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1. Introduction

In this paper we shall prove the following theorem.
THEOREM 1. Let G be a doubly transitive group on the set \Omega=\{1,2 ,

\ldots , n\} . If the stabilizer G_{1,2} of points 1 and 2 is isomorphic to the Janko s
simple group J(11) of order 2^{3}\cdot 3\cdot 5\cdot 7\cdot 11\cdot 19 or a group R(q) of Ree type,
then G has a regular normal subgroup.

By Walter’s theorem a simple group with abelian Sylow 2-subgr0ups
is isomorphic to J(11), R(q)(q\neq 3), PSL(2,2^{m}) or PLS{2,q) with q\equiv 3 or
5 (mod 8). Theorefore by Theorem 1 and theorems in [7] we have the
following.

THEOREM 2. Let G be a doubly transitive group on the set \Omega=\{1,2, \cdots ,
n\} . If G_{1,2} is isomorphic to a simple group with abelian Sylow 2-subgr0ups,
then G is isomorphic to the alternating group A_{7} of&gree seven, the Mathim
group M_{11} of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let F(X) denote the set of
all fixed points of X and \alpha(X) be the number of points in F(X). N_{G}(X)

acts on F(X).
Let \chi_{1}(X) and \chi(X) be the kernel of this representation and its image,

respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on f2 not containing a regular
normal subgroup such that G_{1,2} is isomorphic to J(11) or R(q). Let K be
a Sylow 2-subgroup of G_{1,2} . Then K is an elementary abelian 2-group of
order 8. Let I be an involution of G with the cycle structure (1, 2) \cdots .
Then I normalizes G_{1,2} . Since Aut (G_{1,2})/Inn(G_{1,2}) is of odd order, we may
assume I centralizes G_{1,2} . Let \tau be an involution of K. Let \tau fix i points
of \Omega, say 1, 2, \cdots , i. Since every involution of G is conjugate to an involu-
tion in IG_{1,2}, it is conjugate to I or I\tau .

Let d be the number of elements in G_{1,2} inverted by I. Set \mathcal{T}=[G_{1,2} :
C_{G}(\tau)\cap G_{1,2}] . Let \beta be the number of involutions with the cycle structures
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(1, 2) \cdots which are conjugate to \tau . Let g_{1}^{*}(2) and g^{*}(2) be numbers of in-
volutions which only the point 1 and which fix no point of \Omega, respectively.
Then n=i(\beta i-\beta+\gamma)/\gamma and d=\beta+g_{1}^{*}(2) if n is odd and d=\beta+g^{*}(2)/(n-1)

if n is even.
LEMMA 1. G has two classes of involutions.
PROOF. See [6, Lem. 5].

LEMMA 2. d=\mathcal{T}+1 and \beta=1 or \gamma .
PROOF. By Lemma 1 G has two classes of involutions. If I\tau is con-

jugate to \tau, \beta=\gamma and if I is conjugate to \tau, \beta=1 .

3. The case \bm{n} is odd

LEMMA 3. \beta=1 and g_{1}^{*}(2)=\gamma

PROOF. If \beta=\mathcal{T}, then g_{1}^{*}(2)=1 . By [2] G must have a regular normal
subgroup.

Lemma 4. \chi(\tau) contains a regular normal subgroup and \alpha(C_{G_{1,2}}(\tau)) is
odd

PROOF. Assume the lemma is false. If G_{1,2}=R(3), then \chi(\tau)_{1,2}=1 , Z_{3}

or A_{4} and if G_{1,2}=J(11) or R(q) with q>3 , then \chi(\tau)_{1,2}=1 or PSL{2,r)
with r\equiv\pm^{\mathfrak{l}}3 (mod 8). By [1], [7] and [9] \chi(\tau)=\mathfrak{X}L(2,4) and i=5, or
\chi(\tau)=A_{7} and i=15 or 7. If i=5 or 15, then n=i(i-1+7.9)/7.9 and if
i=7, then n=7(6+\gamma)/\gamma, which is a contradiction.

Lemma 5. \alpha(G_{1,2}) is odd
PROOF. Since \alpha(<I, C_{G_{1,2}}(\tau)>)=1 by Lemma 4, let a be the point of

