Note on *H*-separable extensions

Dedicated to Professor Kiiti Morita on his 60th birthday

By Taichi NAKAMOTO and Kozo SUGANO

It is the purpose of this note to give a (self-contained) computational proof to the principal theorem (1.3) of [7] and a theorem concerning ringendomorphisms of an *H*-separable extension. Our tool employed in this note is an *H*-system of an *H*-separable extension, which was introduced in [4].

Recently, we found that the proof of [6, Proposition 1] contained an error and the same was repeated in the proof of main part of [7, (1.3)]. So, the present note comprehends the correction to the previous papers [6] and [7].

Throughout, A/B will represent a ring extension with common identity 1, V the centralizer $V_A(B)$ of B in A, and C the center of A.

The next will be useful occasionally in the subsequent study.

(1) Let $B' \subset B''$ be intermediate rings of A/B. Let $V' = V_A(B')$, and $V'' = V_A(B'')$. If ${}_{B'}B' \otimes_B B''{}_{B''} \rightarrow_{B'}B''{}_{B''}(b' \otimes b'' \mapsto b'b'')$ splits then ${}_{V'}V'{}_{V''}$. $\langle \bigoplus_{V'}V_{V''}$.

PROOF. There exists an element $\sum_k b'_k \otimes b''_k \in (B' \otimes_B B'')^{B'}$ such that $\sum_k b'_k b''_k = 1$. Then, the map $q: V \to V'$ defined by $v \mapsto \sum_k b'_k v b''_k$ is a V' - V''-homomorphism and induces the identity map on V', which means $_{V'}V'_{V''} < \bigoplus_{V'} V_{V''}$.

A/B is called an *H*-separable extension if $A \otimes_B A$ is A-A-isomorphic to an A-A-direct summand of a finite direct sum of copies of A. To be easily seen, A/B is *H*-separable if and only if there exist some $v_i \in V$ $(i=1, \dots, m)$ and $\sum_j x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A$ such that $\sum_{i,j} x_{ij} \otimes y_{ij} v_i = 1 \otimes 1$. Following [4], such a system $\{v_i; \sum_j x_{ij} \otimes y_{ij}\}_i$ will be called an *H*-system for A/B.

In what follows, we assume always A/B is an *H*-separable extension with an *H*-system $\{v_i; \sum_j x_{ij} \otimes y_{ij}\}_i$. Then the map $\eta: A \otimes_B A \rightarrow \text{Hom}_C(V, A)$ $(a_1 \otimes a_2 \mapsto (v \mapsto a_1 v a_2))$ is an *A*-*A*-isomorphism, whose inverse is given by $h \mapsto \sum_{i,j} x_{ij} \otimes y_{ij} h(v_i)$ (cf. also (2.1')).

(2) If σ is an arbitrary ring-endomorphism of A which leaves every element of B invariant, $g \in \text{Hom}(A_B, A_B)$ and $h \in \text{Hom}(_BA, _BA)$, then

T. Nakamoto and K. Sugano

(2.1)
$$\sum_{i,j} g(x_{ij}) v \sigma(y_{ij}) \sigma(a) \sigma(v_i) = g(a) v$$

and

(2.2)
$$\sum_{i,j} \sigma(v_i) \sigma(a) \sigma(x_{ij}) vh(y_{ij}) = vh(a) \qquad (a \in A, v \in V).$$

PROOF. $\sum_{i,j} x_{ij} \otimes y_{ij} a v_i = a \otimes 1$ implies $\sum_{i,j} g(x_{ij}) \otimes \sigma(y_{ij} a v_i) = g(a) \otimes 1$. Applying η , we obtain (2.1).

The above formulae are specialized in various ways:

(2.3)
$$\sum_{i,j} \sigma(x_{ij}) v \sigma(y_{ij}) \sigma(v_i) = \sum_{i,j} \sigma(v_i) \sigma(x_{ij}) v \sigma(y_{ij}) = v.$$

(2.1')
$$\sum_{i,j} g(x_{ij}) v y_{ij} a v_i = g(a) v.$$

(2.2')
$$\sum_{i,j} v_i a x_{ij} v h(y_{ij}) = v h(a).$$

In particular, we have $\sum_{i,j} v_i x_{ij} v y_{ij} = v$, which means:

- (3) V_c is f.g. (finitely generated) projective ([3, p. 112]).
- (4) A/B is a separable extension ([3, Theorem 2.2]).

