{i=1}^{s}E_{i}z|| , z\in Z

(resp. || \sum_{i=1}^{s}E_{i}z||\leq k_{0}\max_{1\leq i\leq s}||E_{i}z|| , z\in Z).

Tensor products. Let X and Y be complex Banach spaces, and X’, .Y

their topological dual spaces. Let X\otimes Y be the algebraic tensor product of
X and Y. On X\otimes Y are defined suitable norms (see [11], [12], [27]).

A norm \alpha on X\otimes Y is said to be reasonable if it satisfies ||x\otimes y||_{\alpha}

=||x||||y|| for (x, y)\in X\cross Y and if the dual norm \alpha’ induced on X’\otimes Y’ by
the topological dual of the space X\otimes Y equipped with the norm \alpha satisfies
||x’C\cross y’||_{\alpha}, =||x’||||y’|| for (x’, y’)\in X’\cross Y . The dual norm \alpha’ of a reasonable
norm \alpha on X\otimes Y is reasonable on X’\otimes Y . The completion of X\otimes Y (resp.
X’\otimes Y) with respect to the norm \alpha (resp. \alpha’ ) is denoted by X\hat{C_{\alpha}\cross}Y (resp.
X’\otimes_{\alpha\prime}Y) .

There exists on X\otimes Y the greatest reasonable norm \pi and the smallest
one \epsilon . If u\in X\otimes Y, they are defined as follows:

||u||_{\pi}= \inf\sum_{f}||x_{j}||||y_{j}|| ,

where the infimum is taken over all representations of the form of finite
sum u= \sum_{f}x_{f}\otimes y_{f} ;

||u|| . = sup \{|<u, x’\otimes y’>| ; (x’, y’)\in X’\cross Y’ , ||x’||\leq 1 , ||y’||\leq 1\} .

A norm \alpha is said to be uniform if one has ||(A\otimes B)u||_{\alpha}\leq||A||||B||||u||_{\alpha}

for all u\in X\otimes Y, whenever (A, B)\in L(X)\cross L(Y) . The norms \pi and \epsilon are
uniform.

When both X and Y are Hilbert spaces, it is possible to equip X\otimes Y

with a pre-Hilbert space structure such that for x_{i}\in X and y_{i}\in Y, i=1,2,

(x_{1}\otimes y_{1}, z_{2}\otimes y_{2})=(x_{1}, x_{2})(y_{1}, y_{2}) .
If u\in X\otimes Y, we denote its prehilbertian norm by ||u||_{\alpha_{0}} , so that the com-
pletion X\wedge\otimes_{\alpha_{0}}Y is a Hilbert space. The norm \alpha_{0} is reasonable and uniform.

A reasonable norm \alpha\geq\epsilon is said to be faithful on X\otimes Y[9] if the
natural continuous linear mapping j_{\epsilon}^{\alpha} of X_{c}\hat{r\cross})_{\alpha}Y into X\otimes_{\text{\’{e}}}Y\wedge is one-t0-0ne.
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It is obvious that the norm \epsilon (resp. \alpha_{0}) is faithful on X\otimes Y for every
pair of Banach (resp. Hilbert) spaces X and Y. Whether or not the norm
\pi is faithful is the “probl\‘eme de biunivocit\’e’’ of A. Grothendieck [11]. The
norm \pi is faithful on X\otimes Y if either X or Y satisfies the approximation
condition, in particular, has a Schauder basis. P. Enf10^{1)} has recently con-
structed a Banach space which does not satisfy the approximation condition.
It follows by the equivalence of the approximation problem and the probl\‘eme
de biunivocit\’e [11] that the norm \pi is not always faithful on X\otimes Y for
some pair of Banach spaces X and Y.

Further we shall use the concept of \otimes-norms due to A. Grothendieck
(For the definition see [12]). If \alpha is a \otimes-norm, it is defined on the tensor
product X\otimes Y for every pair of Banach spaces X and Y. If X_{i} and Y_{i} ,
i=1,2, are Banach spaces, then for any (A, B)\in L(X_{1}, X_{2})\cross L(Y_{1}, Y_{2}) one
has ||(A\otimes B)u||_{\alpha}\leq||A||||B||||u||_{\alpha} if u\in X_{1}\otimes Y_{1} . The norms \pi and \epsilon are \otimes-

norms. Note the norm \alpha_{0} has also this property when X_{i} and Y_{i} , i=1,2,
are Hilbert spaces.

2. Gowurin Property
Throughout this section, X, X_{1} and Y are complex Banach spaces with

topological dual spaces X’, X_{1}’ and Y’ . The identity operators in X and X_{1}

are denoted by I, I_{1} , respectively. \alpha and \beta are uniform reasonable norms
on X\otimes Y, X_{1}\otimes Y, respectively.

Let \mathcal{E} be a bounded Boolean algebra of projections in Y. We are
interested in \mathcal{E} satisfying the following conditions:

(G): there exists a constant K such that for any finite collection \{E_{i}\}_{i=1}^{s}

\subset 6
’ of disjoint projections and for any collection \{A_{i}\}_{i=1}^{s}\subset L(X, X_{1}),

one has
(2. 1) ||[ \sum_{i=1}^{s}A_{i}\otimes E_{i}]u||_{\beta}\leq K\sup_{i},||A_{i}||||u||_{\alpha} , u\in X\otimes Y ;

(G’) : there exists a constant K such that for any finite collection \{E_{i}\}_{i=1}^{s}

\subset \mathcal{E} of disjoint projections and for any collection \{A_{i}\}_{i=1}^{s}\subset L(X, X_{1}) ,
one has

(2. 2) ||[ \sum_{i=1}^{s}A_{i}’\otimes E_{i}]u’||_{\alpha’}\leq K\sup_{i}||A_{i}’||||u’||_{\beta’} , u’\in X_{1}’\otimes Y’ ;

(g): there exists a constant K such that for any finite collection \{E_{i}\}_{i=1}^{s}

\subset \mathcal{E} of disjoint projections and for any collection \{B_{i}\}_{i=1}^{s}\subset \mathfrak{L}(X, X_{1}) of
densely defined linear operators with D[B_{i}]\supset D and D[B_{i}’]\supset D’, 1\leq i\leq s ,
one has

1) P. Enflo: A counterexample to the approximation problem in Banach spaces, Acta
Math. 130, 309-317 (1973).
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(2. 3) ||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}](x\otimes y)||_{\beta}\leq K\sup_{i}||B_{i}x||||y|| , x\otimes y\in D\otimes Y ,

and
(2. 4) ||[ \sum_{i=1}^{s}B_{i}’\otimes E_{i}’](x’\otimes y’)||_{\alpha},\leq K\sup_{i}||B_{i}’x’||||y’|| , x’\otimes y’\in D’\otimes Y’

Here, for 1\leq i\leq s , A_{i}’ and B_{i}’ are the adjoints of A_{i} and B_{i} , respec-
tively, which are in \mathfrak{L}(X_{1}’, X’), and D and D’ are given fixed subspaces of
X and X_{1}’ , respectively.

PROPOSITION 2. 1. (G) implies (G’). In the right member of (2. 1), u

may be replaced with a possibly other constant K by [I \otimes\sum_{f=1}^{s}E_{f}]u ; in that
of (2. 2), u’ by [I_{1}’ \otimes\sum_{f=1}^{s}E_{f}’]u’ ; in that of (2. 3), y by [ \sum_{f=1}^{s}E_{j}]y and in that
of (2. 4), y’ by [ \sum_{j=1}^{s}E_{f}’]y’ .

PROOF. The second half is evident. We show (G) implies (G’). The
adjoints A_{i}’ are in L(X_{1}’, X’) with ||A_{i}’||=||A_{i}|| . If u’\in X’\otimes Y_{\backslash } the left
member of (2. 2) equals

sup \{|<u , [ \sum_{i=1}^{s}A’\dot{n}.\otimes E_{i}’]u’>| ; u\in X\otimes Y, ||u||_{\alpha}\leq 1\}

= \sup\{|<[\sum_{i=1}^{s}A_{i}\otimes E_{i}]u , u’>| ; u\in X\otimes Y, ||u||_{\alpha}\leq 1\}

= \sup\{||[\sum_{i=1}^{s}A_{i}\otimes E_{i}]u||_{\beta} ; u\in X\otimes Y, ||u||_{\alpha}\leq 1\}\cdot||u’||_{\beta} ,
’

which is in virtue of (G) not greater than

K \sup_{i}||A_{i}||||u’||_{\beta’}=K\sup_{i}||A_{i}’||||u’||_{\beta’} Q. E. D.

We say \mathcal{E}. has the Gowurin property in L(X\wedge\otimes_{\alpha}Y, X_{1}\otimes_{\beta}Y\wedge) (cf. [10]) if
\mathcal{E} satisfies (G) (and consequently (G’) by Proposition 2. 1) and (g).

Examples of L(X\hat{C_{\alpha}\cross},Y, X_{1}\otimes_{\beta}^{\wedge}Y) in which \mathcal{E} has the Gowurin property
are given by the following

THEOREM 2. 2. The bounded Boolean algebra \mathcal{E} of projections in Y

has the Gowurin property in
(a) L(X\wedge\otimes_{\pi}L, X_{1}^{\wedge}\otimes_{\pi}L) (for Y=L),

(b) L(X^{\wedge}\otimes_{\epsilon}C, X_{1}\otimes_{\epsilon}C\wedge) (for Y=C),

(c) L(H^{\wedge}\otimes_{\alpha_{0}}H_{2}, H_{1}\wedge\otimes {}_{\alpha_{0}}H_{2}) (for Y=H_{2}), and
(d) L(X\otimes_{\pi}Y\wedge, X_{1}\hat{C\cross}.Y)

for every pair of Banach spaces X, X_{1} and Hilbert spaces H, H_{1} .
PROOF. In virtue of Propositson 2. 1, we have only to show (G) and

(g). Let \{E_{\nu}.\}_{i=1}^{s} , \{A_{i}\}_{i=1}^{s}, and \{B_{i}\}_{i=1}^{s} be those described in the conditions
(G) and (g).

