A characterization of A_{7} and M_{11}, III

Dedicated to Professor Kiiti Morita on his 60th birthday

By Hiroshi Kimura

1. Introduction

In this paper we shall prove the following theorem.
Theorem 1. Let G be a doubly transitive group on the set $\Omega=\{1,2$, $\cdots, n\}$. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomorphic to the Janko's simple group $J(11)$ of order $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ or a group $R(q)$ of Ree type, then G has a regular normal subgroup.

By Walter's theorem a simple group with abelian Sylow 2-subgroups is isomorphic to $J(11), R(q)(q \neq 3), P S L\left(2,2^{m}\right)$ or $P L S(2, q)$ with $q \equiv 3$ or $5(\bmod 8)$. Theorefore by Theorem 1 and theorems in [7] we have the following.

Theorem 2. Let G be a doubly transitive group on the set $\Omega=\{1,2, \cdots$, $n\}$. If $G_{1,2}$ is isomorphic to a simple group with abelian Sylow 2-subgroups, then G is isomorphic to the alternating group A_{7} of degree seven, the Mathieu group M_{11} of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let $F(X)$ denote the set of all fixed points of X and $\alpha(X)$ be the number of points in $F(X) . \quad N_{G}(X)$ acts on $F(X)$.

Let $\chi_{1}(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on Ω not containing a regular normal subgroup such that $G_{1,2}$ is isomorphic to $J(11)$ or $R(q)$. Let K be a Sylow 2 -subgroup of $G_{1,2}$. Then K is an elementary abelian 2-group of order 8. Let I be an involution of G with the cycle structure (1,2) \cdots. Then I normalizes $G_{1,2}$. Since Aut $\left(G_{1,2}\right) / \operatorname{Inn}\left(G_{1,2}\right)$ is of odd order, we may assume I centralizes $G_{1,2}$. Let τ be an involution of K. Let τ fix i points of Ω, say $1,2, \cdots, i$. Since every involution of G is conjugate to an involution in $I G_{1,2}$, it is conjugate to I or $I \tau$.

Let d be the number of elements in $G_{1,2}$ inverted by I. Set $\gamma=\left[G_{1,2}\right.$: $\left.C_{G}(\tau) \cap G_{1,2}\right]$. Let β be the number of involutions with the cycle structures
$(1,2) \cdots$ which are conjugate to τ. Let $g_{1}^{*}(2)$ and $g^{*}(2)$ be numbers of involutions which only the point 1 and which fix no point of Ω, respectively. Then $n=i(\beta i-\beta+\gamma) / r$ and $d=\beta+g_{1}^{*}(2)$ if n is odd and $d=\beta+g^{*}(2) /(n-1)$ if n is even.

Lemma 1. G has two classes of involutions.
Proof. See [6, Lem. 5].
Lemma 2. $d=\gamma+1$ and $\beta=1$ or γ.
Proof. By Lemma 1 has two classes of involutions. If $I \tau$ is conjugate to $\tau, \beta=\gamma$ and if I is conjugate to $\tau, \beta=1$.

3. The case n is odd

Lemma 3. $\beta=1$ and $g_{1}^{*}(2)=\gamma$
Proof. If $\beta=\gamma$, then $g_{1}^{*}(2)=1$. By [2] G must have a regular normal subgroup.

Lemma 4. $\chi(\tau)$ contains a regular normal subgroup and $\alpha\left(C_{G_{1,2}}(\tau)\right)$ is odd

Proof. Assume the lemma is false. If $G_{1,2}=R(3)$, then $\chi(\tau)_{1,2}=1, Z_{3}$ or A_{4} and if $G_{1,2}=J(11)$ or $R(q)$ with $q>3$, then $\chi(\tau)_{1,2}=1$ or $\operatorname{PSL}(2, r)$ with $r \equiv \pm 3(\bmod 8)$. By [1], [7] and [9] $\chi(\tau)=P G L(2,4)$ and $i=5$, or $\chi(\tau)=A_{7}$ and $i=15$ or 7 . If $i \neq 5$ or 15 , then $n=i(i-1+7.9) / 7.9$ and if $i=7$, then $n=7(6+\gamma) / r$, which is a contradiction.