PROOF. Since V_c is f.g. projective by (3), there exists a C-epimorphism $q: V \rightarrow C$ which induces the identity map on C. Obviously, $\sum_{i,j} x_{ij} \otimes y_{ij} q(v_i)$ is in $(A \otimes_B A)^A$ and $\sum_{i,j} x_{ij} y_{ij} q(v_i) = q(\sum_{i,j} x_{ij} y_{ij} v_i) = 1$, which means that A/B is separable.

Next, by a brief computation with (2.1') and (2.2'), we see that the map $\xi: V \otimes_{\mathcal{C}} V \rightarrow \operatorname{Hom}({}_{\mathcal{B}}A_{\mathcal{B}}, {}_{\mathcal{B}}A_{\mathcal{B}}) (u_1 \otimes u_2 \mapsto (a \mapsto u_1 a u_2))$ is a V-V-isomorphism, whose inverse is given by $h \mapsto \sum_i \sum_j h(x_{ij}) y_{ij} \otimes v_i = \sum_i v_i \otimes \sum_j x_{ij} h(y_{ij})$.

(5) If $_BB < \bigoplus_B A$ or $B_B < \bigoplus_A A_B$ then $V_A(V) = B$ ([5, Proposition 1.2]).

PROOF. Let $p: A \rightarrow B$ be a left B-epimorphism which induces the identity map on B. Then, for $a \in V_A(V)$ we have $p(a) = \sum_{i,j} v_i a x_{ij} p(y_{ij}) = a \sum_{i,j} v_i x_{ij} p(y_{ij}) = a$ by (2.2'). Hence, $V_A(V) = B$.

Let \mathfrak{B}_{l} be the set of all intermediate rings B' of A/B such that ${}_{B'}B'_{B} < \bigoplus_{B'}A_{B}$ and ${}_{B'}B' \otimes_{B}A_{A} \rightarrow_{B'}A_{A}$ $(b' \otimes a \mapsto b'a)$ splits, and \mathfrak{B}_{l} the set of all intermediate rings V' of V/C such that ${}_{P'}V' < \bigoplus_{P'}V$ and ${}_{P'}V' \otimes_{C}V_{P'} \rightarrow_{P'}V_{P'}$ $(v' \otimes v \mapsto v'v)$ splits. Similarly, we can consider the sets \mathfrak{B}_{r} and \mathfrak{B}_{r} . Finally, let \mathfrak{B} be the set of all intermediate rings B' of A/B such that B'/B is separable and ${}_{B'}B'_{B'} < \bigoplus_{B'}A_{B'}$, and \mathfrak{B} the set of all intermediate rings V' of V/C such that V'/C is separable. Needless to say, \mathfrak{B} is a subset of \mathfrak{B}_{l} . (In [7], \mathfrak{B} was denoted as \mathfrak{D} .)

(6) Let B' be an intermediate ring of A/B with $V' = V_A(B')$. If ${}_{B'}B'_B < \bigoplus_{B'}A_B$ or ${}_{B}B'_{B'} < \bigoplus_{B}A_{B'}$ then $V_A(V') = B'$. Especially, if B' is in \mathfrak{B}_I (resp. \mathfrak{B}_r) then V' is in \mathfrak{B}_I (resp. \mathfrak{B}_r) and $V_A(V') = B'$.

PROOF. Let $p: A \rightarrow B'$ be a B'-B-epimorphism which induces the

296

identity map on B'. Then, by $\sum_{j} p(x_{ij}) y_{ij} \in V'$ and (2.1'), we obtain for every $b'' \in V_A(V')$, $p(b'') = \sum_{i,j} p(x_{ij}) y_{ij}b'' v_i = b'' \sum_{i,j} p(x_{ij}) y_{ij}v_i = b''$. This proves $V_A(V') = B'$. Henceforth, we assume further that ${}_{B'}B' \otimes_B A_A \rightarrow_{B'}A_A$ $(b' \otimes a \mapsto b'a)$ splits. Then, ${}_{V'}V' < \bigoplus_{V'}V$ by (1). We define a V'-V-homomorphism $V \rightarrow V' \otimes_C V$ by $v \mapsto \sum_i \sum_j p(x_{ij}) vy_{ij} \otimes v_i = \sum_i \sum_j p(x_{ij}) y_{ij} \otimes v_i v$ (cf. the definition of ξ and (2.1')). Then, $\sum_{i,j} p(x_{ij}) vy_{ij}v_i = v$ means that $v' V' \otimes_C V_V \rightarrow_{V'} V_V (v' \otimes v \mapsto v'v)$ splits. Hence, $V' \in \mathfrak{B}_i$.

(7) If V' is in \mathfrak{B}_{ι} (resp. \mathfrak{B}_{r}) then $B' = V_{A}(V')$ is in \mathfrak{B}_{ι} (resp. \mathfrak{B}_{r}) and $V_{A}(B') = V'$.