(a) For u= \sum_{k}x_{k}\otimes y_{k}\in D\otimes L, we obtain by Theorem 1. 1
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||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}]u||_{\pi}=\sum_{ik}||B_{i}x_{k}||||E_{i}y_{k}||

\leq\sum_{k}\sup_{i}||B_{i}x_{k}||\sum_{f=1}^{s}||E_{j}y_{k}||

\leq hk_{0}\sum_{k}\sup_{i}||B_{i}x_{k}||||y_{k}||

If u=x\otimes y , this implies (2. 3) for \beta=\pi . If D=X and B_{i}=A_{i} , 1\leq i\leq s ,
this yields

||[ \sum_{i=1}^{s}A_{i}\otimes E_{i}]u||_{\pi}\leq hk_{0}\sup_{i}||A_{i}||\sum_{k}||x_{k}||||y_{k}|| ,

whence follows (2. 1) for \alpha=\beta=\pi , by taking the infimum of the right member
over all representations of u.

To derive (2. 4), let x’\otimes y’\in D’\otimes L’ . Then since \pi’=\epsilon , we obtain
||[ \sum_{i=1}^{s}B_{i}’\otimes E_{i}’](x’\otimes y’)||_{\pi} ,

=||[ \sum_{i=1}^{s}B_{i}’\otimes E_{i}’](x’\otimes y’)||_{\epsilon}

= \sup\{|\sum_{i}<x, B_{i}’x>’<y , E_{iy}’>| ; (x, y)\in X\cross L, ||x||\leq 1 , ||y||\leq 1\}

= \sup\{||\sum_{i}E_{i}’<x, B_{i}’x’>y’|| ; x\in X, ||x||\leq 1\}

= \sup_{||x||\leq 1}x\in X

||[ \sum_{i=1}^{s}E_{l}][\sum_{j=1}^{s}E_{f}’<x, B_{f}’x’>y’]||(

Since the dual space L’ of the \mathscr{L}_{1}-space L is an \mathscr{L}_{\infty}-space, we obtain by
Theorem 1. 1

||[ \sum_{i=1}^{s}B_{i}’\otimes E_{i}’](x’\otimes y’)||_{\pi’}\leq k_{0}\sup_{x\epsilon x} ||x||\leq’ 1\sup_{i}||E_{i}’<x, B_{i}’x’>y’||

\leq hk_{0}\sup_{x}
||x|| \leq 1\epsilon x,\sup_{i}||<x, B_{i}’x’>y’||

=hk_{0} \sup_{i}\sup_{x}||x||\leq 1\epsilon x,||<x, B_{i}’x’>y’||

=hk_{0} \sup_{i}||[B_{i}’\otimes I’](x’\otimes y’)|| .
=hk_{0} \sup_{i}||[B_{i}’\otimes I’](x’\otimes y’)||_{\pi’},\cdot

which implies (2.4) for \alpha=\pi .
(b) If u= \sum_{k}x_{k}\otimes y_{k}\in D\otimes C, it will be possible to show in the same

way as in (a) a stronger result

||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}]u||_{\epsilon}\leq hk_{0}\sup_{i}||[B_{i}\otimes I]u||_{\epsilon} ,

which yields in particular (2. 1) and (2. 3) for \alpha=\beta=\epsilon . We shall obtain
(2. 4) similarly to the proof in (a), if we note \epsilon’\leq\pi .



168 T. Ichinose

(c) For u\in D\otimes H_{2} and w\in H_{1}\otimes H_{2} , we obtain

|([ \sum_{i=1}^{s}B_{i}\otimes E_{\dot{0}}^{\cdot}]u, w)|=.|\sum_{i=1}^{s}([B_{i}\otimes E_{i}]u, [I_{1}\otimes E_{i}]w)|

\leq\sum_{i=1}^{s}||[B_{i}\otimes E_{i}]u||_{\alpha_{0}}||[I_{1}\otimes E_{i}]w||_{\alpha_{0}}

\leq\{\sum_{i=1}^{s}||[B_{i}\otimes E_{i}]u||_{\alpha_{0}}^{2}\}^{1/2}\{\sum_{i=1}^{s}([I_{1}\otimes E_{i}]w, w)\}_{1}^{1/2}

.

\leq h\{\sum_{i=1}^{s}||[B_{i}\otimes E_{i}]u||_{\alpha_{0}}^{2}\}^{1/2}||w||_{\alpha_{0}} ,

whence

||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}]u||_{a_{0}}\leq h\{\sum_{i=1}^{s}||[B_{i}\otimes E_{i}]u||_{\alpha_{0}}^{2}\}^{1/2}

If D=H and B_{i}=A_{i} , 1\leq i\leq s , we obtain

||[ \sum_{i=1}^{s}A_{i}\otimes E_{i}]u||_{\alpha_{0}}\leq h\{\sum_{i=1}^{s}||A_{f}||^{2}||[I\otimes E_{i}]u||_{\alpha_{0}}^{2}\}^{1/2}

\leq h\sup_{i}||A_{i}||\{\sum_{f=1}^{s}([I\otimes E_{f}]u, u)\}^{1_{1}’2}

\leq h^{2}\sup_{i}||A_{i}||||u||_{\alpha_{0}} ,

which proves (2. 1) for \alpha=\beta=\alpha_{0} .
If u=x\otimes y , then

||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}](X\otimes y)||_{\alpha_{0}}\leq h\{\sum_{i=1}^{s}||B_{i}x\otimes E_{i}y||_{\alpha_{0}}^{2}\}^{1_{l}/z}

=h \{\sum_{i=1}^{s}||B_{i}x||^{2}||E_{i}y||^{2}\}_{1}^{1/2}

,
\sqrt\backslash (

\leq h\sup_{i}||B_{i}x||\{\sum_{f=1}^{s}(E_{f}y, y)\}^{1/2}

\leq h^{2}\sup||B_{i}x||||y|| :

which shows (2. 3) for \beta=\alpha_{0} as well as (2. 4) for \alpha=\alpha_{0} .
(d) For u= \sum_{k}x_{k}\otimes y_{k}\in D\otimes Y, we obtain
||[ \sum_{i=1}^{s}B_{i}\otimes E_{i}]u|| .
= \sup\{|\sum_{ik}<B_{i}x_{k} , x’><E_{i}y_{k} , y’>| ; (x’, y’)\in X_{1}’\cross Y’,’||x’||\leq 1 , ||y’||\leq 1\}

\leq\sup\{\sum_{ik}||B_{\dot{l}}x_{k}|||<E_{i}y_{k} , y’>|;y’\in Y . ||y’||\leq 1\}

\leq\sup\{\sum_{k}\sup_{i}||B_{i}x_{k}||\sum_{f=1}^{s}|<E_{f}y_{k} , y’>| ; y’\in Y , ||y’||\leq 1\}

\leq 4h\sum_{k}\sup_{i}||B_{i}x_{k}||||y_{k}||

This will yield (2. 1) and (2. 3) for \alpha=\pi and \beta=\epsilon in the same way as in
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(a), and (2. 3) yields (2. 4) for \alpha=\pi . Q. E. D.
In what follows, let B:D[B]\subset Yarrow Y be a scalar type spectral operator

in the sense of N. Dunford and W. G. Bade (see [6, Part III, Chap. 18]).
There exists a countably additive resolution E of the identity defined on
the field of Borel sets of the complex plane C such that for k=1,2, \cdots ,

B^{k}y= \int_{\sigma(B)}\eta^{k}E(d\eta)y\equiv\lim_{\nuarrow\infty}\int_{\sigma(B)\cap\sigma_{\nu}}\eta^{k}E(d\eta)y , y\in D[B^{k}]

Here and below, \{\sigma_{\nu}\}_{\nu=1}^{\infty} is any increasing sequence of bounded Borel sets
such that E( \bigcup_{\nu=1}^{\infty}\sigma_{\nu})=I . We may assume the spectrum \sigma(B) of B nonempty.
The Boolean algebra of projections generated by the resolution E of the
identity is bounded.

We shall now see that the Gowurin property in L(X^{\wedge}\otimes_{\alpha}Y, X_{1}\wedge\otimes_{\beta}Y) of
the Boolean algebra of projections generated by E guarantees the existence
of the improper Riemann integral

\langle2. 5) \int_{\sigma(B)}[F(\eta)\otimes E(d\eta)]v

in X_{1}\wedge\otimes_{\beta}Y for v\in X\otimes Y, where F(\eta):\sigma(B)- L(X, X_{1}) is a operator-valued
function continuous and un-formly bounded in L(X, X_{1}) .

First we show that for any bounded Borel set \sigma the Riemann integral

(2. 6) I( \sigma)v=\int_{\sigma(B)\cap\sigma}[F(\eta)\otimes E(d\eta)]v , v\in X\otimes Y

exists in the uniform operator topology of L(X\otimes_{\alpha}Y\wedge, X_{1}\wedge\otimes_{\beta}Y) and further
that there exists a constant K_{1} such that for every bounded Borel set \sigma

and v\in X\otimes Y

\langle2. 7) ||I(\sigma)v||_{\beta}\leq K_{1}||v||_{\alpha}

and
\langle2. 8) ||I(\sigma)v||_{\beta}\leq K_{1}||[I\otimes E(\sigma(B)\cap\sigma)]v||_{\alpha}t

Our proof follows the argument in [6, Part III, Chap. 16, 5.18, p. 2163].
Let \Delta=\{e_{1}, \cdots, e_{s}\} and \Delta’=\{e_{1}’, \cdots, e_{t}’\} be two arbitrary partitions of \sigma(B)\cap\sigma

into disjoint Borel sets. Then observing (G) of the Gowurin property, if
\eta_{i}\in e_{i} , 1\leq i\leq s, and \eta_{J}’\in E_{f}’ , 1\leq j\leq t, we have for some constant K

||[ \sum_{i=1}^{s}F(\eta_{i})\otimes E(e_{i})-\sum_{f=1}^{t}F(\eta_{j}’)\otimes E(e_{f}’)]v||_{\beta}

=||[ \sum_{if}(F(\eta_{i})-F(\eta_{J}’))\otimes E(e_{i}\cap e_{f}’)]v||_{\beta}

\leq K sup ||F(\eta_{i})-F(\eta_{J}’)||||v||_{\alpha} ,
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where the supremum is taken over those i and j for which e_{i}\cap e_{f}’ is not
empty. Thus, if | \Delta|=\max_{1\leq i\leq s} diam e_{i} tends to zero,

\lim_{|\Delta|arrow 0}[\sum_{i=1}^{s}F(\eta_{i})\otimes E(e_{\hat{\nu}}.)]

exists in the uniform operator topology of L(X\wedge\otimes_{\alpha}Y, X_{1}^{\wedge}\otimes_{\beta}Y) . This limit
defines the Riemann integral (2. 6). It is clear that I(\sigma) satisfies for v\in X\otimes Y

||I( \sigma)v||_{\beta}\leq K\sup_{\eta\in\sigma(B)\bigcap_{1}\sigma}||F(\eta)||||v||_{\alpha}