Lemma 5. $\alpha\left(G_{1,2}\right)$ is odd

Proof. Since $\left.\alpha\left(<I, C_{G_{1,2}}(\tau)\right\rangle\right)=1$ by Lemma 4, let a be the point of $\left.F\left(<I, C_{G_{1,2}}(\tau)\right\rangle\right)$. Let Δ be a $G_{1,2}$-orbit containing a. If $|\Delta|=1$, then $\alpha\left(G_{1,2}\right)$ is odd since $F\left(G_{1,2}\right)^{I}=F\left(G_{1,2}\right)$. Assume $|\Delta|>1$. Since I centralizes $G_{1,2}, \Delta$ is contained in $F(I)$. If $G_{1,2}=J(11)$ or $R(q)$ with $q>3$, then $C_{G_{1,2}}(\tau)$ is maximal in $G_{1,2}$ and hence $G_{1,2, a}=C_{G_{1,2}}(\tau)$. There exists an element x of $N_{G_{1,2}}(K)$ of order 7 not contained in $C_{G_{1,2}}(\tau)$. Since $G_{1,2, a} x K=G_{1,2, a} x, \mid F(K)$ $\cap \Delta \mid \geq 7$. Thus $\alpha(<I, K>) \geq 7$, which is a contradiction. Next assume $G_{1,2}=R(3) . \quad C_{G_{1,2}}(\tau)$ is not maximal in $G_{1,2}$. If $G_{1,2, a}$ does not contain $N_{G_{1,2}}(K)$, then we have a contradiction as above. If $G_{1,2, a}$ containes $N_{G_{1,2}}(K)$, then $|\Delta|=9$. Let H be a Sylow 7 -subgroup of $N_{G_{1,2}}(K)$. Since $\alpha(\langle I, H\rangle\rangle \geq 2$, $<I, H\rangle$ is isomorphic to a subgroup of $G_{1,2}$. On the other hand a subgroup of $G_{1,2}$ of order 14 is not abelian, which is a contradiction.

By [8] and Lemma 1] $g_{1}^{*}(2)=1$. This contradicts Lemma 3.

4. The case \boldsymbol{n} is even

1. Case $G_{1,2}=J(11)$. Since Aut $J(11) \cong J(11)$ and $R(q)$ does not involve $J(11)\left(\left[5\right.\right.$, Lem. 7, 6], $G_{1}=J(11) O\left(G_{1}\right)$ by [12]. Thus $O\left(G_{1}\right)$ is regular on $\Omega-\{1\}$. By [3] G contains a normal complete Frobenius subgroup G^{\prime}. Then $K G^{\prime}$ is a solvable 2 -transitive group on Ω. By [4] K must be cyclic, which is a contradiction.
2. Case $G_{1,2}=R(3)(=P \Gamma L(2,8))$. If $\left|\chi(\tau)_{1,2}\right|$ is odd, then G contains a regular normal subgroup by [11]. Thus $\chi(\tau)_{1,2}=A_{4}$ and $\chi(\tau)=A_{6}(i=6)$ or $A G(2,4)(i=16)$. Since $\gamma=63, \beta=1$ or 63 by Lemma 2. If $i=6$, then $\beta=63, n=36$ and $|G|=36 \cdot 35 \cdot 9 \cdot 8 \cdot 21$. If $i=16$, then $\beta=63, n=16^{2}$ and $|G|=16^{2} \cdot 15 \cdot 17 \cdot 9 \cdot 8 \cdot 21$. Thus G_{1} does not involve $J(11)$ or $R(q)$ with $q>3$. By [12] $G_{1} / O\left(G_{1}\right)=P \Gamma L(2,8)$. By [3] G contains a regular normal subgroup and K must be cyclic by [4], which is a contradiction.
3. Case $G_{1,2}=R(q), q>3$. If $\chi(\tau)_{1,2}=1$, then G contains a regular normal subgroup by [11]. Thus $\chi(\tau)_{1,2}=P S L(2, q)$. By [7] $\chi(\tau)$ contains a regular normal subgroup. Let S be a normal subgroup containing $\chi_{1}(\tau)=$ $\langle\tau\rangle$ such that $S /\langle\tau\rangle$ is a regular normal subgroup of $\chi(\tau)$. Then S is an elementary abelian 2 -group of order 2 .

Lemma 6. If an involution of S is conjugate to τ, then it is conjugate to τ under $N_{G}(S) . \quad\left|N_{\theta}(S)\right|=i^{2}(i-1)\left|C_{G_{1,2}}(\tau)\right|$.