PROOF. Since $_{V'}V' \otimes_{C} V_{V} \rightarrow_{V'} V_{V}(v' \otimes v \mapsto v'v)$ splits, there exists an element $\sum_{k} v'_{k} \otimes u_{k} \in (V' \otimes_{C} V)^{V'}$ such that $\sum_{k} v'_{k} u_{k} = 1$. Obviously, $\sum_{k} v'_{k} x_{ij} u_{k} \in B'$ and $_{B'}B'_{B} < \bigoplus_{B'}A_{B}$ by (1). Next, we consider an arbitrary left V'-epimor phism $q: V \rightarrow V'$ which induces the identity map on V', and define the map $\iota: A \rightarrow B' \otimes_{B}A$ by $a \mapsto \sum_{i,j} \sum_{k} v'_{k} x_{ij} u_{k} \otimes y_{ij} q(v_{i}) a$. By (2.1'), we have $\sum_{i,j,k} v'_{k} x_{ij} u_{k} v y_{ij} q(v_{i}) b' a = \sum_{k} v'_{k} q(u_{k}v) b' a = b' \sum_{i,j,k} v'_{k} x_{ij} u_{k} v y_{ij} q(v_{i}) a$ (b' $\in B'$, $v \in V$). Then, regarding $B' \otimes_{B}A$ as a submodule of $A \otimes_{B}A$, we see that ι is a B'-A-homomorphism and $\sum_{i,j,k} v'_{k} x_{ij} u_{k} y_{ij} q(v_{i}) a = \sum_{k} v'_{k} q(u_{k}) a = a$. Hence, $B' \in \mathfrak{B}_{l}$. Moreover, if $v'' \in V_{A}(B')$ then v'' = v'' 1 =

 $v'' \sum_{i,j,k} v'_k x_{ij} u_k y_{ij} q(v_i) = \sum_k v'_k q(u_k v'') \in V'$, which means $V_A(B') = V'$.

Now, as a combination of (6) and (7), we readily obtain the main part of [7, (1, 3)]:

THEOREM 1. Let A/B be an H-separable extension.

(a) $B' \mapsto V_A(B')$ and $V' \mapsto V_A(V')$ are mutually converse 1-1 correspondences between \mathfrak{B}_i (resp. \mathfrak{B}_r) and \mathfrak{B}_i (resp. \mathfrak{B}_r).

(b) $B' \mapsto V_A(B')$ and $V' \mapsto V_A(V')$ are mutually converse 1-1 correspondences between \mathfrak{B} and \mathfrak{B} .

PROOF. It remains only to prove (b). First, we claim $\mathfrak{V}\subset\mathfrak{V}_{l}$. Given $V'\in\mathfrak{V}$, we put $C^* = V_{P'}(V')$, $V'' = V_{P'}(V')$, and $U = V_{P'}(C^*)$. Since V'/C is separable, we have $_{P''}V''_{P''} < \bigoplus_{P''}V_{P''}$ by (1). Recalling that V_C is f.g. projective by (3), we see that V''_C is f.g. projective. Combining this with the separability of C^*/C (cf. [1, Theorem 2.3]), one will readily see that V''_{C^*} is f.g. projective, so that $C^*_{C^*} < \otimes V''_{C^*}$. On the other hand, since V'/C^* is central separable by [1, Theorem 2.3], we have $V' \otimes_{C^*} V'' \cong V' \cdot V'' = U$ by [1, Theorem 3.1] and $_{V}U_{V} < \bigoplus_{V}V_{V}$ by (1). Hence, $_{P'}V' < \bigoplus_{V}V_{P'}$ and $V' \in \mathfrak{V}_{l}$. Moreover, if we set $B' = V_A(V')$ then $_{B'}B'_{B'} < \bigoplus_{B'}A_{B'}$ by (1) and $_{B'}B' \otimes_{B}A_A \rightarrow_{B'}A_A$ ($b' \otimes a \mapsto b'a$) splits by (a). Hence B'/B is separable and $B' \in \mathfrak{V}$. Similarly, we can prove that $V_A(B')$ is in \mathfrak{V} . Now, the rest of part of the proof is immediate by (a).

COROLLARY. Let A/B be an H-separable extension with $V_A(V)=B$, and B' is in \mathfrak{B} . If the center Z' of B' is contained in the center of B then $V_{B'}(V_{B'}(B))=B$ (and conversely).