\leq K\sup_{\eta\in\sigma(B)}||F(\eta)||||v||_{\alpha}1

This proves (2. 7) and by Proposition 2. 1 we have also (2. 8).
Now, let \{\sigma_{\nu}\}_{\nu=1}^{\infty} be any increasing sequence of bounded Borel sets such

that E( \bigcup_{\nu=1}^{\infty}\sigma_{\nu})=I . Then if x\otimes y\in X\otimes Y, we obtain by (2. 8) for \mu\geq\nu

||I(\sigma_{\mu})(x\otimes y)-I(\sigma_{\nu})(x\otimes y)||_{\beta}=||I(\sigma_{\mu}\backslash \sigma_{v})(x\otimes y)||_{\beta}

\leq K_{1}||[I\otimes E(\sigma(B)\cap(\sigma_{\mu}\backslash \sigma_{\nu}))](x\otimes y)|_{\alpha}

\leq K_{1}||x||||E(\sigma(B)\cap(\sigma_{\mu}\backslash \sigma_{\nu}))y|| ,

which tends to zero as \mu, \nu- \infty . It follows that the sequence \{I(\sigma_{\nu})(x\otimes y)\}_{\nu=1}^{\infty}

and consequently \{I(\sigma_{\nu})v\}_{\nu=1}^{\infty} for v\in X\otimes Y is convergent in X_{1}\wedge\otimes_{\beta}Y as \nuarrow\infty .
Further it is easy to verify that the limit is independent of the choice

of a sequence \{\sigma_{\nu}\}_{\nu=1}^{\infty} . This limit is by definition what is meant by the
integral (2. 5) and defines on account of (2. 7) a continuous linear nlapping
of X\otimes Y\subset X\otimes_{\alpha}Y\wedge into X_{1}\otimes_{\beta}Y\wedge.

Thus we have shown
PROPOSITION 2. 3. Suppose the Boolean algebra ofprojections generated

by E has the Gowurin property in L(X\otimes_{\alpha}Y\wedge, X_{1}\otimes_{\beta}Y\wedge) . If F(\eta):\sigma(B)arrow

L(X, X_{1}) is an operator-valued function continuous and uniformly bounded in
L(X, X_{1}), then for v\in X\otimes Y the improper Riemann integral (2. 5) exists in
X_{1}\otimes_{\beta}Y\wedge and defifines a continuous linear mapping of X\otimes Y\subset X\wedge\otimes_{a}Y into
X_{1}\otimes_{\beta}^{\wedge}Y

‘

3. Polynomial Operators

We shall introduce polynomial operators defined between the tensor
products of Banach spaces (cf. [15], [16]), and study their invertibiltiy, in
particular, establish the spectral mapping theorem.

Throughout this section, X and Y are complex Banach spaces, and
A:D[A]\subset Xarrow X and B:D[B]\subset Yarrow Y are densely defined closed linear
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operators with nonempty resolvent sets. As in Section 2, assume further
that B is a scalar type spectral operator with the countably additive resolu-
tion E of the identity. By the same symbol I, we shall denote the identity
operators in both X and Y. \alpha and \beta are uniform reasonable norms on X\otimes Y.

To each polynomial of degrees m in \xi and n in \eta

(3. 1) P( \xi, \eta)=\sum_{fk}c_{fk}\xi^{f}\cdot\eta^{k} ,

we assingn two kinds of polynomial operators in \mathfrak{L} (X\wedge\otimes_{\beta}Y, Xx\^O \alpha Y):

(3. 2) P \{A\otimes I, I\otimes B\}\equiv\sum_{jk}c_{jk}A^{f}\otimes B^{k}

with domain D[A^{m}]\otimes D[B^{n}] , and

(3. 3) \sum_{fk}c_{jk}A^{f_{\otimes}^{\wedge}}B^{k}

with domain \bigcap_{f,k;c_{fk}\neq 0}D[A^{f^{\wedge}}\otimes B^{k}] , where A^{j}\wedge\otimes B^{k} denotes a maximal exten-
sion of A^{j}\otimes B^{k} as an operator in \mathfrak{L}(X\wedge\otimes_{\beta}Y, X\wedge\otimes_{\alpha}Y) . If \beta=\alpha , it will be
written as A^{j}\otimes_{\alpha}B_{\backslash }^{k}\wedge which is a linear operator in \mathfrak{L}(X\wedge\otimes_{\alpha}Y) . Maximal ex-
tensions of (3. 2) and (3. 3) as operators in \mathfrak{L}(X\hat{C}\cross_{\beta}Y, X\wedge\otimes_{\alpha}Y) are denoted
by \tilde{P}\{A\otimes I, I\otimes B\} , ( \sum_{jk}c_{jk}A^{f}\wedge\otimes B^{k})^{\sim},\cdot respectively. In this context, such a
general case has not been considered in [15] and [16] but the case \alpha=\beta .
However, it will be shown just in the same way as in [16, Theorem 1. 1]

that if \alpha is faithful on X\otimes Y , then P\{A\otimes I, I\otimes B\} (and hence A^{f}\otimes B^{k} ) and
\sum_{jk}c_{jk}A^{j}\wedge\otimes B^{k} are closable as operators in \mathfrak{L}(X\wedge\otimes_{\beta}Y, X\wedge\otimes_{\alpha}Y) , so that
\tilde{P}\{A\otimes I, I\otimes B\} (and hence A^{f}\wedge\cap-\cross

,
B^{k} ) and ( \sum_{jk}c_{jk}A^{f}\wedge\otimes B^{k})^{\sim} are nothing but

their closures.
In the present paper we assume further for simplicity that \alpha and \beta

are faithful, consequently they are faithful uniform reasonable norms on
X\otimes Y , so that all polynomial operators are closable, considered as operators
in \mathfrak{L}(X\hat{C}_{\beta}^{1}\cross Y, X\wedge\otimes_{\alpha}Y) .

3. 1. Invertibility and closures of polynomial operators.

Rewrite P(\xi, \eta) of (3. 1) in the following form
(3. 1)’ P(\xi, \eta)=c_{m}(\eta)\xi^{m}+c_{m-1}(\eta)\xi^{m-1}+\cdots+c_{0}(\eta)i

where c_{m}(\eta)\neq-0 . Then for \eta fixed

(3. 4) P(A, \eta)=\Sigma_{j=0}^{m}c_{f}(\eta)A^{j}

is a densely defined closed linear operator in X with domain D[A^{m(n)}] , where
m(\eta) is the greatest integer with c_{m(^{y})},(\eta)\neq 0,0\leq m(\eta)\leq m .

To formulate our results, we shall consider P(\xi, \eta) under one of the
following conditions:
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(P) : P(A, \eta), with \eta\in\sigma(B) , has an inverse P(A, \eta)^{-1}\in L(X) which is
uniformly bounded oh \sigma(B) ;
\langleP_{1}) : there exists a nonempty open set whose complement CU is
included in \rho(A) and whose boundary \partial U, restricted to the closed disc
K(0;R) with center 0 and radius R for each R>0, consists of a finite
number of rectifiable Jordan arcs and has a length of O(R) such that
|P(\xi, \eta)| is bounded away from zero on U\cross\sigma(B) and the resolvent
R(\xi;A)) is uniformly bounded in CU.
We remark that it will be shown in the same way as in [17, Theorem

2. 2] that (P_{1}) implies (P).
For the following statements, we note that

\lim_{\nuarrow\infty}P\{A\otimes E(\sigma(B)\cap\sigma_{\nu}) , I\otimes BE(\sigma(B)\cap\sigma_{\nu})\}u

\equiv\lim_{\nuarrow\infty}[\sum_{fk}c_{jk}A^{j}\otimes(BE(\sigma(B)\cap\sigma_{\nu}))^{k}]u

— 1_{\sim} im\int_{\sigma(B)\cap\sigma_{\nu}}\nuarrow\infty[P(A, \eta)\otimes E(d\eta)]u=\sum_{fk}c_{fk}[A^{f}\otimes\int_{\sigma(B)}\eta^{k}E(d\eta)]u

=P\{A\otimes LI\otimes B\}u ,

for u=x\otimes y in D[A^{m}]\otimes D[B^{n}] and hence for u in D[A^{m}]\otimes[B^{n}] , the limit
being taken in the norm of X\otimes_{\alpha}\wedge Y. Here and in the following, \{\sigma_{\nu}\}_{\nu=1}^{\infty} is
any increasing sequence of bounded Borel sets such that E( \bigcup_{\nu=1}^{\infty}\sigma_{\nu})=I .

PROPOSITION 3. 1. Suppose that the Boolean algebra of projections gen-
erated by E has the Gowurin property in L(X\otimes^{\wedge}’\alpha Y, X^{\wedge}\otimes_{\beta}Y) . Let P(\xi, \eta\rangle

be a polynomial of the form (3. 1) satisfying (P) when \alpha=\beta and (P_{1})whm
\alpha\neq\beta .

Thm both the polynomial operators (3. 2) and (3. 3) have the same
closure as operators in \mathfrak{L}(X\wedge\otimes_{\beta}Y, X^{\wedge}\otimes_{\alpha}Y) :

(3. 5) \tilde{P}\{A\otimes I, I\otimes B\}=(\sum_{fk}c_{fk}A^{f}\Phi B^{k})^{\sim} ,

and the closed operator (3. 5) has an everywhere defifined continuous inverse
\acute{\tilde{p}}\{A\otimes I, I\otimes B\}^{-1}\in L(X\wedge\otimes_{\alpha}Y, X^{\wedge}\otimes_{\beta}Y).

PROOF. (1) First we show \tilde{P}\{A\otimes I, I\otimes B\} has an inverse \tilde{P}\{A\otimes I,
I\otimes B\}^{-1} which lies in L(X\wedge\otimes_{\alpha}Y, X^{\wedge}\otimes_{\beta}Y) .

By Proposition 2. 3, the improper Riemann integral

\int_{\sigma(B)}[P(A, \eta)^{-1}\otimes E(d\eta)]v
,\cdot

v\in X\otimes Y,\cdot

exists in X\wedge\otimes_{\beta}Y and defines a continuous linear mapping of X\otimes Y\subset X\wedge\otimes_{\alpha}Y

into X\wedge\otimes_{\beta}Y. We denote its continuous extension to the entire space
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X\wedge\otimes_{\alpha}Y by \overline{P^{-1}}\{A\otimes I, I\otimes B\} , which lies in L(X\wedge\otimes_{\alpha}Y, X\otimes_{\beta}^{\wedge}Y) . We show
\overline{P^{-1}}\{A\otimes I, I\otimes B\} is the continuous inverse of \overline{P}\{A\otimes LI\otimes B\} .

