A characterization of A_7 and M_{11} , III

Dedicated to Professor Kiiti Morita on his 60th birthday

By Hiroshi KIMURA

1. Introduction

In this paper we shall prove the following theorem.

THEOREM 1. Let G be a doubly transitive group on the set $\Omega = \{1, 2, ..., n\}$. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomorphic to the Janko's simple group J(11) of order $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ or a group R(q) of Ree type, then G has a regular normal subgroup.

By Walter's theorem a simple group with abelian Sylow 2-subgroups is isomorphic to J(11), $R(q)(q \neq 3)$, $PSL(2, 2^m)$ or PLS(2, q) with $q \equiv 3$ or 5 (mod 8). Theorefore by Theorem 1 and theorems in [7] we have the following.

THEOREM 2. Let G be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$. If $G_{1,2}$ is isomorphic to a simple group with abelian Sylow 2-subgroups, then G is isomorphic to the alternating group A_7 of degree seven, the Mathieu group M_{11} of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let F(X) denote the set of all fixed points of X and $\alpha(X)$ be the number of points in F(X). $N_{\alpha}(X)$ acts on F(X).

Let $\chi_1(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on Ω not containing a regular normal subgroup such that $G_{1,2}$ is isomorphic to J(11) or R(q). Let K be a Sylow 2-subgroup of $G_{1,2}$. Then K is an elementary abelian 2-group of order 8. Let I be an involution of G with the cycle structure $(1, 2) \cdots$. Then I normalizes $G_{1,2}$. Since Aut $(G_{1,2})/\text{Inn}(G_{1,2})$ is of odd order, we may assume I centralizes $G_{1,2}$. Let τ be an involution of K. Let τ fix *i* points of Ω , say 1, 2, \cdots , *i*. Since every involution of G is conjugate to an involution in $IG_{1,2}$, it is conjugate to I or $I\tau$.

Let d be the number of elements in $G_{1,2}$ inverted by I. Set $\mathcal{I} = [G_{1,2}: C_{\mathcal{G}}(\tau) \cap G_{1,2}]$. Let β be the number of involutions with the cycle structures

 $(1, 2) \cdots$ which are conjugate to τ . Let $g_1^*(2)$ and $g^*(2)$ be numbers of involutions which only the point 1 and which fix no point of Ω , respectively. Then $n=i(\beta i-\beta+\gamma)/\gamma$ and $d=\beta+g_1^*(2)$ if n is odd and $d=\beta+g^*(2)/(n-1)$ if n is even.

- LEMMA 1. G has two classes of involutions.
- PROOF. See [6, Lem. 5].

LEMMA 2. $d=\gamma+1$ and $\beta=1$ or γ .

PROOF. By Lemma 1 G has two classes of involutions. If $I\tau$ is conjugate to τ , $\beta = \tau$ and if I is conjugate to τ , $\beta = 1$.

3. The case n is odd

LEMMA 3. $\beta = 1$ and $g_1^*(2) = \gamma$

PROOF. If $\beta = \tau$, then $g_1^*(2) = 1$. By [2] G must have a regular normal subgroup.

LEMMA 4. $\chi(\tau)$ contains a regular normal subgroup and $\alpha(C_{G_{1,2}}(\tau))$ is odd

PROOF. Assume the lemma is false. If $G_{1,2}=R(3)$, then $\chi(\tau)_{1,2}=1$, Z_3 or A_4 and if $G_{1,2}=J(11)$ or R(q) with q>3, then $\chi(\tau)_{1,2}=1$ or PSL(2, r) with $r=\pm 3 \pmod{8}$. By [1], [7] and [9] $\chi(\tau)=PGL(2, 4)$ and i=5, or $\chi(\tau)=A_7$ and i=15 or 7. If i=5 or 15, then n=i(i-1+7.9)/7.9 and if i=7, then n=7(6+7)/7, which is a contradiction.