F(<I, C_{G_{1,2}}(\tau)>) . Let \Delta be a G_{1,2}-0rbit containing a. If |\Delta|=1 , then \alpha(G_{1,2})

is odd since F(G_{1,2})^{I}=F(G_{1,2}) . Assume |\Delta|>1 . Since I centralizes G_{1,2}, \Delta

is contained in F(I). If G_{1,2}=J(11) or R(q) with q>3, then C_{G_{1,1}}(\tau) is
maximal in G_{1,2} and hence G_{1,2,a}=C_{G_{1,2}}(\tau) . There exists an element x of
N_{G_{1,2}}(K) of order 7 not contained in C_{G_{1,2}}(\tau) . Since G_{1,2,a}xK=G_{1,2,a}x, |F(K)
\cap\Delta|\geq 7 . Thus \alpha(<I, K>)\geq 7, which is a contradiction. Next assume
G_{1,2}=R(3) . C_{G_{1,2}}(\tau) is not maximal in G_{1,2} . If G_{1,2,a} does not contain N_{G_{1,3}}(K),
then we have a contradiction as above. If G_{1,2,a} containes N_{G_{1,i}}(K), then
|\Delta|=9 . Let H be a Sylow 7-subgroup of N_{G_{1,2}}(K) . Since \alpha(<I, H>\rangle\geq 2 ,
<I, H>is isomorphic to a subgroup of G_{1,2} . On the other hand a subgroup
ofG_{1,2} of order 14 is not abelian, which is a contradiction.

By [8] and Lemma 1 g_{1}^{*}(2)=1 . This contradicts Lmma 3.
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4. The case \bm{n} is even

1. Case G_{1,2}=J(11) . Since Aut J(11)\cong J(11) and R(q) does not involve
J(11) ([5, Lem. 7, 6], G_{1}=J(11)O(G_{1}) by [12]. Thus O(G_{1}) is regular on
\Omega-\{1\} . By [3] G contains a normal complete Frobenius subgroup G’.
Then KG’ is a solvable 2-transitive group on 12. By [4] K must be cyclic,
which is a contradiction.

2. Case G_{1,2}=R(3)(=P\Gamma L(2,8)) . If |\chi(\tau)_{1,2}| is odd, then G contains
a regular normal subgroup by [11]. Thus \chi(\tau)_{1,2}=A_{4} and \chi(\tau)=A_{6}(i=6)

or AG(2,4)(i=16). Since \gamma=63 , \beta=1 or 63 by Lemma 2. If i=6, then
\beta=63 , n=36 and |G|=36\cdot 35\cdot 9\cdot 8\cdot 21 . If i=16, then \beta=63 , n=16^{2} and
|G|=16^{2}\cdot 15\cdot 17\cdot 9\cdot 8\cdot 21 . Thus G_{1} does not involve J(11) or R(q) with q>3 .
By [12] G_{1}/O(G_{1})=P\Gamma L(2,8) . By [3] G contains a regular nomal subgroup
and K must be cyclic by [4], which is a contradiction.

3. Case G_{1,2}=R(q), q>3 . If \chi(\tau)_{1,2}=1 , then G contains a regular
normal subgroup by [11]. Thus \chi(\tau)_{1,2}=PSL(2, q) . By [7] \chi(\tau) contains
a regular normal subgroup. Let S be a normal subgroup containing X_{1}(\tau)=

<\tau>such that S/<\tau> is a regular normal subgroup of \chi(\tau) . Then S is
an elementary abelian 2-group of order 2z.

Lemma 6. If an involution of S is conjugate to \tau, then it is conjugate
to \tau under N_{G}(S) . |N_{G}(S)|=i^{2}(i-1)|C_{G_{1,2}}(\tau)| .

PROOF. Assume \eta^{g}=\tau is in S\cap S^{g} . KS is a Sylow 2-subgroup of
C_{G}(\tau) . We shall prove that S is a unique elementary abelian subgroup of
KS of order 2z. Since \chi(\tau) contains a regular normal subgroup and it has
two classes involutions, an involution \tau’ of C_{G}(\tau) not contained in S fixes
at least two points of F(\tau) . By the argument in [7] i=\alpha(<\tau, \tau’>)^{2} . Thus
|C_{S}(\tau’)|=2\sqrt{i} and hence |C_{XS}(\tau’)|=8\sqrt{i} . If 8\sqrt{i}\geq|S.|=2i, then i=4 or 16.
Since n=i(\beta(i-1)+\gamma)/\gamma, \beta=\gamma, n=i^{2} and g^{*}(2)=n-1 . Thus the set T con-
sisting of elements of C_{G}(\tau) which fix no point of f2 and the identity
element is a group and it is transitive on F(\tau) . T^{g}=T since S^{g} is con-
tained in C_{G}(\tau) . F(\tau’)=F(\tau) and \tau=\tau’ , which is a contradiction. Thus g
is in N_{G}(S) . The other part of Lemma 6 is trivial.

LEMMA 7. \beta=\mathcal{T} and n=i^{2} .
PROOF. By lemma 2 \beta=1 or \gamma . By Lemma 6 n=i(\beta(i-1)+\gamma)/\gamma must

be divisible by i^{2} . Thus n=i^{2} .
LEMMA 8. Every involution of G_{1} acts trividly on O(G_{1}) .
PROOF. Assume O(G_{1})\neq 1 . Let K’=<\tau, \tau’>is a four group contained

G_{1.2} . Since every involution of G_{1} is conjugate to each other, by a theorem
of Brauer-Wielandt [13] |O(G_{1})|C_{O(G_{1})}(K’)|^{2}=|C_{0(G_{1})}(\tau)|^{3} . Since O(G_{1})\cap G_{1,2}=1 ,
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|C_{0(G_{1})}(\tau)| is a factor of i-1 and |O(G_{1})| is a factor of n-1=i^{2}-1 . Thus
|O(G_{1})| is a factor of i-1 and hence O(G_{1}) is contained in C_{G}(\tau) .