Let \{\sigma_{\nu}\}_{\nu=1}^{\infty} be any increasing sequence of bounded Borel sets such that
E( \bigcup_{\nu=1}^{\infty}\sigma_{\nu})=I . Then for u in D[A^{m}]\otimes D[B^{n}] we have by definition

\overline{P^{-1}}\{A\otimes I, I\otimes B\}\tilde{P}\{A\otimes I,I\otimes B\}u

= \lim_{\nuarrow\infty}\int_{\sigma(B)\cap 0_{y}}[P(A, \eta)^{-1}\otimes E(d\eta)]P\{A\otimes I, I\otimes B\}u ,

where the limit is taken in the norm of X\wedge\otimes_{\beta}Y.
For \nu fixed, the integral

\int_{\sigma(B)\cap\sigma_{\nu}}[P(A, \eta)^{-1}\otimes E(d\eta)]

is the limit of Riemann sums
\sum_{i=1}^{s}[P(A, \eta_{i})^{-1}\otimes E(e_{i})]

in the uniform operator topology of L(X\otimes_{\alpha}^{\wedge}Y, X\otimes_{\beta}Y\wedge) as | \Delta|=\max_{1\leq i\leq s} diam e_{i}

tends to zero, where \Delta=\{e_{1}, \cdots, e_{s}\} is an arbitrary partition of \sigma(B)\cap\sigma_{\nu} into
disjoint Borel sets.

On the other hand, for x\otimes y in D[A^{m}]\otimes D[B^{n}] we obtain by (g) of
the Gowurin property with Proposition 2. 1

|| \sum_{if}[P(A, \eta_{i})^{-1}P(A’, \eta_{J})\otimes E(e_{i}\cap e_{f}’)](x\otimes y)-[I\otimes E(\sigma(B)\cap\sigma_{\nu})](x\otimes y)||_{\beta}

=|| \sum_{if}(P(A, \eta_{i})^{-1}P(A’,\eta_{f})-I)x\otimes E(e_{i}\cap e_{f}’)y||_{\beta}

\leq K\sup||(P(A, \eta_{i}r)^{-1}P(A, \eta_{\acute{J}})-I)x||||\sum_{hk}E(e_{h}\cap e_{k}’)y||

=K \sup||(P(A, \eta_{i})^{-1}P(A’, \eta_{J})-I)x||||E(\sigma(B)\cap\sigma_{\nu})y|| ,

where the supremum is taken over those i and j for which e_{i}\cap e_{f}’ is not
empty. If both |\Delta| and |\Delta’| tend to zero,

sup ||(P(A, \eta_{i})^{-1}P(A, \eta_{\acute{J}})-I)x||

converges to zero. It follows that if u=x\otimes y is in D[A^{m}]\otimes D[B^{n}] ,

\int_{\sigma(B)\cap\sigma_{\nu}}[P(A, \eta)^{-1}\otimes E(d\eta)]P\langle A\otimes I, I\otimes B\}u=[I\otimes E(\sigma(B)\cap\sigma_{\nu})]u .

On tending \nu to infinity, we obtain

(3. 6) \overline{P^{-1}}\{A\otimes I, I\otimes B\}\tilde{P}\{A\otimes I, I\otimes B\}u=u
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for u=x\otimes y in D[A^{m}]\otimes D[B^{n}] and further by continuity of \overline{P^{-1}}\{A\otimes I, I\otimes B\}

for all u in the domain of \hat{P}\{A\otimes I, I\otimes B\} .
The proof of

(3. 7) \tilde{P}\{A\otimes I. I\otimes B\}\overline{P^{-1}}\{A\otimes I, I\otimes B\}v=v

for v\in X\hat{C}\cross y_{a}Y will be divided into two cases \alpha=\beta and \alpha\neq\beta .
For case \alpha=\beta , first note that P(A, \eta)^{-1} maps D[A^{2m}] onto D[A^{2m-m(\eta)}]

\subset D[A^{m}] and ED[B^{n}]\subset D[B^{n}] .
We shall be able to see similarly to the proof of (3. 6) that if v=x\otimes y

is in D[A^{2m}]\otimes D[B^{n}] , the Riemann integral

(3. 8) \int_{\sigma(B)\cap\sigma_{\nu}}[P(A, \eta)^{-1}\otimes E(d\eta)]v

is approximated by a sequence \{u_{\mu}\}_{\mu=1}^{\infty} in D[A^{m}]\otimes D[B^{n}] of Riemann sums
such that P\{A\otimes I, I\otimes B\}u_{\mu} is convergent in X\otimes_{\alpha}Y\wedge to [I\otimes E(\sigma(B)\cap\sigma_{\nu})]v as
\muarrow\infty . Then by closedness of \tilde{P}\{A\otimes I, I\otimes B\} , the integral (3. 8) belongs to
the domain of \tilde{P}\{A\otimes I, I\otimes B\} and

\tilde{P}\{A\otimes I, I\otimes B\}\int_{\sigma(B)\cap\sigma_{\nu}}[P(A, \eta)^{-1}\otimes E(d\eta)]v=[I\otimes E(\sigma(B)\cap\sigma_{\nu})]v .

Then tending \nu to infinity, we obtain (3. 7) by closedness for all v=x\otimes y

in D[A^{2m}]\otimes D[B^{n}] and hence all v in D[A^{2m}]\otimes D[B^{n}] . Further, since
D[A^{2m}]\otimes D[B^{n}] is dense in X\wedge\otimes_{\alpha}Y, we see by continuity of \overline{P^{-1}}\{A\otimes I, I\otimes B\}

and by closedness of \tilde{P}\{A\otimes I, I\otimes B\} that (3. 7) is valid also for all v in
X\wedge\otimes_{\alpha}Y. Thus we have shown that when \alpha=\beta , ’\overline{P^{-1}}\{A\otimes I, I\otimes B\}

’

is the
everywhere defined continuous inverse of \tilde{P}\{A\otimes I, I\otimes B\} .

To treat case \alpha\neq\beta , we need
LEMMA 3. 2. Suppose P(\xi, \eta) satisfifies (P_{1}) . If \xi_{0}\not\in U so that \xi_{0}\in\rho(A),

then for u in D[A^{m+2}]\otimes Y the improper Riemann integral

(3. 9) (2 \pi i)^{-1}\int_{\partial U}(\xi-\xi_{0})^{-(m+2)}[R(\xi;A)\otimes P(\xi, B)^{-1}][(A-\xi_{0}I)^{m+2}\otimes I]vd\xi

exists in X(\hat{\cross}0_{\beta}Y and coincides with (3. 6).

PROOF. The condition (P_{1}) implies that P(\xi, B), for \xi\in U , is a closed
operator in Y with inverse P(\xi, B)^{-1}\in L(Y) which is uniformly bounded in
U and hence on its closure \overline{[1} . R(\xi;A) is uniformly bounded in CU and
hence on \partial U. Then it is clear that the integral (3. 9) exists in X\wedge\otimes_{\beta}Y, in
fact, even in X\wedge\otimes_{r}.Y.

In a similar way to the proof of Proposition 2. 3 with the aid of (G)



Tensor products of linear operators and the method of separation of variables 175

of the Gowurin property, we shall see that for v in D[A^{m+2}]\otimes Y the im-
proper double Riemann integral

(3. 10) (2 \pi i)^{-1}\int_{\partial U}\int_{\sigma(B)}(\xi-\xi_{0})^{-(m+2)}P(\xi, \eta)^{-1}

[R(\xi;A)d\xi\otimes E(d\eta)][(A-\xi_{0}I)^{m+2}\otimes I]v

exists in X\wedge\otimes_{\beta}Y. Further, it is easy to verify by spectrality of B that
(3. 10) coincides with (3. 9) and by the Cauchy integral theorem that (3. 10)
coincides with (3. 6), if v\in D[A^{m+2}]\otimes Y. Q. E. D.

END of PROOF of PROPOSITION 3. 1. Now we show (3. 7) in case
\alpha\neq\beta . Let v be in D[A^{2m+2}]\otimes D[B^{n}] . Then with the aid of Lemma 3. 2
we obtain by closedness of \tilde{P}\{A\otimes I, I\otimes B\}

\tilde{P}\{A\otimes I, I\otimes B\}\overline{P^{-1}}\{A\otimes I, I\otimes B\}v

=(2 \pi i)^{-1}\int_{\partial U}(\xi-\xi_{0})^{-(m+2)}[R(\xi;A)\otimes P(\xi, B)^{-1}]

P\{A\otimes I, I\otimes B\}[(A-\xi_{0}I)^{m+2}\otimes I]vd\xi ,

where the integral is convergent in the norm of X\wedge\otimes_{\alpha}Y.
Hence

\tilde{\Gamma^{\lrcorner}}\{A\otimes I, I\otimes B\}\overline{P^{-1}}\{A\otimes I, I\otimes B\}v

=(2 \pi i)^{-1}\int_{\partial U}(\xi-\xi_{0})^{-(m+2)}[R(\xi;A)(A-\xi_{0}I)^{m+2}\otimes I]vd\xi

+(2\pi i)^{-1}\downarrow_{\partial U}.(\xi-\xi_{0})^{-(m+2)}[R(\xi;A)\otimes P(\xi, B)^{-1}]

[P\{A\otimes I, I\otimes B\}-I\otimes P(\xi, B)][(A-\xi_{0}I)^{m+2}\otimes I]vd\xi

=vj
since the integrand of the second integral above is holomorphic in U so
that this integral turns out to vanish with the aid of the Cauchy integral
theorem.

Since D[A^{2m+2}]\otimes D[B^{n}] is dense in X\wedge\otimes_{\alpha}Y, we see by continuity and
by closedness that (3. 7) is valid for all v in X\wedge\otimes_{\alpha}Y. This proves that
\overline{P^{-1}}\{A\otimes I , I\otimes B\rangle is the everywhere defined continuous inverse of \tilde{P}\{A\otimes I,

I\otimes B\} when \alpha\neq\beta .
(2) We show next that both the closures of (3. 2) and (3. 3) coincide.

Since the right member of (3. 5) is obviously a closed extension of the left
member, we must show the converse.