LEMMA 5. $\alpha(G_{1,2})$ is odd

PROOF. Since $\alpha(\langle I, C_{G_{1,2}}(\tau) \rangle)=1$ by Lemma 4, let a be the point of $F(\langle I, C_{G_{1,2}}(\tau) \rangle)$. Let Δ be a $G_{1,2}$ -orbit containing a. If $|\Delta|=1$, then $\alpha(G_{1,2})$ is odd since $F(G_{1,2})^{I}=F(G_{1,2})$. Assume $|\Delta|>1$. Since I centralizes $G_{1,2}$, Δ is contained in F(I). If $G_{1,2}=J(11)$ or R(q) with q>3, then $C_{G_{1,2}}(\tau)$ is maximal in $G_{1,2}$ and hence $G_{1,2,a}=C_{G_{1,2}}(\tau)$. There exists an element x of $N_{G_{1,2}}(K)$ of order 7 not contained in $C_{G_{1,2}}(\tau)$. Since $G_{1,2,a}xK=G_{1,2,a}x$, $|F(K) \cap \Delta| \geq 7$. Thus $\alpha(\langle I, K \rangle) \geq 7$, which is a contradiction. Next assume $G_{1,2}=R(3)$. $C_{G_{1,2}}(\tau)$ is not maximal in $G_{1,2}$. If $G_{1,2,a}$ does not contain $N_{G_{1,2}}(K)$, then we have a contradiction as above. If $G_{1,2,a}$ containes $N_{G_{1,2}}(K)$, then $|\Delta|=9$. Let H be a Sylow 7-subgroup of $N_{G_{1,2}}(K)$. Since $\alpha(\langle I, H \rangle \geq 2$, $\langle I, H \rangle$ is isomorphic to a subgroup of $G_{1,2}$. On the other hand a subgroup of $G_{1,2}$ of order 14 is not abelian, which is a contradiction.

By [8] and Lemma 1 $g_1^*(2)=1$. This contradicts Lemma 3.

4. The case n is even

1. Case $G_{1,2}=J(11)$. Since Aut $J(11)\cong J(11)$ and R(q) does not involve J(11) ([5, Lem. 7, 6], $G_1=J(11)$ $O(G_1)$ by [12]. Thus $O(G_1)$ is regular on $\Omega - \{1\}$. By [3] G contains a normal complete Frobenius subgroup G'. Then KG' is a solvable 2-transitive group on Ω . By [4] K must be cyclic, which is a contradiction.

2. Case $G_{1,2}=R(3)$ $(=P\Gamma L(2, 8))$. If $|\chi(\tau)_{1,2}|$ is odd, then G contains a regular normal subgroup by [11]. Thus $\chi(\tau)_{1,2}=A_4$ and $\chi(\tau)=A_6$ (i=6)or AG(2, 4) (i=16). Since $\gamma=63$, $\beta=1$ or 63 by Lemma 2. If i=6, then $\beta=63$, n=36 and $|G|=36\cdot35\cdot9\cdot8\cdot21$. If i=16, then $\beta=63$, $n=16^2$ and $|G|=16^2\cdot15\cdot17\cdot9\cdot8\cdot21$. Thus G_1 does not involve J(11) or R(q) with q>3. By [12] $G_1/O(G_1)=P\Gamma L(2, 8)$. By [3] G contains a regular normal subgroup and K must be cyclic by [4], which is a contradiction.

3. Case $G_{1,2}=R(q)$, q>3. If $\chi(\tau)_{1,2}=1$, then G contains a regular normal subgroup by [11]. Thus $\chi(\tau)_{1,2}=PSL(2, q)$. By [7] $\chi(\tau)$ contains a regular normal subgroup. Let S be a normal subgroup containing $\chi_1(\tau)=$ $\langle \tau \rangle$ such that $S/\langle \tau \rangle$ is a regular normal subgroup of $\chi(\tau)$. Then S is an elementary abelian 2-group of order 2*i*.

LEMMA 6. If an involution of S is conjugate to τ , then it is conjugate to τ under $N_{\mathcal{G}}(S)$. $|N_{\mathcal{G}}(S)| = i^2(i-1)|C_{\mathcal{G}_{1,2}}(\tau)|$.