PROOF. By Theorem 1 (b), $V' = V_A(B')$ is separable over C and $V_A(V') \cap V' = B' \cap V' = Z'$. Hence, V' is a central separable algebra over Z' by [1, Theorem 2.3]. Since Z' is contained in $V_B(B)$, we have $V = V' \otimes_{Z'} V_F(V') = V' \otimes_{Z'} V_{B'}(B)$ by [1, Theorem 3.1]. It follows then $V_{B'}(V_{B'}(B)) = B' \cap V_A(V_{B'}(B)) = V_A(V') \cap V_A(V_{B'}(B)) = V_A(V) = B$.

(8) Every ring-homomorphism σ of A leaving every element of B invariant is a monomorphism.

PROOF. In fact, if $\sigma(a)=0$ then $0=\sum_{i,j} x_{ij}\sigma(y_{ij})\sigma(a)\sigma(v_i)=a$ by (2.1). We shall conclude this note with the following theorem.

THEOREM 2. Let A/B be an H-separable extension, and σ a ringendomorphism of A which leaves every element of B invariant.

(a) If $V_A(\sigma(A)) = C$ then σ is an automorphism.

(b) If σ leaves every element of C invariant, then σ is an automorphism. Especially, if $C \subset B$ then σ is an automorphism.

(c) If $_{B}B < \bigoplus_{B}A$ or $B_{B} < \bigoplus_{A}A$ then σ is an automorphism.

PROOF. Let $A' = \sigma(A)$, and $C' = V_A(A')$.

(a) To be easily seen, $\sum_{s,j} \sigma(x_{rs}) y_{rs} x_{ij} \sigma(y_{ij})$ is in C' = C. Hence, if a is an arbitrary element of A then by (2. 1') we have $\sigma(\sum_{i,j} x_{ij} \sigma(y_{ij}) a\sigma(v_i)) = \sum_{r,s} \sigma(x_{rs}) y_{rs}(\sum_{i,j} x_{ij} \sigma(y_{ij}) a\sigma(v_i)) v_r = \sum_{r,i} (\sum_{s,j} \sigma(x_{rs}) y_{rs} x_{ij} \sigma(y_{ij})) a\sigma(v_i) v_r = a \sum_{r,s} \sigma(x_{rs}) y_{rs} x_{ij} \sigma(y_{ij}) \sigma(v_i) v_r = a \sum_{r,s} \sigma(x_{rs}) y_{rs} \sum_{i,j} x_{ij} \sigma(y_{ij}) v_r = a \sum_{r,s} \sigma(x_{rs}) y_{rs} \sum_{i,j} x_{ij} \sigma(y_{ij}) v_r = a \sum_{r,s} \sigma(x_{rs}) y_{rs} v_r = a$. This together with (8) implies that σ is an automorphism.

(b) Obviously, A' is an H-separable extension of B, and hence a separable extension of B by (4). By (a), our proof will be complete if we can prove that C' coincides with C. We consider here the C-homomorphisms $f: C' \otimes_C V \to V$ defined by $c' \otimes v \mapsto c' \sigma(v)$ and $g: V \to C' \otimes_C V$ defined by $v \mapsto \sum_i \sum_j \sigma(x_{ij}) v \sigma(y_{ij}) \otimes v_i$. Then, by (2.3) $fg(v) = \sum_{i,j} \sigma(x_{ij}) v \sigma(y_{ij}v_i) = v$. On the other hand, $gf(c' \otimes v) = \sum_i \sum_j \sigma(x_{ij}) c' \sigma(v) \sigma(y_{ij}) \otimes v_i = c' \sum_i \sigma(\sum_j x_{ij} v y_{ij}) \otimes v_i = c' \otimes v$. Hence, $C' \otimes_C V \cong V$. Since, V_C is f.g. projective by (3) and $_{C'}C'_{C'} < \bigoplus_C V_{C'}$ by (1), C'_C is an f.g. projective module of rank 1. Hence, by [2, Corollaire du Théorème 1], it follows C' = C.

(c) This is immediate by (5) and (b).

Okayama College of Science, Hokkaido University

References

- [1] M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409.
- [2] N. BOURBAKI: Élements de Mathématique, Algèbre Commutative, Chaps. 1-2, Actualités Sci. Ind. 1290, Hermann, Paris, 1961.
- [3] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
- [4] T. NAKAMOTO: On QF-extensions in an H-separable extension, Proc. Japan Acad., 50 (1974), 440-443.
- [5] K. SUGANO: Note on semi-simple extensions and separable extensions, Osaka J. Math., 4 (1968), 265-270.
- [6] K. SUGANO: On centralizer in separable extensions II, Osaka J, Math., 8 (1971), 465-469.
- [7] K. SUGANO: On some commutor theorems of rings, Hokkaido Math. J., 1 (1972), 242-249.

(Received October 21, 1974)