As shown above, the closed operator \tilde{P}\{A\otimes I, I\otimes B\} , as an operator in
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\mathfrak{L}(X\wedge\otimes_{\beta}Y, X\wedge\otimes_{\alpha}Y) , has an everywhere defined continuous inverse. There-
fore it suffices to show that ( \sum_{fk}c_{fk}A^{f^{\wedge}}\otimes B^{k})^{\sim} is one-t0-0ne, or that its adjoint

has a dense range in (X\wedge\otimes_{\beta}Y)’ with respect to the weak topology defined
by the dual pair <(X\wedge\otimes_{\beta}Y)’ , X\hat{C}\cross_{z\beta}Y> .

The adjoint B’ of B is also a scalar type spectral operator in Y’ with
the resolution E’ of the identity. Since the dual norms \alpha’ and \beta’ are
faithful on X’\otimes Y’ , a similar argument to the above concludes with the aid
of Proposition 2. 1 that \tilde{P}\{A’\otimes I’. F\otimes B’\} , as a closed operator in \mathfrak{L}(X’\wedge\otimes_{\alpha’}Y’,
X’\wedge\otimes_{\beta},Y’), has an everywhere defined continuous inverse, in particular, it has
the range X’\wedge\otimes_{\beta},Y’ . Since \beta is faithful so that X’\otimes Y is dense in (X\wedge\otimes_{\beta}Y)’

with respect to the weak topology defined by the dual pair <(X\wedge\otimes_{\beta}Y)’,
X\wedge\otimes_{\beta}Y> , the adjoint of ( \sum_{fk}c_{fk}A^{f}\wedge\otimes B^{k})^{\sim}- which is an extension of \tilde{P}\{A’\otimes I’ ,

I’\otimes B’\} both as operators in \mathfrak{L}((X\otimes^{\wedge}\dot, \alpha Y)’, (X\hat{C\cross y}_{\beta}Y)’), has a range dense in
(X\wedge\otimes_{\beta}Y)’ in the weak topology defined by the dual pair <(X\wedge\otimes_{\beta}Y)’ , X\wedge\otimes_{\beta}Y> .

Q. E. D.
To formulate Theorem 3. 3 below, both \alpha and \beta are assumed to be

\otimes-norms, or also allowed to be the prehilbertian norm \alpha_{0} when both the
spaces on whose tensor product they are defined are Hilbert spaces.

Let X_{1} be a Banach space which is a subspace of X with a continuous
injection: X_{1}CX. Assume that either X or Y and either X_{1} or Y satisfy
the approximation condition, so that \alpha and \beta are faithful on X\otimes Y, X_{1}\otimes Y,

respectively, and there is a continuous injection: X_{1}\wedge\otimes_{\beta}YCX\wedge\otimes_{\beta}Y. Then
in virtue of Proposition 3. 1, we see that (3. 2) and (3. 3) have the same
closure (3. 5) as operators in \mathfrak{L}(X\otimes_{\beta}Y\wedge, X\wedge\otimes_{\alpha}Y), if P(\xi, \eta) satisfies (P) or (P_{1}) .

We consider the problem of finding a u in X\wedge\otimes_{\beta}Y which satisfies
\tilde{P}\{A\otimes I, I\otimes B\}u=(\sum_{fk}c_{fk}A^{f^{\wedge}}\otimes B^{k})^{\sim}u=f_{:} f\in X\hat{C}\cross_{J\alpha}Y.

To solve this problem, let A_{1}=A|X_{1} be the closed operator in X_{1}

obtained from A by restricting the domain and range of A to X_{1} , i.e . A_{1}

has the domain D[A_{1}]=\{x\in D[A];x\in X_{1}, Ax\in X_{1}\} and is defined by A_{1}x

=Ax for x\in D[A_{1}] . So, I_{1}=I|X_{1} .
Then we can state and prove

THEOREM 3. 3. Assume the Boolean algebra of projections generated
by the resolution E of the idmtity of B has the Gowurin property in
L(X\wedge\otimes_{\alpha}Y, X\wedge\otimes_{\beta}Y) and L(X\wedge\otimes_{\alpha}Y, X_{1}^{\wedge}\otimes_{\beta}Y) . Let P(\xi, \eta) be a polynomial of
the form (3. 1) satisfying no\hat{t} only (P) whm \alpha=\beta and (P_{1})whm\alpha\neq\beta , but
also the \eta^{k}A^{f}P(A, \eta)^{-1} are in L(X, X_{1}) and uniformly bounded on \sigma(B) in
L(X, X_{1}) for all (j, k)\in J, where J is a givm double-index subset of {(j, k) ;
0\leq j\leq m, 0\leq k\leq n\} such that (j, k)\in J implies (p, q)\in J for 0\leq p\leq j , 0\leq q\leq k .
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Then the closed operator (3. 5), considered as an operator in \mathfrak{L}(X\wedge\otimes_{\beta}Y, X\wedge\otimes_{\alpha}Y),
has an inverse which is a one-tO-One continuous linear mapping of X\wedge\otimes_{\alpha}Y

onto D[ \tilde{P}\{A\otimes I, I\otimes B\}]\subset\bigcap_{(f,k)\epsilon J}D[A_{1}^{f}\wedge\otimes_{\beta}B^{k}]\subset X_{1}\otimes_{\beta}Y\wedge , where D[\tilde{P}\{A\otimes I ,
I\otimes B\}] is equipped with the norm \sum_{(f,k)\in J}||A_{1}^{f}\wedge\otimes_{\beta}B^{k}u||_{\beta} .

REMARK 3. 4. It is also true under the assumption of Theorem 3. 3
that (3. 5) has an inverse which is a one-t0-0ne continuous linear mapping
of X\hat{C}\cross_{\alpha},Y onto D[ \tilde{P}\{A\otimes I, I\otimes B\}]\subset\bigcap_{(f,k)\in J}D[A^{j}\wedge\otimes_{\beta}B^{k}]\subset X\wedge\otimes_{\beta}Y. where
D[\tilde{P}\{A^{\wedge}\otimes I, I’\otimes^{\backslash }B\}] is in its turn equipped with the norm \sum_{(f,k)\in J}||A^{j}\wedge\otimes_{\beta}B^{k}u||_{\beta} .
However, note D[A_{1}^{f}\wedge\otimes_{\beta}B^{k}]\subset D[A^{f}\wedge\otimes_{\beta}B^{k}] for (j, k)\in J , as seen from the
following proof.

PROOF of THEOREM 3. 3. In virtue of Proposition 3. 1, the closed op-
erator (3. 5) has an inverse \tilde{P}\{A\otimes I, I\otimes B\}^{-1}\in L(X\hat{C_{J\alpha}\cross}Y, X\otimes_{\beta}^{\backslash }Y) .

To prove Theorem 3. 3, it suffices to show that if (j, k)\in J, then

D[\tilde{P}\{A\otimes I, I\otimes B\}]\subset D[A_{1}^{j}\otimes^{\wedge}, \beta B^{k}]

and

(3. 11) ||A_{1}^{f^{\wedge}}\otimes_{\beta}B^{k}u||_{\beta}\leq K||\tilde{P}\{A\otimes I, I\otimes B\}u||_{\alpha}

for u\in D[\tilde{P}\{A\otimes I, I\otimes B\}] , with a constant K independent of u.
By assumption, \eta^{k}A^{j}P(A, \eta)^{-1}\in L(X, X_{1}) if (j, k)\in J and \eta\in\sigma(B) . In

particular, A^{p}P(A, \eta)^{-1}\in L(X, X_{1}) for 0\leq p\leq j . Hence

D[A^{m}]\subset D[A^{m(\eta)}]=D[P(A, \eta)]=P(A, \eta)^{-1}X\subset X_{1}t

Here we see j\leq m(\eta)\leq m for \eta\in\sigma(B) . Thus we have A^{p}P(A, \eta)^{-1}=A_{1}^{p}P(A, \eta)^{-1}

for 0\leq p\leq j. As \eta^{k}A^{f}P(A, \eta)^{-1} is uniformly bounded in L(X, X_{1}) on \sigma(B),
so is \eta^{k}A_{1}^{f}P(A, \eta)^{-1} . It is seen by the Gowurin property and by Proposition
2. 3 that the integral

\int_{\sigma(B)}[\eta kA^{f}{}_{1}P(A, \eta)^{-1}\otimes E(d\eta)]v , v\in X\otimes Y-
,

exists as an element of X_{1}\wedge\otimes_{\beta}Y and defines a continuous linear mapping of
X\otimes Y\subset X\wedge\otimes_{\alpha}Y into X_{1}\wedge\otimes_{\beta}Y. We denote its continuous extension to X\wedge\otimes_{\alpha}Y

by \mathscr{A} . There exists a constant K such that ||\mathscr{A}v||_{\beta}\leq K||v||_{\alpha} for v\in X\otimes Y.
By the definition of the integral, it is shown similarly to the proof of

Proposition 3. 1 that for u\in D[A^{m}]\otimes D[B^{n}]

e\mathscr{A}(_{\backslash }\tilde{P}\langle A\otimes I, I\otimes B\}u)=\mathscr{A}(P\{A\otimes I, I\otimes B\}u)=(A_{1}^{f}\otimes B^{k})u ,

which belongs to X_{1}\otimes_{\beta}^{\wedge}Y Hence for u\in D[A^{m}]\otimes D[B^{n}]



178 T. Ichinose

||(A_{1}^{f}\otimes B^{k})u||_{\beta}\leq||\prime \mathscr{A}||||\overline{P}\{A\otimes I, I\otimes B\}u||_{\alpha}

\leq K||\tilde{P}\{A\otimes I, I\otimes B\}u||_{\alpha} .

Since D[A^{m}]\otimes D[B^{n}] is dense in the domain of \tilde{P}\{A\otimes I, I\otimes B\} in its
graph norm, we obtain by closedness of A_{1}^{f}\otimes_{\beta}^{\wedge}B^{k} the inequality (3. 11) Q.E. D.

REMARK 3. 5. Although the hypothesis of Theorem 3. 3 may not be
sufficient to guarantee

A_{1}^{J_{\otimes_{\beta}}^{\wedge}}B^{k}=(A_{1}^{f}\hat{C\cross}y_{\beta}I)(I_{1}\wedge\otimes_{\beta}B^{k})=(I_{1}\wedge\otimes_{\beta}B^{k})(A_{1}^{l_{\otimes_{\beta}}^{\wedge}}I)

as linear operators in \mathfrak{L}(X_{1}\wedge\otimes_{\beta}Y) (cf. [16, Theorem 1. 8]), it is seen from
the proof above that A_{1}^{f}\wedge\otimes_{\beta}B^{k} in the statement of Theorem 3. 3 may be
replaced by (A_{1}^{j}\wedge\otimes_{\beta}I)(I_{1}\wedge\otimes_{\beta}B^{k}) or (I_{1}\wedge\otimes_{\beta}B^{k})(A_{1}^{f}\wedge\otimes_{\beta}I) , which is in turn identical
with (A_{1}\wedge\otimes_{\beta}I)^{j}(I_{1}\otimes^{\wedge}’\beta B)^{k} or (I_{1}\wedge\otimes_{\beta}B)^{k}(A_{1}’\otimes_{\beta}^{\backslash }I)^{f}, respectively.