Proof. Assume $\eta^{0}=\tau$ is in $S \cap S^{g}$. $K S$ is a Sylow 2 -subgroup of $C_{G}(\tau)$. We shall prove that S is a unique elementary abelian subgroup of $K S$ of order $2 i$. Since $\chi(\tau)$ contains a regular normal subgroup and it has two classes involutions, an involution τ^{\prime} of $C_{\theta}(\tau)$ not contained in S fixes at least two points of $F(\tau)$. By the argument in [7] $i=\alpha\left(\left\langle\tau, \tau^{\prime}\right\rangle\right)^{2}$. Thus $\left|C_{S}\left(\tau^{\prime}\right)\right|=2 \sqrt{i}$ and hence $\left|C_{K S}\left(\tau^{\prime}\right)\right|=8 \sqrt{i}$. If $8 \sqrt{i} \geq|S|=2 i$, then $i=4$ or 16 . Since $n=i(\beta(i-1)+\gamma) / \gamma, \beta=\gamma, n=i^{2}$ and $g^{*}(2)=n-1$. Thus the set T consisting of elements of $C_{\theta}(\tau)$ which fix no point of Ω and the identity element is a group and it is transitive on $F(\tau)$. $\quad T^{g}=T$ since S^{g} is contained in $C_{\theta}(\tau) . \quad F\left(\tau^{\prime}\right)=F(\tau)$ and $\tau=\tau^{\prime}$, which is a contradiction. Thus g is in $N_{G}(S)$. The other part of Lemma 6 is trivial.

Lemma 7. $\beta=r$ and $n=i^{2}$.
Proof. By lemma $2 \beta=1$ or γ. By Lemma $6 n=i(\beta(i-1)+\gamma) / \gamma$ must be divisible by i^{2}. Thus $n=i^{2}$.

Lemma 8. Every involution of G_{1} acts trivially on $O\left(G_{1}\right)$.
Proof. Assume $O\left(G_{1}\right) \neq 1$. Let $K^{\prime}=\left\langle\tau, \tau^{\prime}\right\rangle$ is a four group contained $G_{1,2}$. Since every involution of G_{1} is conjugate to each other, by a theorem of Brauer-Wielandt [13] $\left.\left|O\left(G_{1}\right)\right| C_{o\left(G_{1}\right)}\left(K^{\prime}\right)\right|^{2}=\left|C_{o\left(G_{1}\right)}(\tau)\right|^{3}$. Since $O\left(G_{1}\right) \cap G_{1,2}=1$,
$\left|C_{o\left(G_{j},\right.}(\tau)\right|$ is a factor of $i-1$ and $\left|O\left(G_{1}\right)\right|$ is a factor of $n-1=i^{2}-1$. Thus $\left|O\left(G_{1}\right)\right|$ is a factor of $i-1$ and hence $O\left(G_{1}\right)$ is contained in $C_{\theta}(\tau)$.

By [12] there exists a normal subgroup G_{1}^{\prime} of odd index containing $O\left(G_{1}\right)$ such that $G_{1}^{\prime} / O\left(G_{1}\right)$ is isomorphic to $R(r)$ and $G_{1} / O\left(G_{1}\right)$ is isomorphic to a subgroup of Aut $R(r)$.

Lemma 9. $R(r) \neq R(q)$
Proof. Assume $R(r)=R(q) . \quad G_{1}^{\prime}=O\left(G_{1}\right) G_{1,2}$. By Lemma $8 G_{1,2}$ is normal in G_{1}^{\prime} and hence in G_{1}, which is a contradrction.

Lemma 10. $i+1=\left(r^{3}+1\right) r^{2}(q+1) /(r+1) q^{2}\left(q^{3}+1\right), \quad i-1=\left|O\left(G_{1}\right)\right|\left|G_{1} / G_{1}^{\prime}\right|$ $\left|r\left(r^{2}-1\right) / q\left(q^{2}-1\right)\right|$ and $\sqrt{i}-1=\left|O\left(G_{1}\right)\right|\left|G_{1} / G_{1}^{\prime}\right|(r+1) /(q+1)$.

Proof. Since $R(r)$ has a doubly transitive permutation representation such that the stabilizer of two points is cyclic, $\left[C_{\text {Aut } R(r)}(\eta): C_{R(r)}(\eta)\right]=[$ Aut $R(r): R(r)]$ for every involution η of $R(r)$. Thus $\left|C_{G_{1}}(\tau)\right|=\left|C_{R(r)}(\bar{\tau})\right|\left|G_{1} / G_{1}\right|$ $\left|O\left(G_{1}\right)\right|$ by Lemma 8. Since $\left[G_{1}: C_{G_{1}}(\tau)\right]=(i+1)\left|G_{1,2}: G_{1,2}(\tau)\right|$, we get first two equalities in the lemma. Let $K^{\prime}=\left\langle\tau, \tau^{\prime}\right\rangle$, be a subgroup of $G_{1,2}$ of order 4. By the argument in [7] $\alpha(K)-1=\sqrt{i}-1=\left|C_{G_{1}}\left(K^{\prime}\right): C_{G_{1,2}}\left(K^{\prime}\right)\right|=$ $\left|G_{1}: G_{1}^{\prime}\right|\left|O\left(G_{1}\right)\right|\left|C_{R(r)}\left(\bar{K}^{\prime}\right): C_{R(q)}\left(\overline{K^{\prime}}\right)\right|=\left|G_{1}: G_{1}^{\prime}\right|\left|O\left(G_{1}\right)\right|(r+1) /(q+1)$.