By [12] there exists a normal subgroup G_{1}’ of odd index containing
O(G_{1}) such that G_{1}’/O(G_{1}) is isomorphic to R(r) and G_{1}/O(G_{1}) is isomorphic
to a subgroup of Aut R(r).

LEMMA 9. R(r)\neq R(q)

PROOF. Assume R(r)=R(q). G_{1}’=O(G_{1})G_{1,2} . By Lemma 8 G_{1,2} is
normal in G_{1}’ and hence in G_{1} , which is a contradrction.

LEMMA 10. i+1=(r^{3}+1)r^{2}(q+1)/(r+1)q^{2}(q^{3}+1), i-1=|O(G_{1})||G_{1}/G_{1}’|

|r(r^{2}-1)/q(q^{2}-1)| and \sqrt{i}-1=|O(G_{1})||G_{1}/G_{1}’|(r+1)/(q+1) .
PROOF. Since R(r) has a doubly transitive permutation representation

such that the stabilizer of two points is cyclic, [C_{AutR(r)}(\eta):C_{R(r)}(\eta)]=[Aut

R(r) : R(r)] for every involution \eta of R(r). Thus |C_{G_{1}}(\tau)|=|C_{R(r)}(\overline{\tau})||G_{1}/G_{1}|

|O(G_{1})| by Lemma 8. Since [G_{1} : C_{G_{1}}(\tau)]=(i+1)|G_{1,2} : G_{1,2}(\tau)| , we get first
two equalities in the lemma. Let K’=<\tau, \tau’> , be a subgroup of G_{1,2} of
order 4. By the argument in [7] \alpha(K)-1=\sqrt{i}-1=|C_{G_{1}}(K’) : C_{G_{1,2}}(K’)|=

[ G_{1} : G_{1}’||O(G_{1})||C_{R(r)}(\overline{K} ’ ) : C_{R(q)}(\overline{K}’.)|=|G_{1} : G_{1}’||O(G_{1})|(r+1)/(q+1) .
By this lemma \sqrt{i}+1=(i-1)/(\sqrt{i}-1)=r(r-1)/q(q-1) . Thus i+1=

\lfloor\sqrt{i}|^{2}+1=(r(r-1)/q(q-1)-1)^{2}+1\equiv 2 (mod 3) since r>q by Lemma 9. On
the other hand i+1\equiv 0 (mod 3) by Lemm 10, which is a contradiction.

This complets the proof of Theorem 1.

5. Corollaries

COROLLARY 1. Let G be a 3-transitive group on \Omega=\{1,2, \cdots, n\} . If
the stabilizer G_{1,2,3} of points 1, 2 and 3 is isomorphic to a simple group
with abelian Sylow 2-subgroup or R(3), then G=A_{8} and n=8.

PROOF. If G_{1} contains a normal subgroup which is regular on \Omega-\{1\} ,
then G contains a normal subgroup M such that M\leq G\leq Aut M and M
acts on \Omega as one of the following groups in its usual 2-transitive repre-
sentation: a sharply transitive group, PSL(2, q), S_{z}(q), PSU{3,q) or a group
of Ree type. If M is sharply transitive, then M_{1} is a normul subgroup of
2-transitive group G_{1} and elementary abelian. Thus |M_{1}| is prime and G_{1}

is solvable, which is a contradiction. If M=PSL(2, q) or S_{z}(q), then G_{1,1,3}

must be cyclic since Aut M/M is cyclic. If M=PSU(3, q)or a group of
Ree type, then G_{1,2,3} must have a cyclic normal subgroup M_{1,2,3} , which is
a contradiction. Thus by Theorem 2 G_{1}=A_{7} with n=8 or G_{1}=M_{11} with
n=13. If G_{1}=A_{7} , then G=A_{8} . By [10] there exists no group such that
n=13 and G_{1}=M_{11} .
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Similary we have the following corollary of Theorem in [6].
COROLLARY 2. Let G be a 3-transitive group on 12. If G_{1,2,3} is com-

plete Frobenius group such that its kemel is a 2-group, then G=A_{7} or G
contains a regular normal subgroup, G_{1}=A_{7} and n=16.

PROOF. Let M be as in Corollary 1. If M is sharply transitive, then
G is solvable. This contradicts [4]. Thus by [6.] G_{1}=A_{6} with n=7 or
G_{1}=A_{7} with n=16. If G_{1}=A_{6}, then G=A_{7} . If G_{1}=A_{7}, then G is isomor-
phic to_{-} a subgroup of AG(4,2) (see [10]).
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