From Theorem 3. 3 combined with Theorem 2. 2, we have
COROLLARY 3. 6. The assertion of Theorem 3. 3 is valid for those

X, X_{1} , Y and \alpha, \beta which come from one of the cases (a), (b), (c) and (d) in
Theorem 2. 2, provided either X or Y and X_{1} or Y satisfy the approxima-
tion condition.

3. 2. The class \mathscr{P}’(A, B) of polynomials.

In order to formulate our main results, we introduce two classes of
polynomials (see [17]) for which the assumptions in Section 3. 1 are valid.

Given two subsets G_{1} and G_{2}\neq\emptyset of the complex plane C and a poly-
nomial P(\xi, \eta), we can define P(G_{1}, G_{2}) and its closure \overline{P(G_{1},G_{2})} in an
obvious way, if G_{1} is not empty when P(\xi, \eta) is dependent on \xi , and
otherwise we understand P(G_{1}, G_{2})=\overline{P(G_{1},G_{2})}=\emptyset . We set W. =\{\xi ; dist (\xi ,
\overline{P(\sigma(A),\sigma(B))})<\epsilon\} if \overline{P(\sigma(A),\sigma(B))}\neq C and denote by K(0;R) the closed disk
\{\xi;|\xi|\leq R\} with radius R.

Let \mathscr{P}’(A, B) be the class of polynomials P(\xi, \eta) of degrees m in \xi and
n in \eta satisfying the following condition: for any \epsilon>0 (resp. for any R>0
when \sigma(A) is empty) there exists a nonempty open set U whose comple-
ment CU is included in \rho(A) such that

(i)’ P(U, \sigma(B))\subset W_{\epsilon} (resp. P(U, \sigma(B))\subset\subset K(0;R), when \sigma(A) is empty),

and
(ii)’ the resolvent R(\xi;A) is uniformly bounded in CU.
Further, we say P(\xi, \eta) belongs to the class \mathscr{P}_{1}’(A, B) if in the definition

of \mathscr{P}’(A, B), the open set U is chosen such that the boundary \partial U, restricted
to K(0;R) for each R>0, consists of a finite number of rectifiable Jordan
arcs and has a length of O(R).
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For P\in t\mathscr{P}’(A, B) or P\in \mathscr{P}_{1}^{r}(A, B), the set P(\sigma(A), \sigma(B)) may not be
closed, so that these classes are strictly larger than the class .\mathscr{P}(A, B) in [16].

Then we have from Proposition 3. 1

THEOREM 3. 7. Let \alpha and \beta be faithful uniform reasonable norms on
X\otimes Y. Let A be a densely defifined closed linear operator in X with non-
empty resolvmt set and B a scalar type spectral operator in Y with non-
empty resolvent set having the countably additive resolution E of the identity,
the Boolean algebra of projections generated by which has the Gowurin
property in L(X^{\wedge}\otimes_{\alpha}Y, X\otimes_{\beta}^{\wedge}Y) .

Then when \alpha=\beta, for P\in \mathscr{P}’(A, B) both (3. 2) and (3. 3), as operators in
\mathfrak{L}(X\otimes_{\alpha}^{\wedge}Y), have the same closure (3. 5) provided that \overline{P(\sigma(A),\sigma(B))}\neq C, and
the spectral mapping theorem holds for P\in \mathscr{P}’(A, B) :

(3. 12) \overline{P(\sigma(A),\sigma(B))}=\sigma(P\{A\otimes I, I\otimes B\})=\sigma(\tilde{P}\{A\otimes I, I\otimes B\})

= \sigma(\sum_{fk}c_{fk}A^{J_{\otimes_{\alpha}}^{\wedge}}B^{k})=\sigma((\sum_{fk}c_{fk}A^{J_{\otimes_{a}}^{\wedge}}B^{k})^{\sim})

By this is meant that (3. 12) holds valid if \sigma(A) is not empty, and the
spectra of the operators (3. 2) and (3. 3) and their closures are empty if and
only if \sigma(A) is empty.

Whm \alpha\neq\beta, for P\in \mathscr{P}_{1}’(A, B) both (3. 2) and (3. 3), as operators in
\mathfrak{L}(X(\hat{\grave{g}}_{\beta}Y, X^{\wedge}\otimes_{\alpha}Y), have the same closure provided that 0\not\subset\overline{P(\sigma(A),\sigma(B))}, and
the closed operator (3. 5) has an everywhere defifined continuous inverse.

PROOF. It is possible to show (see [17, Theorem 2. 2]) that if
\lambda\not\in P(\sigma(A), \sigma(B)), then (P(A, \eta)-\lambda I)^{-1} is in L(X) and uniformly bounded on
\sigma(B) . Therefore, Theorem 3. 7 follows immediately from Proposition 3. 1,
if we only recall ([15], cf. [16]) that the inclusion

\overline{P(\sigma(A),\sigma(B))}\subset\sigma(P\{A\otimes I, I\otimes B\})=\sigma(\tilde{P}\{A\otimes I, I\otimes B\})

is valid if \sigma(A) and \sigma(B) are nonempty. Note also that the spectrum of a
linear operator is unchanged under maKimal extensions, in particular, under
the closure operation.if it is closable [14]. Q.E.D.

For P\in,\mathscr{P} ’ (A, B), consider the polynomial operators (3. 2) and (3. 3) as
operators in

(a) \mathfrak{L}(X.\acute{\grave{\cap}}\cross.L)\pi (Y=L, \alpha=\beta=\pi) ,
(b) \mathfrak{L}(X\otimes_{\text{\’{e}}}^{\wedge}C) (Y=C, \alpha=\beta=\epsilon) ,
(c) \mathfrak{L}(H_{1}\wedge\otimes_{\alpha_{0}}H_{2}) (X=H_{1}, Y=H_{2}, \alpha=\beta=\alpha_{0}) and
(d) \mathfrak{L}(X\wedge\otimes_{*}Y, X^{\wedge}\otimes_{\pi}Y) (\alpha=\pi, \beta=\epsilon) ,

corresponding to the four cases in Theorem 2. 2. Here we assume that in
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cases (a) and (d), \pi is faithful on X\otimes L, X\otimes Y, respectively.
Then the following corollary is a direct consequence of Theorem 3. 7

combined with Theorem 2. 2.
COROLLARY 3. 8. In cases (a), (b) and (c), for P\in,-\mathcal{P}’(A, B) both (3. 2)

and (3. 3) have the same closure, provided that \overline{P(\sigma(A),\sigma(B))}\neq C, and the
spectral mapping theorem (3. 12) holds. In case (d), if P\in.\mathscr{P}_{1}’(A, B) and
0\not\in\overline{P(\sigma(A),\sigma(B))} , both (3. 2) and (3. 3), as operators in \mathfrak{L} (X\wedge\otimes . Y. X\wedge\otimes_{ff}Y),

have the same closure (3. 5) which has in turn an everywhere defifined con-
tinuous inverse.

3. 3. The case P(\xi, \eta)=\xi+\eta .

We consider the polynomial operators A\otimes I+I\otimes B and A\otimes^{\wedge}I+I\otimes^{\backslash }B ,

corresponding to the polynomial P(\xi, \eta)=\xi+\eta, in the same situation as
in Corollary 3. 8, i.e. as operators in (a) \mathfrak{L}(X’\otimes_{-\pi}^{\backslash }L), (b) \mathfrak{L}(X\wedge\otimes.C), ( c)
\mathfrak{L}(H_{1}’\otimes_{\alpha_{0}}H_{2}) and (d) \mathfrak{L}(X^{\wedge}\otimes_{\epsilon}Y, X\wedge\otimes_{\pi}Y), where we assume that in case (a), \pi is
faithful on X\otimes L, and that in case (d), \pi is also faithful on X\otimes Y.

Then from Proposition 3. 1 and Corollary 3. 8 follows immediately the
following corollary, which extends the results of Ju. M. Berezanski_{\dot{1}}[3] and
L. and K. Maurin [22] (cf. [16], [17]).

COROLLARY 3. 9. In cases (a), (b) and (c), suppose that if \sigma(A) is not

empty one has ||R(\xi;A)||\leq C_{\delta} outside U_{\delta}= {\xi ; dist (\xi, \sigma(A))<\delta} for any \delta>0,

and that if \sigma(A) is empty, for any R>0 there exists a nonempty open set
U for which U+\sigma(B)\subset\subset K(0;R) and ||R(\xi;A)||\leq C_{R} in CU, with constants

C_{\delta} and C_{R} depmding only on \delta, R, respectively. Thm A\otimes I+I\otimes B and
A^{\wedge}\otimes_{\alpha}I+I^{\wedge}\otimes_{a}B have the same closure and it holds

\overline{\sigma(A)+\sigma(B)}=\overline{\sigma(A\grave{C}\cross_{J\alpha}I)+\sigma(I’\otimes_{\alpha}B)}

=\sigma(A\otimes I+I\otimes B)=\sigma((A\otimes I+I\otimes B)^{\sim})

=\sigma(A^{\wedge}\otimes_{\alpha}I+I^{\wedge}\otimes_{\alpha}B)=\sigma(((A^{\wedge}\otimes_{\alpha}I+(I\wedge\otimes_{\alpha}B))^{\sim}) ,

where in case (a) : \alpha=\pi , (b) : \alpha=\epsilon and (c) : \alpha=\alpha_{0} .
In case (d), if there exists a nonempty open set U with CU\subset\rho(A) whose

boundary \partial U, restricted to K(0;R) for each R>0 , consists of a fifinite
number of rectififiable Jordan arcs and has a length of O(R) such that the
complement of U+\sigma(B) includes a neighbourhood of 0 and R(\xi;A) is uni-
formly bounded in CU, then A\otimes I+I\otimes B and A\wedge\otimes I+I\wedge\otimes B have the same
closure which has in turn an everywhere defifined continuous inverse.