By this lemma $\sqrt{i}+1=(i-1) /(\sqrt{i}-1)=r(r-1) / q(q-1)$. Thus $i+1=$ $|\sqrt{i}|^{2}+1=(r(r-1) / q(q-1)-1)^{2}+1 \equiv 2(\bmod 3)$ since $r>q$ by Lemma 9 . On the other hand $i+1 \equiv 0(\bmod 3)$ by Lemm 10 , which is a contradiction.

This complets the proof of Theorem 1.

5. Corollaries

Corollary 1. Let G be a 3 -transitive group on $\Omega=\{1,2, \cdots, n\}$. If the stabilizer $G_{1,2,3}$ of points 1,2 and 3 is isomorphic to a simple group with abelian Sylow 2-subgroup or $R(3)$, then $G=A_{8}$ and $n=8$.

Proof. If G_{1} contains a normal subgroup which is regular on $\Omega-\{1\}$, then G contains a normal subgroup M such that $M \leq G \leq$ Aut M and M acts on Ω as one of the following groups in its usual 2-transitive representation : a sharply transitive group, $\operatorname{PSL}(2, q), S_{z}(q), \operatorname{PSU}(3, q)$ or a group of Ree type. If M is sharply transitive, then M_{1} is a normul subgroup of 2-transitive group G_{1} and elementary abelian. Thus $\left|M_{1}\right|$ is prime and G_{1} is solvable, which is a contradiction. If $M=P S L(2, q)$ or $S_{z}(q)$, then $G_{1,1,3}$ must be cyclic since Aut M / M is cyclic. If $M=\operatorname{PSU}(3, q)$ or a group of Ree type, then $G_{1,2,3}$ must have a cyclic normal subgroup $M_{1,2,3}$, which is a contradiction. Thus by Theorem 2 $G_{1}=A_{7}$ with $n=8$ or $G_{1}=M_{11}$ with $n=13$. If $G_{1}=A_{7}$, then $G=A_{8}$. By [10] there exists no group such that $n=13$ and $G_{1}=M_{11}$.

Similary we have the following corollary of Theorem in [6].
Corollary 2. Let G be a 3 -transitive group on Ω. If $G_{1,2,3}$ is complete Frobenius group such that its kernel is a 2-group, then $G=A_{7}$ or G contains a regular normal subgroup, $G_{1}=A_{7}$ and $n=16$.

Proof. Let M be as in Corollary 1. If M is sharply transitive, then G is solvable. This contradicts [4]. Thus by [6.] $G_{1}=A_{6}$ with $n=7$ or $G_{1}=A_{7}$ with $n=16$. If $G_{1}=A_{6}$, then $G=A_{7}$. If $G_{1}=A_{7}$, then G is isomorphic to a subgroup of $A G(4,2)$ (see [10]).

Department of Mathematics Hokkaido University
Sapporo, Japan

References

[1] H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festla $\beta \mathrm{t}$, J. Algebra, 17 (1971), 527-554.
[2] G. Glauberman: Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
[3] C. Hering, W. M. Kantor and G. M. Seitz: Finite groups with a split BNpair of rank 1. I, J. Algebra, 20 (1972), 435-475.
[4] B. HUPPERT: Zweifach transitive aufösbare Permutaionsgruppen, Math: Z., 68 (1957), 126-150.
[5] Z. Janko and J. G. Thompson: On a class of finite simple groups of Ree, J. Algebra, 4 (1966), 274-292.
[6] H. Kimura: A characterization of simple groups A_{6} and A_{7}, J. Algebra 33 (1975), 161-169.
[7] H. Kimura: A characterization of simple groups A_{7} and M_{11} I, II, Hokkaido Math. J., 3 (1974), 213-217, 4 (1975), 39-44.
[8] H. Kimura: A remark on 2-transitive groups of odd degree, Hokkaido Math. J., 3 (1974), 305.
[9] R. Noda and H. Yamaki: A characterization of the alternating groups of degrees six and seven, Osaka J. Math. 7 (1970), 313-319.
[10] C. C. Sims: Computational methods in the study of permutation groups, Computational problems in abstruct algebra, Pergamon Press, Oxford, 1970 (edited by J. Leech).
[11] E. Shult,: On doubly transitive groups of even degree (to appear).
[12] J. H. Walter: The characterization of finite groups with abelian Sylow 2subgroups, Ann. Math. 89 (1969), 409-514.
[13] H. Wielandt: Beziehungen Zwische den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158.
[14] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.
[15] H. Yamaki: A characterization of the simple groups of A_{7} and M_{11}, J. Math. Soc. Japan 23 (1971), 130-136.