PROOF. Assume $\eta^{g} = \tau$ is in $S \cap S^{g}$. KS is a Sylow 2-subgroup of $C_{g}(\tau)$. We shall prove that S is a unique elementary abelian subgroup of KS of order 2*i*. Since $\chi(\tau)$ contains a regular normal subgroup and it has two classes involutions, an involution τ' of $C_{g}(\tau)$ not contained in S fixes at least two points of $F(\tau)$. By the argument in [7] $i = \alpha(\langle \tau, \tau' \rangle)^{2}$. Thus $|C_{s}(\tau')| = 2\sqrt{i}$ and hence $|C_{KS}(\tau')| = 8\sqrt{i}$. If $8\sqrt{i} \ge |S| = 2i$, then i = 4 or 16. Since $n = i(\beta(i-1)+\tau)/\tau$, $\beta = \tau$, $n = i^{2}$ and $g^{*}(2) = n-1$. Thus the set T consisting of elements of $C_{g}(\tau)$ which fix no point of Ω and the identity element is a group and it is transitive on $F(\tau)$. $T^{g} = T$ since S^{g} is contained in $C_{g}(\tau)$. $F(\tau') = F(\tau)$ and $\tau = \tau'$, which is a contradiction. Thus g is in $N_{g}(S)$. The other part of Lemma 6 is trivial.

LEMMA 7. $\beta = \gamma$ and $n = i^2$.

PROOF. By lemma 2 $\beta = 1$ or γ . By Lemma 6 $n = i(\beta(i-1)+\gamma)/\gamma$ must be divisible by i^2 . Thus $n = i^2$.

LEMMA 8. Every involution of G_1 acts trivially on $O(G_1)$.

PROOF. Assume $O(G_1) \neq 1$. Let $K' = \langle \tau, \tau' \rangle$ is a four group contained $G_{1,2}$. Since every involution of G_1 is conjugate to each other, by a theorem of Brauer-Wielandt [13] $|O(G_1)|C_{O(G_1)}(K')|^2 = |C_{O(G_1)}(\tau)|^3$. Since $O(G_1) \cap G_{1,2} = 1$,

 $|C_{o(G_1)}(\tau)|$ is a factor of i-1 and $|O(G_1)|$ is a factor of $n-1=i^2-1$. Thus $|O(G_1)|$ is a factor of i-1 and hence $O(G_1)$ is contained in $C_G(\tau)$.

By [12] there exists a normal subgroup G'_1 of odd index containing $O(G_1)$ such that $G'_1/O(G_1)$ is isomorphic to R(r) and $G_1/O(G_1)$ is isomorphic to a subgroup of Aut R(r).

LEMMA 9. $R(r) \neq R(q)$

PROOF. Assume R(r) = R(q). $G'_1 = O(G_1)$ $G_{1,2}$. By Lemma 8 $G_{1,2}$ is normal in G'_1 and hence in G_1 , which is a contradiction.

LEMMA 10. $i+1=(r^3+1)r^2(q+1)/(r+1)q^2(q^3+1), i-1=|O(G_1)||G_1/G_1'|$ $|r(r^2-1)/q(q^2-1)|$ and $\sqrt{i}-1=|O(G_1)||G_1/G_1'|(r+1)/(q+1).$

PROOF. Since R(r) has a doubly transitive permutation representation such that the stabilizer of two points is cyclic, $[C_{Aut\ R(r)}(\eta):C_{R(r)}(\eta)]=[Aut\ R(r):R(r)]$ for every involution η of R(r). Thus $|C_{G_1}(\tau)| = |C_{R(r)}(\overline{\tau})| |G_1/G_1|$ $|O(G_1)|$ by Lemma 8. Since $[G_1:C_{G_1}(\tau)]=(i+1) |G_{1,2}:G_{1,2}(\tau)|$, we get first two equalities in the lemma. Let $K' = \langle \tau, \tau' \rangle$, be a subgroup of $G_{1,2}$ of order 4. By the argument in $[7] \ \alpha(K) - 1 = \sqrt{i} - 1 = |C_{G_1}(K'):C_{G_{1,2}}(K')| =$ $|G_1:G_1'| |O(G_1)| |C_{R(r)}(\overline{K'}):C_{R(q)}(\overline{K'})| = |G_1:G_1'| |O(G_1)| (r+1)/(q+1).$

By this lemma $\sqrt{i} + 1 = (i-1)/(\sqrt{i}-1) = r(r-1)/q(q-1)$. Thus $i+1 = |\sqrt{i}|^2 + 1 = (r(r-1)/q(q-1)-1)^2 + 1 \equiv 2 \pmod{3}$ since r > q by Lemma 9. On the other hand $i+1 \equiv 0 \pmod{3}$ by Lemm 10, which is a contradiction.