The following corollary extends Theorem 3. 2 in [17] (cf. Theorem 4. 6
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(1) in [16] ), and is shown just in the same way. The sector \{\xi;|\arg\xi|\leq\theta\}

is denoted by S(\theta) .
COROLLARY 3. 10. Consider cases (a), (b) and (c). Suppose, for 0\leq\theta_{A} ,

\theta_{B}<\pi with 0\leq\theta_{A}+\theta_{B}<\pi, that the resolvmt set \rho(A) includes the complemmt of
the sector S(\theta_{A}) and ||\xi(R;A)||\leq M_{\theta} outside S(\theta) for each \theta with \theta_{A}<\theta<\pi ,
where M_{\theta} is a constant depending only on \theta, and the resolvent set \rho(B) inclu&s
the complement of the sector S(\theta_{B}) .

Then the closure of the operator A\otimes I+I\otimes B coincides with A\wedge\otimes_{-}I+

I\wedge\otimes B. It holds
\sigma(A)+\sigma(B)=\sigma(A^{\wedge}\otimes_{\alpha}I)+\sigma(I_{\backslash }^{\wedge}\otimes_{\alpha}B)

=\sigma(A\otimes I+I\otimes B)=\sigma((A\otimes I+I\otimes B)^{\sim})

=\sigma(A\hat{Q}_{\alpha}*I+I\wedge\otimes_{\alpha}B) ,

where in case (a) : \alpha=\pi , (b) : \alpha=\epsilon and (c) : \alpha=\alpha_{0} .

4. Applications

In [16], we have already indicated an application to the first boundary
value problem of a class of quasi-elliptic differential equations such as con-
sidered by V. P. Mihailov [25].

In the present paper, we are concerned with the initial value problem
of the abstract wave equation

(4. 1) P[u]=[d^{2}/dt^{2}+\Lambda]u(t)=f(t)

in a bounded interval (0, T), T>0, with the initial condition
(4. 2) u(0)=u_{t}(0)=0 ,

where \Lambda is a nonnegative selfadjoint operator in a Hilbert space H.

4. 1. Banach spaces of vector-valued distributions.

We introduce some Banach spaces of vector-valued distributions, some
of which to be represented by tensor products of Banach spaces. The
equalities indicate isometrical isomorphisms between the spaces involved with
their usual norms.

Let I=[0, T] be a bounded closed interval and B(I) the Borel field of
I. Let Y be a complex Banach space, whose norm is denoted by || || .

(a) L_{p}(I, Y), 1\leq p<\infty , and C(I, Y) .
By L_{p}(I, Y), 1\leq p<\infty , we denote the Banach space of all (equivalence

classes of) vector-valued, p-th power integrable functions f(t):Iarrow Y, equipped
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with norm ||f||_{L_{p}}=(J_{0}^{T}||f(t)||^{p}dt)^{1/p} .
By C(I, Y), we denote the Banach space of all vector-valued continuous

functions f(t):Iarrow Y, equipped with norm ||f||_{C}= \sup_{t\in I}||f(t)|| .
Set L_{p}(LC)=L_{p}(I) and C(I, C)=C(I).
Then these spaces are represented as follows [11]:

(4. 3) L_{1}(I, Y)=L_{1}(I)\wedge\otimes_{\pi}Y ;

(4. 4) C(I, Y)=C(I)\wedge\otimes_{\epsilon}Y ;

(4. 5) L_{2}(I, H)=L_{2}(I)\wedge\otimes_{\alpha_{0}}H ,

where H is a Hilbert space.
(b) M(I, Y) and M^{1}(I, Y) .
Given a mapping m:B(I)arrow Y, we define for y’\in Y’ a set function \mu_{y} ,

by \mu_{y},(e)=<\mu(e) , y’> for e\in B(I) . We say that m is a regular vector-
valued measure on I (cf. [6, Part I, Chap 4, 10]) if for each y’\in Y’ , \mu_{y’} is
a regular scalar-valued measure on I. A vector-valued measure m on I said
to be of bounded semi-variation if

||m||_{M}= \sup||\sum_{i}\alpha_{i}m(e_{i})||

is finite, and of bounded variation if
||m||_{M^{1}}= \sup\sum_{i}||m(e_{i})||

is finite, where the supremum is taken over all finite partitions \{e_{i}\} of I into
disjoint Borel sets and all collections \{\alpha_{i}\} of complex numbers with |\alpha_{i}|\leq 1

(cf. [5]).
The space M(I, Y) of all regular vector-valued measures m:B(I)arrow Y

of bounded semi-variation is a Banach space under the norm ||m||_{M} . The
space M^{1}(I, Y) of all m\in M(I, Y) of bounded variation is a Banach space
under the norm ||m||_{M^{1}} .

If Y=C, then both M(I, C) and M^{1}(I, C) are nothing but the space
M(I) of all regular scalar-valued measures on I of bounded variation, which
is the dual space of C(I):M(I)=C(I)’ .

J. Gil de Lamadrid [8] has shown that M(I)\wedge\otimes_{\text{\’{e}}}Y is a closed subspace
of M(I, Y), and that if Y is reflexive, then

(4. 6) M(I, Y)=L(C(I), Y)=(C(I)\wedge\otimes_{\pi}Y’)’

and

(4. 7) M^{1}(I, Y)=C(I, Y’)’=(C(I)\wedge\otimes.Y’)’=M(I)_{\backslash }\wedge\cap\cross_{J\pi}Y
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(c) BV(I, Y) and BV^{1}(I, Y) .
A vector-valued function f(t):Iarrow Y is said to be of bounded semi-

variation if

||f||_{BV}= \sup||\sum_{i}\alpha_{i}(f(t_{i})-f(t_{i-1}))||

is finite, and of bounded variation if

||f||_{BV^{1}}= \sup\sum_{i}||f(t_{i})-f(t_{i-1})||

is finite, where the supremum is taken over all finite partitions \Delta:0=

t_{0}\leq t_{1}\leq\cdots\leq t_{r}=T of I and all collections \{\alpha_{i}\} of complex numbers with
|\alpha_{i}|\leq 1 . Our concepts of bounded semi-variation and bounded variation of
f(t) are coincident with those of bounded variation and strong bounded
variation, respectively, in [13, Chap. III, 3. 2, Def. 3. 2. 4].

A vector-valued function f(t):Iarrow Y of bounded semi-variation (resp.
bounded variation) is normalized if f(t) is continuous on the right at each
interior point of I in the weak topology (resp. in the norm) and w- \lim_{tarrow+0}f(t)=0

(resp. s- \lim_{tarrow+0}f(t)=0).

The space BV(I, Y) (resp. BV^{1} (I, Y)) of all normalized vector-valued
functions f(t):Iarrow Y of bounded semi-variation (resp. bounded variation) is
a Banach space under the norm ||f||_{BV} (resp. ||f||_{BV^{1}}).

If Y=C, then both BV(I, C) and BV^{1}(I, C) is the space BV(I) of all
normalized functions of bounded variation on I.

Observe that BV(I)\otimes Y can be considered to be an algebraic subspace
of BV(I, Y) and BV^{1}(I, Y) by the identification

(4. 8) \sum_{k}x_{k}(t)\otimes y_{k}=\sum_{k}x_{k}(t)y_{k} .

We claim that BV(I)(^{\hat{\neg}}*_{\epsilon}Y is a closed subspace of BV(I, Y). To see this,
it suffices to show that the norm of BV(I, Y) induces the norm \epsilon on
BV(I)\otimes Y. Let u\in BV(I)\otimes Y be represented as in (4. 8). Then

||u||_{BV}=|| \sum_{K}x_{k}(t)y_{k}||_{BV}

= \sup_{\Delta}||\sum_{i}\alpha_{y}\dot{\Pi}\sum_{k}(x_{k}(t_{i})-x_{k}(t_{i-1}))y_{k}||

= \sup_{\Delta}||^{y}y

”

| \sup_{\epsilon Y’}|\leq 1’|<\sum_{i}\alpha_{i}\sum_{k}(x_{k}(t_{i})-x_{k}(t_{i-1}))y_{k}
, y’>|

where the supremum in the above two expressions is taken over all finite
partitions \Delta:0=t_{0}\leq t_{1}\leq\cdots\leq t_{r}=T of I and all collections \{\alpha_{i}\} of complex
numbers with |\alpha_{i}|\leq 1 . Hence
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||u||_{BV}= \sup_{\Delta} y’ \in,Y’\sup_{||y||\leq},\sum_{1}i|\sum_{k}(x_{k}(t_{i})-x_{k}(t_{i-1}))<y_{k} , y’>|

= \sup_{y’\epsilon Y}y’||\leq 1||\sum kxk<yk , y’>||_{BV(I)}

=||u|| . \Gamma

This proves our claim.
As concerns BV^{1}(I, Y), if Y is reflexive, the following representation

holds:
(4. 9) BV^{1}(I, Y)=BV(I)\wedge\otimes_{\pi}Y

For proof, note that, by the representation theorems of Riesz type (see
e.g. [2] ), M(I, Y)=C(I, Y’)’ is isometrically isomorphic to BV^{1}(I, Y) . In
particular, there exists an isometrical isomorphism T:M(I)arrow BV(I), so
that M(I)\wedge\otimes_{\pi}Y is isomorphic to BV(I)\wedge\otimes_{\pi}Y (use [11, \S 1, no2, Proposition
4]). Thus to prove (4. 9), it suffices to show that the norm of BV^{1}(I, Y)

induces the norm \pi on BV(I)\otimes Y. It is easy to verify ||u||_{BV^{1}}\leq||u||_{\pi} for
u\in BV(I)\otimes Y.

To prove the reverse inequality, let u\in BV(I)\otimes Y be represented as in
(4. 8), where we may assume both the x_{k} and the y_{k} are linearly inde-
pendent. First we show that u can be approximated by elements of
BV(I)\otimes Y of the form

(4. 10) v=\sum_{f=1}^{s}\xi_{f}(t)\otimes\eta_{J}=\sum_{f=1}^{s}\xi_{f}(t)\eta_{J}

satisfying ||v||_{BV^{1}}=||v||_{\pi} and

\xi_{f}(t)=\int 0 , for 0\leq t\leq t_{f-1} ,

1 \xi_{f}(t_{f}) , for t_{f}\leq t\leq T (1 \leq j\leq s) ,

for some finite partition \Delta:0=t_{0}\leq t_{1}\leq t_{2}\leq\cdots\leq t_{s}=T of I.
Set \mu_{k}=T^{-1}x_{k}\in M(I) for each k, so that m= \sum_{k}\mu_{k}\otimes y_{k}\in M(I)\otimes Y.
Let \delta>0 . In virtue of a lemma due to P. Saphar^{2)} , there exists \nu\in M(I)

=C(I)’, a partition \Delta:0=t_{0}\leq t_{1}\leq\cdots\leq t_{s}=T of I and \{\eta_{J}\}_{J=1}^{s}\subset Y such that

||m-m_{\delta}||_{\pi}<\delta , m_{\delta}= \sum_{f}\chi_{f}\nu\otimes\eta_{j}’.

where \chi_{j}(t) is a characteristic function of the interval [t_{f-1}, t_{f}) in I.
Set T(\chi_{f}\nu)=\xi_{f} and u_{\delta}=(T \otimes I)m_{\delta}=\sum_{j=1}^{s}\xi_{f}(t)\otimes\eta_{J} . Note the \xi_{f}(t) satisfy

2) See Lemma 3.2 in P. Saphar: Produits tensoriels d’espaces de Banach et classes
d ’ applications lin6aires, Studia Math. 38, 71-100 (1970).
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the required condition. Then we have
||u-u_{\delta}||_{\pi}\leq||T||||m-m_{\delta}||_{\pi}<||T||\delta=\delta

It is easy to show ||u_{\delta}||_{BV^{1}}\geq||u_{\delta}||_{\pi} , whence ||u_{\delta}||_{BV^{1}}=||u_{\delta}||_{\pi} .
Thus there exists a sequence \{u_{n}\}_{n=1}^{\infty} in BV(I)\otimes Y of the form (4. 10\rangle

which converges to u in the norm \pi . As it is a Cauchy sequence in the
norm \pi, so is it in the norm of BV^{1}(I, Y) . It follows that ||u||_{BV^{1}}=||u||_{\pi} .
This proves (4. 9).

4. 2. The initial value problem (4.1) and (4. 2).

We consider the initial value problem (4. 1) and (4. 2).
Let s be real if 0\not\in\sigma(\Lambda), otherwise s\geq 0 . The domain H^{s}=D[\Lambda^{s/2}]\subset H

of \Lambda^{s/2} is a Hilbert space under the norm ||u||_{s}=||u||_{H}+||\Lambda^{s/2}u||_{H} , where ||\cdot||_{H}

denotes the norm of H.
We shall employ the following notations:

L_{p,2}^{0,s}(I;\Lambda)=L_{p}(I, H^{s}) ;
C_{2}^{0,s}(I;\Lambda)=C(I, H^{s}) ;
M_{2}^{0,s}(I;\Lambda)=M^{1}(I, H^{s}) ;

B_{2}^{0,s}(I, \Lambda)=BV(I, H^{s})

Further for X=L_{p} , C, M and B, let

X_{2}^{1,s}(I;\Lambda)=\{f;f\in X_{2}^{0,s+1}(I;\Lambda) , df/dt\in X_{2}^{0,s}(I;\Lambda)\} .

Then, applying Theorem 3. 3 or Corollary 3. 6, we obtain Theorem
4. 1 below. L. G[mathring]_{a}rding and J. Leray proved (unpublished) the statement
(1) and a stronger one than (2), with B^{1,s}2(I;\Lambda) replaced by

\{f;f\in BV^{1}(I, H^{s+1}) , df/dt\in BV^{1}(I, H^{s})\} ,

for the initial value problem of a strongly hyperbolic differential equation
in a strip. The statement (3) is well-known.

By P we denote also the closure of the operator associated with the
problem (4. 1) and (4. 2) in the respective spaces.

THEOREM 4. 1. P^{-1} is a continuous linear mapping
(1) of L_{1,2}^{0,s}(I;\Lambda) into C_{2}^{1.s}(I;\Lambda) ,

(2) of M_{2}^{0.s}(I;\Lambda) into B_{2}^{1,s}(I;\Lambda) , and
(3) of L_{2,2}^{0,s}(I;\Lambda) into L_{2,2}^{1,s}(I;\swarrow \bm{1}) .
REMARK 4. 2. Note it is easy to verify by Corollary 3. 9 (cf. [17]) that

P^{-1} is a continuous linear mapping



186 T. Ichinose

(1) of L_{1,2}^{0,s}(I;\Lambda) into L(I)\wedge\otimes_{C}H^{s},\cdot

(2) of M_{2}^{0,s}(I;\Lambda) into M(I)\wedge\otimes_{\text{\’{e}}}H^{s},, and
(3) of L_{2,2}^{0,s}(I;\Lambda) into itself.
PROOF of THEOREM 4. 1. Let X, X_{1} be, respectively, L_{1}(I), C(I);M(I),

BV(l) and L_{2}(I), L_{2}(I) . We see X_{1}CX in these three cases. Let A=d/dt
in X with domain

D[A]=\{\varphi\in X;d\varphi/dt\in X , \varphi(0)=0\} ,

and let B=\Lambda^{1/2} in H^{s} with domain
D[B]=D[\Lambda^{1/2}]=\{h\in H^{s} ; \Lambda^{1/2}h\in H^{s}\}

Then A is a densely defined closed linear operator in X with empty
spectrum \sigma(A), and B is a selfadjoint in H^{s} with the spectrum \sigma(B) being
a closed subset of the nonnegative real line.

Observe the following tensor product representations of the spaces as
in Section 4. 1:

L_{1,2}^{0,s}(I;\Lambda)=L_{1}(1)\wedge\otimes_{\pi}H^{s} ;
M_{2}^{0,s}(I;\Lambda)=M(I)\wedge\otimes_{ff}H^{s}\vee ;
L_{2,2}^{0,s}(I;\Lambda)=L_{2}(I)\otimes_{\alpha_{0}}^{\wedge}H^{s}

In our setting, P is considered as the closure of A^{2}\wedge\otimes I+I\wedge\otimes B^{2} in the respec-
tive spaces.

Let \delta>0 . Then it is easy to verify that |\xi^{2}+\eta^{2}|\geq\delta^{2} for (\xi, \eta)\in U\cross\sigma(B),
where U= {\xi ; Re \xi>\delta}, and R(\xi;A) is uniformly bounded in CU
= {\xi ; Re \xi>\delta}.

If \eta\geq 0, we have for \varphi\in X

(A^{2}+ \eta^{2}I)^{-1}\varphi=\int_{0}^{t}\eta^{-1} sin \eta(t-s)\varphi(s)ds

and

A(A^{2}+ \eta^{2}I)^{-1}\varphi=\int_{0}^{t} cos \eta(t-s)\varphi(s)ds ,

\eta(A^{2}+\eta^{2}I)^{-1}\varphi=\int_{0}^{t} sin \eta(t-s)\varphi(s)ds .

In all three cases, it is shown that (A^{2}+\eta^{2}I)^{-1} belongs to L(X), and
that all (A^{2}+\eta^{2}I)^{-1}, A(A^{2}+\eta^{2}I)^{-1} and \eta(A^{2}+\eta^{2}I)^{-1} belong to L(X, X_{1}) for \eta\geq C

and are uniformly bounded in L(X, X_{1}) for \eta\geq 0 .
Let A_{1} be the operator in X_{1} obtained from A by restricting the d0-
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main and range of A to X_{1} and let I_{1}=I|X_{1} .
(1) In case X=L_{1}(I) and X_{1}=C(I), we see in virtue of Theorem 3. 3

or Corollary 3. 6 for \alpha=\pi and \beta=\epsilon that P^{-1} is a one-t0-0ne continuous
linear mapping of L_{1,2}^{0,s}(I;\Lambda) onto D[P]\subset D[A_{1}\wedge\otimes_{\epsilon}I]\cap D[I1\hat{O}*\epsilon B]\subset C(I)\wedge\otimes_{*}H^{s}

=C_{2}^{0,s}(I;\Lambda), where D[P] is equipped with the norm
||u||_{C}+||A_{1}\wedge\otimes.Iu||_{C}+||I_{1}\wedge\otimes_{\epsilon}Bu||_{C}=||u||_{C}+||du/dt||_{C}+||\Lambda^{1/2}u||_{C} .

Since D[A_{1}\wedge\otimes_{*}I]\cap D[I_{1}\wedge\otimes_{\epsilon}B]\subset C^{1,s}2(I;\Lambda), we have the assertion for (1).

(2) In case X=M(I) and X_{1}=BV(I), it is seen similarly for \alpha=\pi and
\beta=\epsilon that P^{-1} is a one-t0-0ne continuous linear mapping of M_{2}^{0,s}(I;\Lambda) onto
D[P]\subset D[A_{1}\otimes_{\epsilon}I]\cap D[I_{1}\wedge\otimes_{e}B]\subset BV(I)\wedge\otimes.H^{s}CB_{2}^{0,s}(I;\Lambda), where D[P] is equip-
ped with norm

||u||_{BV}+||A_{1\grave{C}\aleph_{*}}Iu||_{BV}+||I_{1}\otimes_{\epsilon}B\wedge u||_{BV}=||u||_{BV}+||du/dt||_{BV}+||\Lambda^{1/2}u||_{BV} .

Since D[A_{1}\wedge\otimes_{\text{\’{e}}}I]\cap D[I_{1}(\cross\supset\text{\’{e}} B\wedge]\subset B^{1,s}2(I;\Lambda), the assertion for (2) has been shown.
(3) In case X=X_{1}=L_{2}(I), applying Theorem 3. 3 or Corollary 3. 6 for

\alpha=\beta=\alpha_{0} , we see that P^{-1} is a one-t0-0ne continuous linear mapping of
L_{2,2}^{0,s}(I;\Lambda) onto D[P]\subset D [A \tilde{C}\cross_{1\alpha_{0}}I ] \cap D[I\wedge\otimes_{\alpha_{0}}B]\subset L_{2}(I)\wedge\otimes_{\alpha_{0}}H^{s}=L_{2,2}^{0,s}(I;\Lambda), where
D[P] is equipped with the norm

||u||_{L_{2}}+||A^{\wedge}\otimes_{\alpha_{0}}Iu||_{L_{2}}+||I\wedge\otimes_{\alpha_{0}}Bu||_{L_{2}}=||u||_{L_{2}}+||du/dt||_{L_{2}}+||\Lambda^{1/2}u||_{L_{2}} .
The assertion for (3) follows, since D[A \hat{C\cross,t}_{\alpha_{0}}I]\cap D[I\bigcap_{\sim}^{\wedge}\cross,B]\alpha_{0} is included in
L_{2,2}^{1,s}(I;\Lambda) . Q. E. D.

Department of Mathematics
Hokkaido University
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