This complets the proof of Theorem 1.

5. Corollaries

COROLLARY 1. Let G be a 3-transitive group on $\Omega = \{1, 2, \dots, n\}$. If the stabilizer $G_{1,2,3}$ of points 1, 2 and 3 is isomorphic to a simple group with abelian Sylow 2-subgroup or R(3), then $G = A_8$ and n = 8.

PROOF. If G_1 contains a normal subgroup which is regular on $\Omega - \{1\}$, then G contains a normal subgroup M such that $M \leq G \leq$ Aut M and M acts on Ω as one of the following groups in its usual 2-transitive representation: a sharply transitive group, PSL(2, q), $S_z(q)$, PSU(3, q) or a group of Ree type. If M is sharply transitive, then M_1 is a normal subgroup of 2-transitive group G_1 and elementary abelian. Thus $|M_1|$ is prime and G_1 is solvable, which is a contradiction. If M=PSL(2, q) or $S_z(q)$, then $G_{1,1,3}$ must be cyclic since Aut M/M is cyclic. If M=PSU(3, q) or a group of Ree type, then $G_{1,2,3}$ must have a cyclic normal subgroup $M_{1,2,3}$, which is a contradiction. Thus by Theorem 2 $G_1=A_7$ with n=8 or $G_1=M_{11}$ with n=13. If $G_1=A_7$, then $G=A_8$. By [10] there exists no group such that n=13 and $G_1=M_{11}$. Similary we have the following corollary of Theorem in [6].

COROLLARY 2. Let G be a 3-transitive group on Ω . If $G_{1,2,3}$ is complete Frobenius group such that its kernel is a 2-group, then $G=A_7$ or G contains a regular normal subgroup, $G_1=A_7$ and n=16.

PROOF. Let M be as in Corollary 1. If M is sharply transitive, then G is solvable. This contradicts [4]. Thus by [6.] $G_1 = A_6$ with n=7 or $G_1 = A_7$ with n=16. If $G_1 = A_6$, then $G = A_7$. If $G_1 = A_7$, then G is isomorphic to a subgroup of AG(4, 2) (see [10]).

Department of Mathematics Hokkaido University Sapporo, Japan

References

- [1] H. BENDER: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläβt, J. Algebra, 17 (1971), 527-554.
- [2] G. GLAUBERMAN: Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [3] C. HERING, W. M. KANTOR and G. M. SEITZ: Finite groups with a split BNpair of rank 1. I, J. Algebra, 20 (1972), 435-475.
- [4] B. HUPPERT: Zweifach transitive auflösbare Permutaionsgruppen, Math. Z., 68 (1957), 126-150.
- [5] Z. JANKO and J. G. THOMPSON: On a class of finite simple groups of Ree, J. Algebra, 4 (1966), 274-292.
- [6] H. KIMURA: A characterization of simple groups A₆ and A₇, J. Algebra 33 (1975), 161–169.
- [7] H. KIMURA: A characterization of simple groups A_7 and M_{11} I, II, Hokkaido Math. J., 3 (1974), 213-217, 4 (1975), 39-44.
- [8] H. KIMURA: A remark on 2-transitive groups of odd degree, Hokkaido Math. J., 3 (1974), 305.
- [9] R. NODA and H. YAMAKI: A characterization of the alternating groups of degrees six and seven, Osaka J. Math. 7 (1970), 313-319.
- [10] C. C. Sims: Computational methods in the study of permutation groups, Computational problems in abstruct algebra, Pergamon Press, Oxford, 1970 (edited by J. Leech).
- [11] E. SHULT,: On doubly transitive groups of even degree (to appear).
- [12] J. H. WALTER: The characterization of finite groups with abelian Sylow 2subgroups, Ann. Math. 89 (1969), 409-514.
- [13] H. WIELANDT: Beziehungen Zwische den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158.
- [14] H. WIELANDT: Finite permutation groups, Academic Press, New York, 1964.
- [15] H. YAMAKI: A characterization of the simple groups of A₇ and M₁₁, J. Math. Soc. Japan 23 (1971), 130-136.

(Received June 20, 1974)